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Figure 1: The left image shows an overview over a subset of the Millenium 2 dataset consisting of 442000 particles. 6100 particles are
selected with the help an existing particle-set selection method using the same camera perspective (center image). However, this perspective
does not reveal the actual 3D shape of the selection. The right image displays our automatically determined camera perspective that was
computed in ≈ 28ms using a developed evaluation heuristic (see Section 6).

Abstract
Interactive exploration and analysis of large 3D particle systems, consisting of hundreds of thousands of particles, are common
tasks in the field of scientific and information visualization. These steps typically involve selection and camera-update opera-
tions in order to reveal patterns or to focus on subsets. Moreover, if a certain region is known to be potentially interesting or
a selection has been made, the user will have to choose a proper camera setup to investigate further. However, such a setup is
typically chosen in a way that the interesting region is in the center of the screen. Unfortunately, it still needs to show important
characteristics of the selected subset and has the least amount of occlusions with respect to other particles but shows enough
context information in terms of non-selected particles. In this paper, we propose a novel method for real-time camera control
in 3D particle systems that fulfills these requirements. It is based on a user and/or domain-specific evaluation heuristic and
parallel optimization algorithm that is designed for Graphics-Processing Units (GPUs). In addition, our approach takes only
several milliseconds to complete, even on the aforementioned large datasets while consuming only a few megabytes in global
GPU memory in general. This is due the fact that we are able to reduce the processing complexity significantly using screen-
space information and the excessive use of fast on-chip shared memory. This allows it to be seamlessly integrated into modern
visualization systems that need real-time feedback while processing large particle-based datasets.

CCS Concepts
• Human-centered computing → Visualization systems and tools; Scientific visualization; Interaction techniques; • Computing
methodologies → Shared memory algorithms; Massively parallel algorithms; Graphics processors;
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1. Introduction

Data analysis is an omnipresent challenge in everyday scientific and
information visualization. Important tasks in this scope are often
data selection operations that help differentiating possibly interest-
ing subsets from other regions [Tuk77; ONI05]. This specifically
applies to the domain of scientific visualization and large unstruc-
tured particle-based data sets [KK16] which might be the immedi-
ate outcome of particle simulations [MCG03; Kel06; MMCK14;
KK16]. There have been many newly invented algorithms in
this context that provide helpful methodologies and tools to re-
alize particle-selection operations in an efficient way [HWVF12;
YEII12; YEII16; KK16]. However, these papers do not cover fur-
ther camera-control related operations that might be needed to get
a deeper understanding of a selected sub volume.

Camera-control concepts in general deal with the problem of ad-
justing a certain camera position/orientation setup to get a better
view onto a single or multiple objects of interest [Hai09]. Analyti-
cal methods work well in the scope of a few objects, around which a
camera needs to be positioned [LST04]. This is particularly useful
for minimizing occlusions in computer games or other interactive
computer graphics applications [CO09]. In our domain, we deal
with thousands of occluding objects that cannot be handled directly
by analytical equations. Even if we consider a semantic distinction
between particle clusters, this does not apply to arbitrary datasets
where cluster structures cannot be easily determined (see Figure 1).
Moreover, a major challenge related to automated camera control
are the degrees of freedom. In theory, we can position the virtual
camera at any point in the 3D space and adjust its look-at point
freely. However, in practice, it is important to limit the degrees of
freedom in order to reduce the search space.

In this paper, we introduce a new approach to realize real-time
camera control for particle systems called RECCS. We consider a
particle selection step to be completed in the beginning, yielding a
subset of selected particles. In terms of limiting the search space,
we consider possible camera positions to be on a sphere constructed
around a bounding box including all selected particles. Addition-
ally, we restrict the camera orientation to look at the center of the
sphere. This dramatically reduces the number of possibilities to
consider and is inspired by arcball cameras which rotate around a
centered object in 3D space [Sho92; ZSS11].

