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Abstract. In this paper, we analyze various outside-in approaches for
pose tracking and pose estimation of AR glasses. We first provide two
frame-by-frame pose estimation approaches. The first one is a VGG-
based CNN, while the second method is the state-of-the-art, ResNet-
based AR glasses pose estimation method named GlassPoseRN. We then
introduce LSTMs in the mentioned approaches to achieve AR glasses
pose tracking. We compare methods with and without non-local blocks,
which are theoretically promising for Pose Tracking as they consider non-
local neighbor features in one image and among multiple images. We
further include separable convolutions in some networks for comparison,
which focus on maintaining the individual channels and therefore the
triple images. We train and evaluate seven different algorithms on the
HMDPose dataset. We observe a significant boost on the dataset from
pose estimation to tracking approaches. Non-local blocks do not improve
our performance further. The introduction of separable convolutions in
our recurrent networks results in the best performance with an estimation
error of 0.81◦ in orientation and 4.46mm in position. We reduce the
error compared to the state-of-the-art by 76%. Our results suggest a
promising approach for more immersive AR content for AR glasses in the
car context, as high a 6-DoF pose accuracy improves the superimposition
of the real world with virtual elements.

Keywords: Augmented Reality · Pose Tracking · Deep Learning.

1 Introduction

In recent years, Augmented Reality (AR) applications started to flourish in many
new scenarios, and the simple laboratory or indoor experiments have extended
to much more challenging use cases. In general, in order to ensure a convincing
experience, it is paramount to localize the used smartphone or AR glasses with
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Fig. 1. An overview of our evaluation. We compare seven different pose estimation and
tracking approaches on triple images of the HMDPose dataset: (e) and (f) show the
baseline, frame-by-frame pose estimation methods, (f) being the state-of-the-art Glass-
PoseRN [13] approach. In (d) and (g), we introduce LSTMs to the baseline approaches.
(c) depicts the standard CNN with non-local blocks and an LSTM. (b) shows a CNN
variant with separable convolutions and an LSTM, while (a) extends the approach with
non-local blocks.

a high precision in its environment. Usually, this is required in a highly accurate
and latency-free way. Smartphones are more error-tolerant regarding tracking,
as they are equipped with video-see-through displays. They have the advantage
of frequency and speed adjustment of the real world shown through the display.
AR glasses steadily matured over the years and are currently being used in
the industry. In the future, consumer adaptation of AR glasses is highly likely.
In contrast to smartphones, AR glasses mostly consist of optical-see-through
displays, where the real world is perceived directly by the wearer. This elevates
the latency and accuracy requirements for a realistic experience.

As larger AR glasses usually come with RGB or depth sensors and IMUs
to enable inside-out tracking, it is the standard for pose estimation in static
environments. In dynamic environments like airplanes or cars, IMUs register
both head and vehicle movement. Thus, it is relatively challenging to utilize
them in a standalone manner. In the case of a car driver, the optical sensors
register mostly parts of the outside world, which delivers a limited set of features
of the car interior for tracking.

In this scenario, outside-in tracking becomes a valuable option for tracking.
Outside-in tracking is done frequently in case of head pose estimation. Similar
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algorithms can be deployed for pose estimation of Head-Mounted Displays as
done for head pose estimation. The head pose is different from the AR glasses, as
the relation between head and glasses differs from user to user. This relation can
change with slight glasses movement on the wearer’s head. Thus, it is necessary
to estimate the AR glasses directly. Algorithms adjusted to handle different types
of glasses models can enable scalability to new types of models. Thus, tracking
AR glasses through external sensors placed inside a car can lead to a wider
adoption of AR glasses in cars.

Even though depth information improved pose estimation quality in recent
works on pose estimation [39, 4, 2], they are still more costly than RGB or in-
frared (IR) cameras. Due to the changing lighting conditions in a driving sce-
nario, RGB cameras can output significantly varying images. However, IR cam-
eras come in handy due to their property of being less sensitive to change by
lighting conditions compared to RGB images.

Recent works on AR glasses pose estimation [13, 14] on the HMDPose dataset
[12] have shown accurate results for the pose estimation from a single and multi-
view images, but did not attempt to use temporal coherence in the pose esti-
mation. Our idea is to exploit the temporal continuity of the video sequences
given in the dataset by proposing new learning-based pose tracking algorithms.
We introduce five different alternatives taking advantage of the present contin-
uous data. We first present Recurrent Neural Networks (RNNs) based on VGG-
and ResNet backbones. We then introduce non-local blocks into our methods, a
novel type of Neural Network maintaining object properties over time [37]. To
the best of our knowledge, we are the first to use them in the pose estimation
and tracking context. We furthermore introduce separable convolutions [7] into
our networks for comparison. We finally evaluate them on the HMDPose dataset,
where we compare them with CNN-only frame-by-frame methods, including the
state-of-the-art ”GlassPoseRN” method.
In detail, our contributions are:

– We present seven approaches based on combinations of three Neural Net-
work categories for AR glasses pose estimation and tracking: convolutional,
recurrent, and non-local Neural Networks.

