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ABSTRACT This paper presents the novel approach towards table structure recognition by leveraging the
guided anchors. The concept differs from current state-of-the-art systems for table structure recognition
that naively apply object detection methods. In contrast to prior techniques, first, we estimate the viable
anchors for table structure recognition. Subsequently, these anchors are exploited to locate the rows and
columns in tabular images. Furthermore, the paper introduces a simple and effective method that improves
the results using tabular layouts in realistic scenarios. The proposed method is exhaustively evaluated on the
two publicly available datasets of table structure recognition: ICDAR-2013 and TabStructDB. Moreover,
we empirically established the validity of our method by implementing it on the previous approaches.
We accomplished state-of-the-art results on the ICDAR-2013 dataset with an average F1-measure of 94.19%
(92.06% for rows and 96.32% for columns). Thus, a relative error reduction of more than 25% is achieved.
Furthermore, our proposed post-processing improves the average F1-measure to 95.46% that results in a
relative error reduction of more than 35%. Moreover, we surpassed the baseline results on the TabStructDB
dataset with an average F1-measure of 94.57% (94.08% for rows and 95.06% for columns).

INDEX TERMS Deep neural network, Mask R-CNN, document images, object detection, anchor optimiza-
tion, guided anchors, table structure recognition, table structure extraction, table understanding.

I. INTRODUCTION
In this modern age of digitization, several camera-equipped
devices [1] have been operated daily to upload documents
leading to expanding the need for robust systems that
can extract information from raw documents images [2].
In the past, numerous approaches have advertised remarkable
results in retrieving information by applying Optical Charac-
ter Recognition (OCR) methods on documents [3]–[5]. One
of the most appropriate ways to represent the information
in documents is through tables [6]. The table contains sig-
nificant facts and figures stored in a concise and organized
manner [7]. These tabular structures are extensively used
as a medium to convey valuable information in domains
like finance, administration, research, and even historical
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documents [8]. Hence, automated identification of these tab-
ular structures is a significant problem in the document anal-
ysis community [6], [9], [10].

The problem of table analysis can be explained by breaking
it down into two sub-problems: The first problem is identify-
ing the table’s boundary in a document image. The second
task is to recognize the structure from a tabular image [6].
The task of table detection is a complex problem because
of the diversity in tabular patterns. For instance, some tables
contain ruling lines while others do not have any information.
It is highly probable to detect false positives while spotting
a table because of having similarities between tables and
charts or figures [11]. These challenges demonstrate that
custom heuristics or traditional approaches are not capable
of handling the problem of table detection [8]. The recent
development in deep learning-based methods has excep-
tionally improved state-of-the-art table detection methods.
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FIGURE 1. Table Structure Recognition problem definition and challenges. Red color defines the bounding box for rows, while blue denotes columns.
In the figure, part(a) and part(b) represents tabular images having rows spanning multiple lines, whereas, in part(c), rows are restricted to a single line.
Columns can be as wide as illustrated in part(a) and part(b) but also as narrow as shown in part(c). For the sake of clarity, only a few rows and columns
are highlighted.

Several researchers have exploited deep learning algorithms
to detect the tabular area [12]–[14]. Object detection algo-
rithms have been proven to surpass the rest of the techniques
and achieved almost perfect results [8], [15].

The task of table structure recognition is about detecting
various cells present in the table [16]. This problem can be
further dissolved into detecting rows and columns in a table.
Later, the rows and columns can be combined to produce the
respective cells [17]. The pre-condition for table structure
recognition is the accurately detected tabular regions [18],
[19]. Fig. 1 illustrates how the problem of table structure
recognition is defined in our approach. Additionally, the fig-
ure depicts the challenges that exist due to the diversities in
structures of rows (columns) in tabular images. Only a few
rows (columns) are marked for the sake of clarity.

Several approaches have tackled the problem of table struc-
ture recognition by leveraging additional metadata extracted
from the PDF files [20], [21]. However, extracting tabular
structures directly from images is perplexing compared to
operating over digital-born PDFs [17]. Although few consid-
erable efforts have tackled the problem of recognizing tabular
structures straight from images [13], [19], accurate structural
recognition is far from achievable [18].