Our idea is based on decoupling the dataset from the actual pro-
cessing pipeline by reducing the amount of considered particles in
the first step. It is inspired by the approach of Screen Space Particle
Selection created by Köster et al. [KK18], who used screen-space
operations to separate the complexity of the dataset and the actual
selection operations they perform. In contrast to purely screen-
space-based operations, we use cube maps [PF05] to detect visi-
ble particles from all six cube-map-face perspectives. Those par-
ticles then form the reduced dataset on which our further analyses
work on (Section 3.1). Afterwards, we evaluate a set of uniformly
distributed and randomly chosen points on the initially determined
sphere to get the "best" perspective (Section 3.2). Here, best refers
to the minimization of a cost function given by the user, which is a
fundamental input to our method, similar to other prominent heuris-
tic optimization approaches [MLBT11; KGK19a]. This domain-
specific function enables us to differentiate between "good" and
"bad" camera setups (see also Section 6).

We follow the general approach of particle swarm optimiza-
tion [EEB07], which works by parallelizing over a large set of
possible solution candidates. Similarly, we evaluate a large set
of camera-perspective candidates in a massively parallel way mo-
tivated by recent work presented in [KGK19a; KGK19b]. How-
ever, we do not perform an iterative optimization step, as we eval-
uate all potentially interesting candidates at the same time. In or-
der to reduce the memory consumption and improve the runtime
performance, we use fast on-chip shared memory to cache tempo-
rary evaluation results in analogy to work by Groß et al. [GKK19;
GKK20] (Section 3.2, Section 4). This allows us to complete a full
camera-control step in a few milliseconds which only requires a
few megabytes of auxiliary space (Section 6).

2. Related Work

Camera control in general is a well known topic covering many
years of research. Therefore, this chapter provides an overview
over selected papers that involve different fields of applications.
To begin with, a well known application domain of camera-control
methods are cinematography systems. For instance, the work by
Kneafsey et al. [KM05] focusses on using virtual cameras attached
to NPCs in computer games. Driven by a high-level cinematogra-
phy module, switches between those cameras are possible on-the-
fly. This approach implicitly limits the search space by considering
camera perspectives to already known candidate locations and di-
rections. A follow up work [MK06] provides the opportunity to
improve the engagement in computer games to attach the virtual
camera to different game objects.

As mentioned in the introduction, there have been different ap-
proaches using analytical equations to formulate optimization prob-
lems. A prominent paper in this area is the work by Bodor et
al. [BSP05]. They define and solve a general formulation for multi-
camera-control problems to optimize the placement of cameras in
terms of improved observability regarding specific tasks in their
setting. However, extending this approach to be suitable for large-
scale particle systems is not feasible solution.

There has also been work in the field of minimizing occlusions
with respect to camera control [CON08]. In this paper, they used
a depth-buffer based visibility analysis to be able to compute oc-
clusions for a large number of objects. The general idea is re-
lated to our method, since we also use kind of screen-space pro-
jections. However, our method does not primarily focus on min-
imizing occlusions by design and on differentiating between spe-
cific objects in scene. Instead, the domain-specific heuristic has
to decide whether some regions should not be occluded. Further-
more, they construct visibility volumes to minimize the occlusions
by sampling to support even multiple objects, whereas we rely on
evaluating completely distinct camera perspectives in a massively
parallel way.

As outlined in the introduction, we rely on a user-provided eval-
uation heuristic. This is also performed by many related papers fo-
cusing on camera control. For instance, Yannakakis et al. [YMJ10]
presented a detailed user study to determine appealing camera se-
tups for users of a marble game. They used the gathered results
to train a neural network in order to perform the intended camera
adjustments. Such a method can also be applied to our generic ap-
proach, which allows the use of arbitrary heuristic functions.
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Figure 2: High-level workflow of RECCS. Initially, we assume an arbitrary camera position looking at some particles of the dataset (1). We
derive a cube map from a bounding box including all selected particles (2) to determine a set of all visible particles (without duplicates) (3).
Next, we evaluate a specified number of different and uniformly distributed random camera orientations that look at the center of the derived
bounding box (4). After evaluating all perspectives in parallel, we fetch all evaluation results back to the CPU and determine the best view
according to a custom comparison function (5). Finally, we adjust the camera position and orientation based on the evaluation results (6).