– We introduce non-local blocks in our methods, being the first to utilize them
for pose estimation. Additionally, we evaluate networks with separable con-
volutions instead of normal convolutions.

– We evaluate our approaches on the HMDPose dataset, where we outperform
the state-of-the-art and reduce the error by 76%. Our detailed comparison
of various methods enables us to recommend certain network types for AR
glasses tracking.

In the remainder of the paper, we discuss the related work on object pose esti-
mation and RNN-based pose estimation in Section 2. We present our AR glasses
pose estimation and tracking techniques in Section 3. In Section 4, we discuss
our evaluation on the HMDPose dataset, comparing our models against the
state-of-the-art approach benchmarked on the dataset.
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2 Related work

In this section, we review recent work on pose estimation from camera images.
Some approaches either work with intensity images or depth maps or combine
different data modalities.

2.1 Object Pose Estimation

6-DoF pose estimation approaches can primarily be divided into two categories.
One category is direct pose regression, where the image is taken to estimate
a pose directly by a Neural Network. The second category must first detect
2D targets and 2D-3D Object correspondence and then solve for Perspective-n-
Point (PnP) problem for the 6-DoF pose. We shortly summarize methods for
both categories.

The approaches that first detect the targeted object in the given image and
subsequently solve a PnP problem for their 6-DoF pose, mostly dominate the
state-of-the-art work in object pose estimation. In this category, keypoints-based
and 2D-3D correspondence methods are popular. The keypoint-based methods
either use the keypoints from the object’s surface [28, 34, 35] or directly predict
the 2D projections from 3D models of the object using furthest point algorithm
[26, 33, 6]. The dense 2D-3D correspondence methods predict the corresponding
3D model point for each 2D pixel of the object and later use the PnP to get the
6-DoF pose [22, 40, 25]. Some methods also use additional networks to further
refine the pose by using cropped images of an object.

However, adding processes like keypoints or other landmarks extraction in-
volves chances of introducing errors. An alternative for 6-DoF pose estimation of
an object is to regress it directly based on the image information only. PoseNet
[19] introduces a deep CNN to estimate the 6-DoF camera pose based on a sin-
gle RGB image as input. The network can predict the pose in an end-to-end
manner with real-time performance. They argue that training individual net-
works to regress position and orientation separately performed poorly compared
to when they were trained with full 6-DoF pose labels. PoseCNN [38] decouples
the problem of pose estimation into estimating the translation and orientation
separately. It uses a pre-trained VGG network [32] as a backbone for feature ex-
traction and splits into three output branches. Two fully convolutional branches
estimate center directions and the depth for every pixel of the image. The third
branch consists of a ROI pooling and a fully connected architecture that regresses
a quaternion describing the rotation for each region of interest. PoseConvCNN
[5] further developed a fully convolutional architecture evolved from PoseCNN
[38], and rather than ROI-based orientation prediction, they perform pixel-wise
quaternion prediction, keeping the translations and ROI exactly the same from
PoseCNN [38]. Recently, Peng et al. [26] also removed the ROI pooled orientation
prediction branch and used 2D keypoints predicted using Hough-based voting to
estimate the pose, creating a hybrid between the two major categories. In this
approach, the ground truth 3D keypoints are generated using 3D models of tar-
get objects. The direct estimation of 3D rotations information is difficult because
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of the non-linear rotation space. For this reason, other works avoid introducing
pose refinement steps after directly estimating poses from monocular images.
Li et al. [21] present a render and compare technique as a pose estimation step
that improves the estimation only using the original RGB input. Although this
can lead to accurate results, the pose refinement procedure requires additional
computing time.