This paper extends the idea of treating the problem of
table structure recognition as an object detection problem
[18]. In object detection problems, the elementary task is
to find the object in a natural scene image. In our case,
we operate a document as a natural image while the rows and
columns in the table are our targeted objects. While the sys-
temDeepTabStr [18] relied on memory-intensive deformable
convolutions [22], our approach consists of intuitive utiliza-
tion of Mask R-CNN [23] with optimized anchors.

The deep neural networks get confused in the localiza-
tion of rows due to the specialized layouts of tabular struc-
tures. The ground-truth between the two publicly available
table structure recognition datasets significantly differs in
terms of semantics to complicate the matter even more.
Fig. 2 depicts the semantic difference between the datasets of
ICDAR-2013 [16] and TabStructDB [18]. The ground truth of
tabular rows in TabStructDB is labeled without considering
the table row’s actual contents. Therefore, it is easy for the

FIGURE 2. Visual illustration of semantic difference between the ground
truth of two employed datasets. The red bounding box demonstrates the
ground truth annotation for rows in tabular images. Part (a) represents
the annotation scheme of ICDAR-2013 [16] whereas part(b) depicts the
labelling criteria of TabStructDB [18]. It is evident that the ground truth
bounding box for rows is restricted to the content in part (a), whereas
there is no consideration of the content in (b).

network to work with such annotations. However, it is essen-
tial to mention that in production systems, the emphasis is on
the reliable extraction of actual content. Hence, the annotation
of ICDAR-2013 dataset illustrated in Fig. 2(a) is more real-
istic in comparison to the annotation scheme of TabStructDB
(Fig. 2(b)).
When object detection algorithms are trained on realistic

datasets like ICDAR-2013 [16], extra white spaces are added,
or important textual information is compromised, resulting
in imprecise information extraction from tables. To tackle
this critical problem, we have devised a simple and effec-
tive post-processing method that can easily be incorporated
to improve real-world situations. It is essential to mention
that our approach outperformed the state-of-the-art even
without incorporating the post-processing method. However,
this optional step improves the performance further for the
datasets, where recognizing the table’s actual content is
imperative.

In particular, the contributions of this paper are summa-
rized as follows:
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• We have treated the problem of table structure extrac-
tion as an object detection problem by employing the
well-known Mask R-CNN model [23].

• We have implemented a novel anchor optimization
technique in a region-based convolutional neural net-
work that produces faster network convergence. More-
over, we generalize this method to previous approaches.

• We have introduced a simple and effective post-
processing method to remove the extra white spaces
from the predicted rows. We have demonstrated
the effectiveness of this method on the ICDAR-13
dataset [16] and showed that this method is beneficial
in recognizing tabular structures in realistic scenarios.

• After extensive cross-dataset evaluations, our pro-
posed approach has beaten the state-of-the-art results
on the ICDAR-13 dataset [16] by using same evalua-
tion metrics proposed by Schreiber et al. [17]. Further-
more, we have also surpassed the baseline results on
the TabStructDB dataset [18].

The rest of the paper is organized as follows: In the begin-
ning, we discuss some of the previous work closely related
to our approach in Section II; In Section III we explain
our proposed approach and discuss the ideas used in the
experiments; Section IV provides a brief overview about the
datasets that are exploited in the proposed method; Along
with a brief detail over evaluation metrics, we present our
results in Section V; Finally, Section VI concludes the paper.

II. RELATED WORK
In this section, we highlight the most relevant related work
in the field of table structure analysis. We have divided the
contributions into pre and post-deep learning eras described
in the following sections. For an exhaustive state-of-the-art
overview in the closely related research area of table under-
standing, refer to [6], [7], [9], [10], [24]–[29].

A. TRADITIONAL APPROACHES
Kieninger and Dengel [20], [30], Kieninger [31], who are
the pioneers for working in table structure extraction, tackled
the problem by leveraging the traditional approaches. Their
proposed system, T-Recs gathered the words into columns
by calculating their horizontal ruling lines. Subsequently,
the method splits horizontal lines into respective cells based
on column margins.

Wangt et al. [32] proposed a system that can generate many
table ground truths that are beneficial for table recognition
systems. The author used a novel table analysis algorithm and
an X-Y cut algorithm to extract table structure by detecting
the respective cells. Later, another data-driven system pro-
posed by Wang et al. [33] that operates on joint probabil-
ity distributions and deals with both detection and structure
decomposition of tables. Their algorithm was analogous to a
well-known X-Y cut algorithm [34].