In analogy to the previously discussed methods, Viola et
al. [VFSG06] introduce a framework for optimal estimation of
viewpoints in the context of volumetric datasets. The framework
they developed is capable of finding important focal points by eval-
uating visibility estimation metrics. As stated in the paper, it is well
suited for datasets that can be segmented into multiple volumetric
regions. Compared to our method, this approach focuses on mul-
tiple discrete objects that can be semantically distinguished from
each other, while we reason about large sets of loosely coupled
particles.

In the context of heuristically optimizing virtual/physical camera
setups, a highly related paper is the one by Yi-Chun et al. [YBH11].
They use particle-swarm optimization to improve the coverage of
a camera network by adjusting the field of views of all cameras.
However, they do not consider moving cameras in their setting and
they do not provide a domain-specific solution for particle systems.
In our field of application, we need to specifically reason about
huge sets of particles and their shape when they are rendered for
visualization purposes. To the best of our knowledge, these meth-
ods are the ones mostly related in terms of conceptual similarities.

3. RECCS

The main processing workflow ouf our method is presented in Fig-
ure 2. As shown in this figure, we start with a particle-based dataset
(step 1) and a arbitrary camera setup used for visualization pur-
poses. Furthermore, we already assume that a particle selection
step has been applied to the dataset resulting in a set of so called tar-
get particles (highlighted in blue). In contrast to all other particles
(highlighted in red), these are the ones considered to be interesting
for the end user. Therefore, the task is to find a camera perspective
that focusses on the target particles while minimizing occlusions

but maximizing context information about other particle-structure
formations in the surrounding.

We further assume the existence of and the access to a "reason-
able" bounding box including all target particles in the 3D world
space. Reasonable in this context means that the distance from each
side of this bounding box can be directly used to position a camera
which is still able to cover all interesting properties of the selected
subset (black bounding box in step 1). This bounding box is an
essential input for out method since we limit the solution space to
camera positions that lie on a sphere including this bounding box.
We also limit the camera orientation to look at the center of this
sphere rather than evaluating other possibilities. Evaluation of fur-
ther degrees of freedom remains as future work (see also Section 7).

In order to solve this still highly challenging task, we perform
several processing steps sequentially. This involves preparing a
particle subset (see Section 3.1) in steps 2 and 3 for further pro-
cessing, in order to reduce the amount of data required. Step 4 rep-
resents the actual optimization phase to determine individual rank-
ings for all potentially interesting camera perspectives. Thereby,
the perspective candidates are computed with the help of uniformly
distributed points on a sphere that spans over the input bounding
box. Custom domain-specific constraints, like the previously men-
tioned ones regarding occlusions and context information, are real-
ized with the help of user-defined cost/evaluation functions that are
plugged into the processing workflow in steps 4 and 5. Note that all
computationally-expensive steps (2–4 in Figure 2) are completely
executed on the GPU and do not involve any CPU to GPU data
transfer (and vice versa). Steps 5 and 6 are executed on the CPU,
which allows us to use the determined optimization result to adjust
the camera position on the application side.
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3.1. Subset Computation

An important step to evaluate potential camera perspectives is the
reduction of the dataset complexity. Consider a random input
dataset about which we do not have any information in the begin-
ning. The number of particles and/or their relation to each other
might be extremely complex. This would cause an algorithm work-
ing on the underlying structures of the dataset directly to be highly
affected in terms of memory consumption and runtime. In order to
decouple further processing steps from the actual dataset in terms
of runtime and amount of data, we first compute a potentially in-
teresting particle subset. This subset contains all particles that are
visible from all faces of a cube map spanning over a bounding box
containing all target particles.

Figure 3: Computation of all visible particles without duplicates
from the cube map faces 1–6 (top). The resulting set of particles
(bottom, 7) is smaller or equal compared to the cube map regarding
the number of particles.