The problem of table structure extraction caught attention
when a table structure recognition competition is organized at

ICDAR in 2013 [16]. While the first part of the competition
was to detect the boundary of the table, the second part of
this competition was to recognize the tabular structure by
reconstructing the cellular structure of a table. The system
employed cell-level metrics to evaluate the performance of
the systems. It is important to note that apart from one can-
didate, all of the participants in the competition vastly used
the PDF metadata. However, poor results achieved by the
pure image-based system depict that cell-level metrics are
not suitable for the evaluation of image-based table analysis
systems.

Another approach that leverages PDF metadata to detect
the structure of tables is published by Klampfl et al. [21]. The
system employed a blend of unsupervised learning techniques
and hand-crafted heuristics to perform table structure recog-
nition. Kasar et al. [35] came up with a query-based system to
extract structure of the tables. The system converts the input
query taken from the user into a relational graph. Then it
compares the query by using a graph matching algorithm to
fetch the required information.

Shigarov et al. [36] performed an exhaustive evaluation
on various algorithms with different thresholds and custom
heuristics to tackle the problem of table structure recognition.
Their approach was heavily dependent on the PDF meta-data
as well. Another approach relying heavily on PDF-metadata
is proposed by Rastan et al. [37]. Along with recognizing the
structure of tables, their system TEXUS can also extract the
content from tabular structures.

All these techniques are heavily dependent on the
meta-data available in digital-born PDFs. Since our approach
works on the scanned document images, these techniques are
not directly comparable with our approach.

B. DEEP LEARNING BASED APPROACHES
1) GRAPH NEURAL NETWORKS
Recently, Chi et al. [12] has exploited graph neural net-
works [13] to perform the task of table structure recognition
on PDF documents. Another approach powered by graph
neural networks is published by Qasim et al. [38]. Their
model combines the capabilities of convolutional neural net-
works and graph neural networks to extract tabular structures.
Xue et al. introduced a bottom-up approach by reconstructing
the table structure using a cell relationship network. The
system ReS2TIM [39] employed a distance-based weight
technique to retrieve a syntactic table structure.

2) RECURRENT NEURAL NETWORKS
Recurrent neural networks [40] have also been employed to
handle the problem of table structure extraction [41], [42].
However, most of the prior approaches have utilized PDF
meta-data. Since we deal with natural document images, they
are not directly comparable to our approach.

3) CONVOLUTIONAL NEURAL NETWORKS
Schreiber et al. [17] published the first natural image-based
deep learning system to the best of our knowledge, which
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FIGURE 3. The proposed pipeline for Table Structure Recognition. Optimized anchors are given to the region proposal network of Mask R-CNN. After
regressing coordinates by the network, the predicted bounding boxes for row detection are further enhanced by employing the post-processing
technique.

explored the problem of table structure analysis. The sys-
tem leverages the Fully Convolutional Network (FCN)
[43] to segment the table into rows and columns. Later
in 2019, TableNet has been proposed by Paliwal et al. [13].
The authors tackled the problem of table structure extrac-
tion through a semantic segmentation technique. Another
approach powered by semantic segmentation to extract
tabular structures from document images is published by
Siddiqui et al. [19].

These approaches have either used semantic segmentation
or FCN to solve the problem of document images. Contrar-
ily, we have chosen to handle the task of table structure
recognition as an object detection problem. Although
Siddiqui et al. [18] has treated the table structure anal-
ysis as an object detection problem, there are various
considerable differences between the two methods. The sys-
tem DeepTabStr [18] has adopted Faster R-CNN [44] with
deformable convolutions [22] while our proposed approach
works with Mask R-CNN [23] exploiting optimized anchors
to directly detect boundaries of respective rows and columns
in a tabular image.

III. METHOD
We have devised the problem of table structure recognition
as an object detection problem. Object detection is a famous
problem in computer vision that studies how a machine rec-
ognizes objects from a natural scene image. Recent progress
in deep learning has remarkably enhanced the state-of-the-art
object detection systems [23], [44]. To achieve the ultimate
goal of table structure recognition, we have decomposed
our problem into two sub-problems. The first one is about
detecting rows in tables, while the second sub-problem deals
with detecting columns.

A. MODEL
We could implement our approach in two ways:

1) Separate model for both rows and columns.
2) Single combined model to handle both the problems.