Figure 3 visualizes the actually performed operations. First, we
render a cube map from all sides of the input bounding box. The

cube map contains 32bit (I32) values representing the actual par-
ticle Ids at these positions in 2D space. This allows us to retrieve
further information about all particles later on. Furthermore, each
particle will be mapped to a single pixel in this step only. This
allows us to store more particles in each cube map face, which in-
creases the effective resolution of the cube map being used (e.g. in
contrast to rendered quads). Second, we determine a set of all par-
ticles (without duplicates) that have been visible from all sides of
the cube map.

Figure 4: An intermediate camera perspective rendered with the
original dataset (left) and the reduced dataset we use for processing
(right, step 3 in Figure 2). Since the reduced set contains particles
that were visible from the different cube-map perspectives only (see
Figure 3), there are slight deviations compared to the visualization
of the original dataset.

In all upcoming steps, we render the particles from this reduced
subset only instead of the whole dataset. This idea is actually based
on the concept of screen-space re-projection [Ngu07], which simu-
lates slightly different camera perspectives while using an already
rendered image with additional depth information. In our process-
ing pipeline, we do not actually re-project particles from a screen-
space buffer as we still have access to the actual particle positions
from the dataset via the stored Id information from the cube map,
and thus, the reduced dataset.

Although this approach has major benefits in terms of runtime
performance, it also reduces the quality of all camera perspective
to be evaluated in the next step (see Section 3.2). Figure 4 visu-
alizes possible deviations when using the reduced dataset in favor
of all particles. Similar to related approaches using screen-space
re-projection, such artifacts cannot be avoided in general. How-
ever, we argue that this is not a significant limitation of our inter-
nal functionality, since all camera perspectives will ultimately have
some artifacts. Finally, the actually determined camera perspective
mainly relies on the used evaluation function that can also further
compensate these artificially introduced precision loss.

3.2. Evaluation of Potential Camera Perspectives

The heart of our approach is the efficient evaluation of potential
camera perspectives (see also Section 4). As mentioned in the in-
troduction, this step is heavily inspired by the general concept of
particle-swarm optimization [EEB07]. The most important differ-
ence is that we do not require an iterative processing of candidate
perspectives. Instead, our idea is to evaluate all camera-setup can-
didates in parallel in the scope of a single evaluation kernel on-the-
fly. In order to evaluate each camera perspective, we must concep-
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Figure 5: Visualization of the parallel camera-perspective evaluation phase using chunks of shared memory (top, 1). Rows 2 and 3 show
sample intermediate images that will be constructed during this phase based on two different evaluation scenarios (middle). Conceptually
different camera perspectives used to render the images into shared memory are shown at the bottom (4). From an implementation point of
view, we usually assign the rendering of two camera perspectives to the same multiprocessor to improve efficiency (blue border, 5).

tually render all particles from each perspective into a back buffer
in the first place. This is required to compute the closest "hit" (par-
ticle) for each pixel from a given camera orientation. We refer to
a single image rendered for evaluation purposes as an intermediate
image.

A straight-forward realization would be to allocate as many back
buffers as possible in GPU memory and invoke a rendering pipeline
interface to call the available hardware rasterization units. Al-
though this seems to be good choice in the beginning, using a larger
number of potential perspective candidates causes the amount of
required memory to explode. Alternatively, we have to perform
many render passes and fetch the results back into CPU memory af-
ter each iteration. This causes significant runtime and data-transfer
overhead.

Figure 6: Visualization of intermediate image slice (1) stored in
shared memory (2). Each slice will be rendered one after another.