Considering the diversity in the structures of rows and
columns, it has been empirically established that the separate
model performs better [18]. Hence, we have decided to go for
two segregated models to solve the problem of table structure
recognition.

1) MASK R-CNN
We have adopted Mask R-CNN [23] as our model to identify
the rows and columns in a table. Mask R-CNN is one of the
accurate object detection algorithms and the latest member of
the group of Region-based Convolutional Neural Networks
(RCNN) [45]. Mask R-CNN is a two-phase model and has
shown compelling performance on the PASCAL VOC [46],
and COCO [47] datasets. Researchers have leveraged the
capabilities of Mask R-CNN to identify various graphical
objects in document images [11].

To execute the training process of the deep neural network,
it requires an extensive amount of data that we lack specifi-
cally in the domain of table structure extraction. To tackle
this problem, we have exploited transfer learning capabilities
in our approach. The backbone of our Mask R-CNN is a
pre-trained model on ImageNet [48] dataset.

Fig. 3 illustrates the complete pipeline of our proposed
approach. Analogous to Faster R-CNN [44], Mask R-CNN
[23] follows the two-phase procedure with one addition. The
first phase consists of the Region Proposal Network (RPN),
which proposes regions of interest in a document image.
The second phase deals with the classification of labels and
regression of bounding boxes, including the binary masks of
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FIGURE 4. Visualization of anchors conventionally used for object detection techniques against optimized anchors used in our approach.
(a) Anchors conventionally used for object detection. (b) Optimized anchors for row detection. (c) Optimized anchors for column detection.
Traditional anchors are transformed into optimized anchors using the K-Means Clustering technique.

each region of interest. The loss function for of Mask R-CNN
is mathematically explained in [23] as:

L = Lcls + Lbox + Lmask (1)

where L represents the sum of classification loss (Lcls),
bounding box loss (Lbox), and segmentation loss (Lmask ).
We will now discuss the remaining components of our pro-
posed pipeline presented in Fig. 3.

In the first stage, the combination of ResNet-101 [49] and
Feature Pyramid Network (FPN) [50] which is acting as a
backbone in our case, extracts the features from the document
image. These features are further propagated to Region Pro-
posal Network (RPN). RPN is a lightweight neural network
that scans some regions in an image and tries to filter out the
more likely regions to contain objects. These input regions for
RPN are known as anchors. Anchors are defined as a set of
rectangular regions with a predefined set of scales and aspect
ratios [44]. The RPN generates two kinds of outputs for each
anchor:

1) The anchor class states whether an anchor is an object
or background.

2) Bounding box refinement, which is the change in the
position of the bounding box to precisely fit the object
in the proposed region of interest.

B. ANCHOR OPTIMIZATION
The concept of anchors was introduced in the Faster R-CNN
by Ren et al. [44] which is transported intoMask R-CNN [23]
as well. Contrary to the hand-crafted approach of selecting
anchors in Mask R-CNN, we have applied the K-means clus-
tering technique to retrieve fine anchors as explained in the
approach proposed by Redmon and Farhadi [51]. The anchors
traditionally used in object detection consist of various width
to height ratios to deal with objects having diverse shapes
[52]. However, in detecting rows, we are aware that the
anchor’s width will always be equal or greater than the height

of an anchor while it is the other way around for columns.
Hence, anchors having customized sizes and aspect ratios
will lead to better performance than anchors commonly used
for object detection techniques. It is essential to mention that
the euclidean distance was not used as a distance metric in
our K-means clustering technique, but the following distance
metric [15] is used:

D(box, centroid) = 1− IoU (box, centroid) (2)

where the box represents the bounding box as a data sample
for clustering and centroid is the center of a cluster that will
be the output of clustering. IoU (Intersection over Union)
is an evaluation metrics which is explained in Section V.
The purpose of choosing this metric over euclidean distance
is that the bigger boxes will lead to more errors as com-
pared to smaller ones which is not the main concern in our
scenario [15]. The traditional anchors are given as input to
the K-means clustering technique along with the training
datasets of ICDAR 2013 [16], and TabStructDB [18] in order
to retrieve optimized anchors for each dataset.

Fig. 4 illustrates the comparison between original anchors
used for object detection and the optimized anchors for the
row (column) detection. The anchor ratios (0.5, 1 and 2) are
used in Fig. 4(a) while for Fig. 4(b) and Fig. 4(c), we have
used four different anchor ratios (50, 25, 10 and 3) and (0.1,
0.3, 0.5 and 1) respectively. It can be perceived that optimized
anchors 4(b) and 4(c) are well suited to execute the task
of table structure recognition as compared to the anchors
traditionally used for object detection 4(a).
It is essential to mention that RPN scans these optimized

anchors on the feature maps instead of an actual docu-
ment image. The proposed anchor optimization technique
improves themodel’s performance and facilitates the network
to converge faster, making our approach even more efficient.
Fig. 5 illustrates how optimized anchors help the network
to achieve better results in less time. Along with faster
network convergence, the optimized anchors significantly
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FIGURE 5. Network loss comparison between optimized anchors and
traditional anchors for row detection. The blue line represents training
loss with traditional anchors, whereas the red depicts the loss by
incorporating optimized anchors. The X-axis and Y-axis of the graph
denote the number of epochs and loss values, respectively. It is evident
that the network with optimized anchors achieves a loss value of less
than 0.1 right after 30 epochs, while the network with the conventional
anchors cannot achieve the same loss value even after 50 epochs.

TABLE 1. Comparison of F1-measure scores for rows and column
detection between conventionally used anchors and our optimized
anchors. These results are achieved on the Mask R-CNN model.

FIGURE 6. Performance comparison between the models trained with
traditional anchors and optimized anchors. We have experienced a
noticeable increase in the F1-measure score for both rows and columns
detection after employing optimized anchors.

improved the performance of our model. The performance
comparisons between the models for row and column detec-
tion employed with conventional and optimized anchors are
exhibited in Fig. 6. Their F1-measure scores are summarized
in Table 1.

C. LAYOUT BASED POST PROCESSING
Once the Mask R-CNN detects the rows and columns,
we noticed that while the network managed to detect the

Algorithm 1 Resize the Width of Bounding Box by Identify-
ing Black Pixels
Input: I: 2d array of predicted bounding box
Output: R: Improved bounding box
1: blackPT ← BlackPixelThreshold
2: Area← ImageSpecficArea
3: R← I
4: for xValue of R to end of image do

{checking forward for both xmin and xmax}
5: if blackPixelfound then
6: Compute blackPixel count in that Area
7: if blackPixelCount >= blackPT then
8: xmaxofR← xValue
9: end if
10: end if
11: end for
12: for xValue of R to beginning of image do

{checking backward for both xmin and xmax}
13: if blackPixelfound then
14: Compute blackPixel count in that Area
15: if blackPixelCount >= blackPT then
16: xminofR← xValue
17: end if
18: end if
19: end for
20: return R

columns properly, it could not recognize the precise bound-
aries of rows. In the case of row detection, we observed that
the height of predicted bounding boxes is identical to ground
truth. However, the network struggled to predict the correct
width of a bounding box. The network either causes extra
white spaces in the bounding box or drops some valuable
information from the rows. To tackle the problem, we came
up with a simple and effective post-processing algorithm
that can resize the width of a bounding box based on few
constraints.

We are aware that the information is written in black
for most of the documents. Our proposed method improves
precision and recall in two ways:

1) Incorporating the important information that was over-
looked by the network by increasing the width of a
bounding box close to the last set of black pixels.

2) Removing extra white spaces by decreasing the width
of the bounding box to the nearest set of black pixels.

Algorithm 1 explains the pseudo-code for the proposed
method. It is vital to mention that method does not work
in a few cases where the text is not displayed in black pix-
els. However, the proposed method has shown significant
improvements in achieving precise prediction for row detec-
tion, summarized in Table 2. Fig. 7 portrays the performance
improvement in row detection with a simple post-processing
method.
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FIGURE 7. Explaining through example how the IoU for row detection in document images can be further improved with simple post-processing.
Detected rows in part (B) are either stretched or reduced to produce accurate boundaries, as illustrated in part (C).

TABLE 2. Performance comparison for row detection with Mask R-CNN
before and after applying post-processing technique. After applying our
post-processing method, we have seen a significant increase in an
F1-measure score in the case of row detection in document images.

It is necessary to emphasize that our layout-based
post-processing method is optional. Our anchor optimization
approach does not rely on this method to produce state-of-
the-art results. However, we have decided to include this
algorithm because of its highly effective performance, espe-
cially in realistic situations where tabular rows are restricted
to the textual regions.