A much cleverer option is the use of a single massively-parallel
GPU kernel to evaluate all perspectives in parallel (see Figure 5).
Furthermore, we can leverage shared memory to store chunks of
the intermediate images directly on the chip. As presented in Fig-
ure 6, it usually happens (see Section 5 and Section 6) that the
amount of shared memory on a GPU is too small to store the
back buffer completely. Therefore, we virtually split the interme-
diate images into chunks, where each chunk is as large as possible

while still fitting into shared memory. For each slice, we iterate
over all particles in the subset from step 3 (see Section 3.1) and
try to "render" them into our current slice. Rendering here refers
to a software-based screen-space projection method that performs
the world-view-projection-matrix multiplication within the kernel
rather than using a hardware circuit. Since we map each particle to
a single pixel in an intermediate image only, the runtime benefit of
using specific rasterization support will be negligible.

3.3. Decision Making

The final steps involves fetching of the evaluation results of all in-
termediate images. After loading all results into CPU (accessible)
memory, they are sorted in order to determine the winning camera
perspective. Based on our experience, there is no need to perform
this operation on the GPU as we have never exceeded more than
10240 candidates in practice. The determined perspective is then
converted into a 3D world position of the camera and its look-at tar-
get position, which points to the center of the input bounding box.
Note that the distance to the selected target particles is fixed, as we
only consider potential camera perspectives on a single sphere in
this paper.

4. Algorithm

The main camera-perspective evaluation algorithm described in
Section 3.2 is shown in Algorithm 1. It is designed as a GPU kernel
where one thread group processes one camera perspective (see Fig-
ure 5). Note that it is particularly optimized to minimize thread
divergences, and maximize L1 and L2 cache reuse [KLH*14;
KGK20; LSG19].

The required inputs are a buffer containing all particle positions
and kinds (whether a particle is a target particle or not), a buffer
containing all world-view-projection matrices for each camera per-
spective and a result buffer to store the evaluation results. We
rely on dynamically specified shared memory (line 1) to adjust
the amount of shared memory depending of the back-buffer for-
mat (TData) and the size of a single slice. After getting a pointer
to shared memory, we initialize the heuristic evaluator given by
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the developer (TEvaluator, line 2). We then iterate over all slices
(lines 3–26) and initialize the virtual back buffer in shared mem-
ory in each iteration (lines 4–7). Next, we perform the actual ren-
dering step by projecting each particle position into the 2D screen
space plus additional depth information (lines 8–19). If the pro-
jected position falls into the range of the current slice, we pack the
screen-space information with the current particle index into the
back buffer (see also Section 5, lines 13–16). The insertion into
the back buffer data structure in shared memory is realized with the
help of an atomicMin operation to prefer particles that are closer to
the camera (depth-min test in software, lines 14–16). After project-
ing all particles into the current slice in shared memory, we call the
evaluator on each "pixel" that contains a valid entry (lines 20–27).
This includes unpacking of the stored depth and particle id and in-
voking the user-defined evaluator on the current pixel (x,y), depth
and particle id tuple.

When all slices are evaluated we aggregate the information gath-
ered by all threads of the current group into the first thread (lines
29–33). This can be achieved by warp-wide combined with group-
wide value reductions to improve efficiency [NVI14; NVI21]. If
the current thread is the first thread, we store the aggregated eval-
uation result in the result buffer and the processing of the current
camera perspective is finished (line 32).

Figure 7: Visualization of two possible back-buffer formats used
within our optimization system. The depth values of each particle
can either be stored as FP32 or FP14 whereas the particle Id can
either be 32 or 18bits.

5. Implementation Details

We implemented our approach in C# and used the ILGPU† JIT
compiler for all GPU-based computations. As already described
in Section 3, we used a pure software-based screen-space projec-
tion method to virtually render all particles as points into the back
buffers. This gives us more flexibility with respect to the whole
optimization pipeline since we do not need to have access to hard-
ware rasterization units. Moreover, using hardware rasterization
would require a different implementation which makes it difficult
to leverage purely shared-memory based back buffers.