D. ADDITIONAL EXPERIMENTS
To assess the generalization capabilities of our anchor opti-
mization approach and obtain a direct comparison with the
prior literature [18], we have incorporated the anchor opti-
mization technique in Faster R-CNN [44] and deformable
Faster R-CNN.

1) FASTER R-CNN
Faster R-CNN [44] is a two-stage object detection net-
work built upon Fast R-CNN [44] by replacing the selective
search algorithm with a region proposal network. For the
detailed explanation of Faster R-CNN, we refer our readers
to [44]. Like the Mask R-CNN, the RPN in Faster R-CNN
takes the input anchors and proposes the regions of interest.
We have followed the same anchor optimization scheme in
Faster R-CNN with the identical anchor scales and ratios for
rows (columns) as explained in Section III-B.

2) DEFORMABLE FASTER R-CNN
Along with the conventional Faster R-CNN, we have
implemented deformable Faster R-CNN to evaluate the
performance of our method. The deformable Faster R-CNN
leverages deformable convolutional layers, which are
introduced by Dai et al. [22]. The neurons present in these

layers can modify their receptive fields by producing addi-
tional offsets based on the previous feature maps. This
enables the filters of convolutional layers to adjust to various
arbitrary scales and transformations. For the detailed expla-
nation of deformable convolutions, readers may refer to [22]
and [53]. The deformable Faster R-CNN modifies the actual
Faster R-CNN by replacing the conventional ROI-pooling
with the deformable ROI-pooling. Furthermore, instead of the
conventional ResNet-101, deformable ResNet-101 is utilized
as a based network. Since we have exploited the power of
transfer learning throughout our approach, the deformable
ResNet-101 is trained on the ImageNet dataset [48]. Anal-
ogous to Faster R-CNN and Mask R-CNN, we have adopted
the identical anchor optimization approach in our deformable
Faster R-CNN.

E. HYPERPARAMETERS
We worked with the combination of ResNet-101 [49] and
FPN [50] model as a backbone for both the row and columns
detection. Apart from the aspect ratios anchors, the rest of
the hyperparameters were identical for both models. For row
detection, we have used four different anchor ratios (50, 25,
10, and 3), whereas, for columns, we have picked four differ-
ent anchor ratios with (0.1, 0.3, 0.5, and 1). However, we have
used five different anchor scales (16, 32, 64, 128, 256) for
both networks. We trained both models for 50 epochs, where
each epoch consists of 100-time steps. The maximum image
size was limited to 1024 × 800, and the images exceeding
this size were resized to the maximum dimension. We used a
batch size of 2 on a single NVIDIA 1080 Ti GPU. Our model
works on stochastic gradient descent, having a momen-
tum value of 0.9 and a learning rate of 0.0001. Gradients
are clipped to 5.0, and weights are decayed by 0.0001 at
each epoch. In order to prevent the problem of overfitting,
we have applied augmentation techniques like random rota-
tions, Gaussian blurring, and random horizontal and vertical
flips on the training dataset. We have implemented this work
in Keras [54] with Tensorflow [55] as a backend.

IV. DATASETS
We have used two publicly available table structure recogni-
tion datasets to conduct the experiments. The particulars of
these datasets are explained below.
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A. ICDAR-2013
ICDAR-2013 [16] dataset has been used to standardize the
state-of-the-art results for the task of table detection and table
structure recognition [17], [19]. There are 238 pages in the
dataset, out of which 156 contain tabular structures. Origi-
nally, the dataset contains labels for cells in a table. How-
ever, we have used the transformed version of the dataset 1

published by Siddiqui et al. [19]. The authors have converted
the cell-based annotations into the corresponding labeling for
rows and columns. We have used the identical test split as
employed by Schreiber et al. [17] in order to implement a
direct comparison against the similar approaches [17]–[19].
A sample tabular image is illustrated in Fig. 1.

B. TabStructDB
A Page Object Detection (POD) competition was arranged
in ICDAR 2017. The task of this competition was to
detect graphical page objects in documents like a table, fig-
ures, charts, and equations [56]. By leveraging this dataset,
Siddiqui et al. [19] has published a new dataset for table
structure recognition known as TabStructDB.2 The dataset
contains structural information of each table present in the
ICDAR-2017 POD dataset. Each complete row has been
annotated separately regardless of the textual region to main-
tain consistency in the dataset. Hence, making this dataset
ideal for the object detection approach. The authors pre-
served the same dataset split to keep the coherence with
the ICDAR-2017 POD dataset. The dataset comprises 731
tabular regions for training, whereas 350 tabular regions are
preserved for the testing part. A sample tabular image is
illustrated in Fig. 1.

V. EVALUATION
In order to compare our approach with state-of-the-art meth-
ods [17]–[19], we have used the identical evaluation metrics
which are explained below:

A. INTERSECTION OVER UNION (IoU)
Intersection over Union is a famous evaluation metric used
to determine the performance of object detection algorithms.
It defines as a measure of a predicted region overlapped with
the actual ground truth region.We have used an IoU threshold
of 0.5 for the detections. The formula for computing IoU is
mentioned below:

Area of Overlap region
Area of Union region

(3)

B. PRECISION
Precision is defined as the ratio of correctly predicted region
and the total predicted region. The formula for precision is
explained below:

Predicted area in ground truth
Total area of predicted region

=
TP

TP + FP
(4)

1ICDAR-2013 dataset is publicly available at: https://bit.ly/2RLgFYu
2TabStructDB is publicly available at: https://bit.ly/2XonOEx

C. RECALL
Recall is calculated as the ratio of correctly predicted region
and the total ground truth region. The formula for recall is
explained as follows:

Predicted area in ground truth
Total area of ground truth region

=
TP

TP + FN
(5)

D. F1-MEASURE
Harmonic mean of precision and recall is known as the
F1-measure or F1-measure. The formula for F1-measure is:

2× Precision × Recall
Precision + Recall

(6)

It is essential to understand that the precision, recall, and
F1-measure are calculated independently for each document,
followed by an average over the complete dataset. This eval-
uation criterion reduces the bias from a single document
containing several rows and columns.

As described in Section IV, we have evaluated our pro-
posed approach on the two publicly available datasets:
ICDAR-2013 table structure recognition dataset and
TabStructDB. Apart from evaluating the datasets on their
respective test sets, we have appraised the generaliza-
tion potential of our approach through the cross-dataset
evaluation.

E. ICDAR-2013
Since we are using the modified version of the ICDAR-2013
dataset and we report results based on rows and columns,
our approach cannot be directly compared with any of the
participants of the ICDAR-2013 table competition [16] and
other methods operating on cell-level information. Hence,
we compare our approach with the other image-based models
that have reported results on rows and columns. To enable the
direct comparison with those approaches, we have used the
same train/test split proposed by Schreiber et al. [17].
Table 4 summarizes the results of image-based table struc-

ture recognition methods on ICDAR-2013 dataset. Results
depict that our proposed Mask R-CNN with optimized
anchors (with and without the involved post-processing
method) has outperformed the previous state-of-the-art tech-
niques with an average F1-measure of almost 0.94 and
0.95 respectively. Although results on the column detection
of our model are comparable with the DeepTabStR [18],
our anchor optimization method has surpassed the perfor-
mance of row detections resulting in noticeable improve-
ment on the average results and a significant relative error
reduction of 25% (without post-processing) and 35% (with
post-processing).

For the cross-dataset evaluation, we have trained our mod-
els on the TabStructDB dataset and tested on the complete
and test set of the ICDAR-2013 dataset. We have reported
the results without including the improvement from the pro-
posed post-processing method for all the three models (Mask
R-CNN, Faster R-CNN, and deformable Faster R-CNN).
This enables us to compare our anchor optimization-based
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TABLE 3. Table structure recognition performance on cross-dataset evaluations. In this table, † represents the only approach that has not utilized the
optimized anchors, and the results are taken from DeepTabStR [18] to have a direct comparison. The rest of the models operate on optimized anchors.
We have achieved all of the results without incorporating the proposed post-processing method.

approach with the prior method. In Table 3, it is evident
that our deformable Faster R-CNN with optimized anchors
have outperformed the deformable Faster R-CNN with con-
ventional anchors [18] both on the complete and test set of
ICDAR-2013 with an average F1-measure of 0.74 and 0.68
respectively. In contrast, our original approach with Mask
R-CNN yields the average F1-measure of almost 0.74 for the
test set and almost 0.77 for the complete dataset. These results
in Table 3 explain the diversity between the two datasets and
indicate that there is still room in generalizing the system over
various datasets.