In terms of back-buffer size in shared memory, we are always
limited by the current state-of-the-art GPU capabilities. For in-
stance, the NVIDIA RTX 3090 (used in our evaluation, see Sec-
tion 6) provides ≈ 100KB shared memory [NVI21], which should
be separated into two parts in order to achieve full thread occu-
pancy. This yields a total amount of ≈ 50KB for each thread group,
and thus, for each camera-perspective evaluation step. Using a back
buffer consisting of 32bit float (FP32) and 32bit particle Id values
(see Figure 7) results in ≈ 6400 pixels in shared memory. Reduc-
ing the depth-buffer precision to 14bit float values (FP14) and the

† www.ilgpu.net

Algorithm 1: Parallel evaluation algorithm of RECCS
Input: particleBuffer, wvpMatrixBuffer, evalResultBuffer
/* Initialize shared memory dynamically

based on the group sizes and the size
of each element TData */

1 sharedMemory := shared memory TData[...];
2 evaluator := new TEvaluator();
3 for s := 0; s < #slices; s++ do

/* Clear back buffer */
4 for i := group index; i < len(sharedMemory); i++ do
5 sharedMemory[i] := maxValue(TData);
6 end

/* Wait for all back-buffer elements
to be cleared */

7 group barrier;
8 wvp := wvpMatrixBuffer[grid index];

/* Iterate over all particles and
render them into our buffer */

9 for i := group index; i < len(particleBuffer); i++ do
10 position := particleBuffer[i];
11 pOnScreen = project(position, wvp);
12 if pOnScreen isInRangeOf(s, sharedMemory) then
13 backBufferVal := pack(pOnScreen, i);
14 atomicMin(
15 sharedMemory[pOnScreen],
16 backBufferVal]);
17 end
18 end

/* Wait for all particles to be
rendered */

19 group barrier;
/* Evaluate the current slice */

20 for i := group index; i < len(sharedMemory); i++ do
21 (depth, id) := unpack(sharedMemory[i]);
22 if id isValid then
23 (x, y) = reconstructFrom(i);
24 evaluator.Apply(x, y, depth, id);
25 end
26 end

/* Wait for the evaluation results */
27 group barrier;
28 end
/* Aggregate results and propagate them

to the first thread */
29 evalResult := evaluator.AggregateIntoFirstThread(
30 group index);
31 if IsFirstThreadOfGroup then
32 evalResultBuffer[grid index] := evalResult;
33 end

particle Ids to 18bits, allows us two double the number of pixels
in the back buffer. This significantly influences the overall runtime
(see Section 6), since the number of rendering steps is halved in
this scope.

In practice, we take the upper 14bits from the FP32 mantissa
while discarding sign and exponent bits, since all depth-buffer val-
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ues are normalized to [0, . . . ,1]. Also note that an FP14-based
buffer only allows particle Ids up to 218 − 1 = 262143 particles.
It also imposes a limitation of the general intermediate image sizes
which should not be larger than 209×209 pixels. This is due to the
fact that an initial cube map of 209× 209× 6 pixels can have up
to 262086 unique particles in the worst case. However, in practice
we limit ourselves to the resolution of 192× 192 when using F14
buffers in order to distribute them nicely across our launched thread
grids.

6. Evaluation

The evaluation focuses on two aspects: runtime performance with
respect to different back buffers and scalability with respect to dif-
ferent intermediate image resolutions. Figure 8 presents the dif-
ferent scenarios that were taken from already published work by
Köster et al. [KK16], which are in turn also based on work by Yu et
al. [YEII16]. All performance tests are executed on an NVIDIA
GeForce RTX 3090. A performance measurement is the me-
dian execution time of 100 camera-perspective computations. Fur-
thermore, all measurements are conducted using several particle-
selection datasets with pre-selected particle subsets [KK16]. More-
over, we adjust the launch dimensions of the thread grid in a way
to use at least two thread groups per multiprocessor in order to
leverage shared memory and the available processing resources in
a most efficient way. This also implies that a small number of cam-
era perspectives does not yield highest occupancy, as not all mul-
tiprocessors will receive a reasonable amount of work. Therefore,
we decided to use 10240 possible camera perspectives to achieve a
reasonable occupancy and workload on our GPU.