Fig. 8 portrays fragments of correctly recognized tabular
structures whereas Fig. 9 depicts some of the cases where
rows and columns are not properly detected by the system.
In case of incorrect recognition, the model fails to detect few
rows in Fig. 9(a) and 9(c) because of having several rows with
small width in a document image. In another case in Fig. 9(b),
the systemwas unable to recognize the row spanning inmulti-
ple lines. Althoughmost of the columns are correctly detected
by the model, there are few instances where the system either
does not capture the whole column area or merges multiple
small columns into a single column (Fig. 9(d-f)).
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TABLE 4. Table structural recognition performance comparison on ICDAR-2013 dataset. Outstanding results are highlighted. Our proposed system of Mask
R-CNN with optimized anchors has out-smarted the prior state-of-the-art approaches with and without including the proposed post-processing method.

FIGURE 8. Correctly Recognized Table Structures.

F. TabStructDB
Along with the ICDAR-2013 dataset, we have compared
our approach to the TabStructDB dataset. It is evident in

the Table 5 that our proposed system has outperformed the
baseline results established by the DeepTabStR [18] with an
average F1-measure of 0.9417. It is important to mention
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FIGURE 9. Examples representing incorrectly recognized row and column detection. The green color shows true
positives, the blue color depicts false positives, and the red color portrays false negatives for both rows and columns.

that since we have trained our models for rows and columns
separately, we have compared our results with theirs achieved
on separate training methods with the same train/test split of
the dataset.

For the cross-dataset evaluation, a noticeable fall in per-
formance can be perceived in Table 3 when the system
(trained on ICDAR-2013) is evaluated on complete and
test set of TabStructDB. One of the main reasons for this

decline is the disparity in the annotation scheme. The anno-
tations of ICDAR-2013 are limited to textual regions only,
while TabStructDB has been labeled with complete rows and
columns without considering the textual regions. Since this
is an unrealistic scenario, we have not applied the proposed
post-processing method while evaluating the performance
of our system on the TabStructDB dataset. However, in a
direct comparison with deformable Faster R-CNN having
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TABLE 5. Table structural recognition performance comparison on TabstructDB dataset. Outstanding results are highlighted. Our proposed system of
Mask R-CNN with optimized anchors has outperformed prior baseline results.

conventional anchors [18], our deformable Faster R-CNN
with optimized anchors have shown superior results with an
average F1-measure of 0.74 and 0.71 on the complete and test
set of TabStructDB.

VI. CONCLUSION AND FUTURE WORK
We have proposed a novel approach that employs object
detection as a base and adds intelligent automatic estima-
tion of anchor boxes suitable for table structure recogni-
tion. In this paper, we exhibit that current object detectors
have already shown remarkable improvements in resolving
the problem of table detection [8], [17], are also highly
effective in improving the performance of table structure
recognition systems. We have adopted the anchor optimiza-
tion technique that predicts the viable anchors facilitates
the object detection process with faster and better results.
Furthermore, we have proposed an additional but optional
component in our paper: a simple post-processing method
showing impressive results in real-world scenarios. With-
out incorporating the post-processing method, our achieved
results have outperformed the state-of-the-art image-based
table structure recognition system on the publicly avail-
able ICDAR-2013 dataset with an average F1-measure of
94.19%, reducing the relative error to more than 25%. With
post-processing, the average F1-measure further improves
to 95.46%, resulting in a relative error reduction of more
than 35%. Moreover, we surpassed the baseline results on
the publicly available TabStructDB dataset with an average
F1-measure of 94.57%. The obtained results recommend the
idea of exploiting optimized anchors in object detectors for
table structure recognition systems.

Although our proposed post-processing technique is nearly
applicable to all kinds of document images, some exceptional
cases exist. Hence, better post-processing methods should
be developed. Our model had a hard time detecting rows
spanning multiple lines in the table. An exciting direction
could be to detect the cells directly instead of rows and
columns. Instead of using the traditional convolutional neu-
ral networks, recently proposed CoordConv [57] could also
be exploited in the object detection algorithms in order to
provide the system with extra contextual information. Along
with guided anchors, attention-based region proposal net-
works [58] could be an interesting future direction. This paper
tackles table structure recognition in business-like scanned
document images. It would be interesting to examine this

approach for the datasets that contain historical document
images such as ICDAR-2019 (cTDaR) [59].
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