In order to evaluate the camera-perspective computation prop-
erly, we designed an initial heuristic to determine the "best camera"
perspective. The heuristic uses a cost function weighting visible
particles according to their distance to the center of the image and
their distance in screen space. To do so, it stores a 2D bounding
box and a weighted sum of all depth values:

dist(x,y) = dot

(
(x,y)T ,

(
w
2
,

h
2

)T
)
, (1)

depth(i,d) =

{
d if kind(i) = target
1−d else,

(2)

weight(i,x,y,d) = dist(x,y) ·depth(i,d), (3)

where x,y and d refer to the current pixel (x,y) and its normalized
depth value d ∈ [0, . . . ,1] in the back buffer. Thereby, w and h refer
to the width and height of an intermediate image and i refers to
the particle Id of the i-th particle that is stored at this screen-space
position. Note that target particles are preferred if they are close
to the camera, whereas non-target particles are preferred if they are
in the background. The total weight Wt is then given by the sum
over all weights in the back buffer that are accumulated one after
another while processing all slices:

Wt = ∑
(i,x,y,d)

weight(i,x,y,d). (4)

At the same time, we maintain a bounding box spanning the max-
imum dimensions in 2D of all target particles. This ensures that
a reasonable amount of target particles are visible on the screen

(while taking the weight into account). This sums up to a total
number of 20 bytes per evaluation result.

Table 1 shows the performance measurements in milliseconds
on all evaluation scenarios using an intermediate image size of
192×192 in combination with FP14 and FP32 back buffers. The
cube maps column denotes the time required to render the initial
cube maps and to compute the reduced processing datasets (steps
2 and 3 from Figure 2). The measurements vary between ≈ 3ms
and ≈ 6ms, due to the fact that we need to render all particles (un-
ordered in the dataset and in global memory) into the cube maps.
Moreover, the more particles are visible from the perspective of the
different cube-map faces, the longer it takes to compute the reduced
processing dataset. The actual camera-perspective evaluation steps
(including the resolution of the best result on the CPU) are pre-
sented in the F14 and F32 columns.

As expected, the F14 evaluations are approximately twice as fast
in most cases, which is caused by reducing the number of iterations
over all slices by a factor of two. However, it also turns out that the
processing time does not primarily depend on the input complexity
of the dataset (e.g. scenario 2 vs. 3). It mainly depends on the
number of visible particles from the reduced processing dataset that
depends on individual characteristics of the input data rather than
the number of input particles. Note that the runtime of the cube-
map column and either the F14 or the F32 column must be added to
get the total runtime, as both processing steps happen sequentially.
This results in a total runtime of ≈ 47ms in the worst case on our
evaluation scenarios while analyzing roughly 442000 particles in
scenario 7. Possible result deviations between the F14 and F32
back buffer implementations are not considered here, since they do
not reflect the actual imprecision on arbitrary heuristics in general.
Moreover, these deviations highly depends on the distribution of
the particles and the actual heuristic being used.
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σ FP
14

σ FP
32

σ
1 371792 4.4 0.2 8.1 0.4 14.3 0.5
2 286136 5.3 0.2 14.0 0.5 26.3 1.0
3 449734 4.9 0.3 10.2 0.5 18.7 0.8
4 153917 4.7 0.7 11.4 0.5 20.8 0.8
5 153917 3.1 0.4 6.0 0.4 10.0 0.4
6 251650 5.6 1.3 14.8 0.7 26.9 1.2
7 442079 6.2 0.5 21.8 0.7 41.1 1.2

Table 1: Performance measurements in ms of the evaluation sce-
narios for intermediate images of size 192×192.

Changing the intermediate image resolution has a significant im-
pact on the overall runtime of our algorithm (see Table 2). Note that
larger resolutions can only be used in combination with the FP32
back buffer (see Section 5). As shown in the table, doubling the
resolution causes a runtime increase of about 4.6x to 7.2x. Con-
sidering that the actual problem grows quadratically as opposed to
runtime, our method has good scaling behavior [Amd67; Kri01].
However, the use of larger intermediate images depends on the ac-
tual problem domain and the heuristic being used. Based on our ex-
perience, we recommend using smaller intermediate images while
increasing the number of camera perspectives.
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Figure 8: A visualization of the evaluation scenarios based on the datasets published in [KK18]. Each scenario already contains a set of
selected particles (yellow) and a set of (possibly) occluding particles in the surrounding. The scenarios were chosen in a way to capture
common, well known simple and more complex scenarios in terms of camera control.

192×192 384×384 768×768
41.1 295.5 1385.3

Table 2: Performance measurements for different intermediate im-
age resolutions using the Millenium evaluation scenario (7), an
FP32 back buffer and 10240 camera perspectives.

6.1. Memory Consumption

The memory consumption mainly depends on the width (w) and
height (h) of the intermediate images. We require 6 cube map faces
to be rendered in step 2 (see Figure 2) and the reduced dataset con-
sisting of all visible particles from the cube map without dupli-
cates (step 3, see Figure 2). As described in Section 5, the reduced
dataset might become as large as the 6 cube map faces in the worst
case, if there are no duplicate particles. Although this is theoret-
ical edge case, the memory consumption should reflect the upper
bound. Thereby each particle Id is represented as a 32bit integers
in the scope of these steps. This yields

buffers = w ·h ·6 ·2 · sizeof(I32). (5)

Moreover, we require additional memory allocations to store the
evaluation results. The size of this buffer depends on the number of
camera-perspectives (n) to be evaluated in parallel and is given by

results = n · sizeof(evalResult). (6)

Depending on the actual implementation, an additional buffer
storing all view matrices for the individual camera perspectives
might be necessary. For evaluation purposes, we precomputed all
view matrices using a fast RNG [Mar03] on the CPU and trans-
ferred all of them to a separate GPU buffer in global memory. In
this case, users require an additional buffer of 4×4 float matrices,
and thus

views = n ·4×4 · sizeof(F32) (7)

bytes to store all matrices.

The total memory consumption of our method using a resolution
of 192×192 pixels for all intermediate images and 10240 camera
perspectives to be evaluated is then around 2.5MB:

1728KB(buffers)+200KB(results)+640KB(views)≈ 2.5MB.

Assuming that we would store all intermediate images for all
camera perspectives in global memory, rather than in shared mem-
ory, we would require additional

n ·w ·h · sizeof(I64) = 2880GB (8)

in global memory, which would exceed the memory capacity by
orders of magnitude. An alternative would be use the same slicing
concept we currently use in shared memory. This would reduce the
number of required bytes considerably, however, it would still be
significantly slower compared to the fast on-chip caches.

7. Conclusion

In this paper, we have presented a newly designed method to re-
alize real-time camera control for particle systems. We solve this
challenging task by providing a massively parallel implementation
designed for GPUs that is capable of evaluating thousands of pos-
sible perspectives at the same time. Using our technique, we are
even able to handle datasets consisting of hundreds of thousands
of particles in real time while storing the intermediately generated
images in shared memory. This avoids expensive allocations and
tremendous memory buffers in global GPU memory. Therefore,
our method is perfectly suitable for data- and scientific visualiza-
tion applications that want to add automatic camera control.

In terms of evaluation heuristics, we used a simple and hand-
crafted heuristic to compute the actual camera perspectives on our
evaluation scenarios. This is not a limitation of our method in
general, since the overall concept can be combined with arbitrary
user-defined and domain-specific evaluation functions. It supports
machine-learning based heuristics that accept back-buffer inputs at
the same time.

In the future, we would like to investigate more advanced
heuristics and their influence on the determined camera perspec-
tives. We would also like to cover the previously mentioned
machine-learning-based heuristics to overcome potential inadequa-
cies caused by manually tweaked heuristics. This might slightly
affect the algorithm implementation, as we would like to leverage
tensor processing cores [NVI21]. Furthermore, we would like to
extend the method to explore more potential camera perspectives
as we are currently limiting our solution space to an input bound-
ing box. This involves leveraging more degrees of freedom to find
potentially better camera setups.
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