Regarding our specific use case of AR glasses pose estimation based on IR
images, Firintepe et al. [13] developed and tested various methods on the HMD-
Pose dataset. Their first method named ”GlassPose” is a VGG-based CNN. They
separate the estimation into two branches, estimating the orientation on cropped
images of the head while using the full images for translation prediction. Their
second approach ”GlassPoseRN” is based on a ResNet-18 backbone, predicting
the full 6-DoF pose based on the full images, outperforming GlassPose by a large
margin. Another AR glasses pose estimation approach derives point clouds from
IR images for further pose estimation [14]. A network was trained on triple IR
input images in a semi-supervised fashion to generate a self-centered point cloud
and to estimate the 3D position of the cloud. After training, the network can
extract the point cloud representation from a single IR input image. Two pose
regressors called P2R and P2P were proposed to estimate the rotational and
translational poses given the point clouds. In P2R, a backbone extracts features
followed by a rotation estimation module consisting of convolutional and dense
layers. The predicted output represents the rotation in the 4D quaternion. In
P2P, the model is extended with a voting process used to identify keypoints
and extract descriptor vectors. The descriptive keypoints are fed to rotation and
translation estimation modules to get the final 6-DoF pose.
We choose to compare our methods to the GlassPoseRN algorithm, as it per-
forms better than the benchmarked state-of-the-art Regression via Classification
head pose estimator [1] and a point cloud based object pose estimator named
CloudPose [15] on the HMDPose dataset [13, 14].

2.2 RNN-based Pose Tracking

An alternative to frame-by-frame pose estimation is 6-DoF pose tracking based
on RNNs. Inspired by You Only Look Once (YOLO) [29], Ning et al. [24] pro-
pose Rotated Logging (ROLO), in which LSTMs are used to learn sequential
information in the high-level visual features with the region information. They
use YOLO to learn features from images and detect objects’ bounding boxes in
the images. These extracted features and detected regions are then fed into the
LSTM. ROLO only used the regression capability of RNN in the temporal do-
main and not its temporal correlation. Considering this, Zhang et al. [41] predict
directions first based on RNN and later use the direction of the next frame to
reduce the search for ROI. Once the search area is reduced, the object is detected
only in that area. They perform this by utilizing a direction prediction model
based on RNNs and a detection model later for tracking.

Several works in object pose estimation specifically focus on the head as an
object. As our work is closely related to head pose tracking, we further discuss
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related work in head pose estimation using RNNs. Most of the works used particle
filters with face image renderer to track faces [23]. However, these filters require
complex, problem-specific design and feature tuning. Work from Gu et al. in [16]
presents a comparison between Bayesian filtering and RNNs while proposing an
RNN-based approach to solve the tracking problem. They use a VGG network to
regress the head pose Euler angles. Instead of improving single frame prediction
by modifying the network structure, it focuses on using an RNN to improve
pose prediction by leveraging the time dimension. They evaluate their work on
a synthetic dataset as well as a real-world dataset. Borghi et al. [3] propose to
utilize stream of depth images and perform 3-DoF pose estimation of the head,
especially for in-car automotive applications. The principle idea is to utilize time
information on the depth-based images and directly estimating the Euler angles.
Head detection and localization are not performed in this work, and they assume
that the head center is already provided. They utilize this to first crop the head
part from the input images and only use it to train the proposed network. They
mostly use a shallow architecture with L2 training loss. The method achieved
good results on Biwi dataset [10] and was implemented in a car which shows its
real-time feasibility. Similarly, Peng et al. in [27] used spatial-temporal data and
RNNs for sequence-based facial tracking without facial landmarks.

Camera pose tracking is an intrinsic part of visual odometry, where several
works have focused on CNN and LSTM combinations for pose tracking [42, 36,
8]. Wang et al. [36] and Constante [8] deploy CNNs with consecutive LSTMs to
extract continuous poses based on RGB video input. Zou et al. [42] present a
self-supervised learning method for visual odometry with special consideration
for consistency over longer sequences. They model the long-term dependency by
using a pose network that features a two-layer convolutional LSTM module. All
methods use CNNs developed for Optical Flow estimation as their backbone.
One typical backbone is FlowNet [9]. The extracted features are then fed into
the LSTMs for further pose regression.

In contrast to the state-of-the-art, we propose several novel Neural Network
concepts combined with LSTMs for AR glasses pose tracking. For the first time,
we introduce separable convolutions, non-local blocks, or a combination of both
to achieve improved tracking accuracy. Both concepts are promising for our
multi-view, continuous data. Especially non-local blocks have not been used for
6-DoF pose tracking, despite its interesting property of learning the long-range
object dependencies in video sequences. Based on this comparison of various
novel concepts on AR glasses pose tracking, we can make recommendations for
our use case.

3 AR Glasses Pose Estimation & Tracking Architectures

3.1 AR Glasses Dataset and Preprocessing

To conduct our analysis, we use the HMDPose dataset [12]. HMDPose is a large-
scale data glasses dataset, consisting of around 3 million 1280 × 752 pixel im-
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ages. It contains IR images from three different perspectives of four different AR
glasses, worn by 14 different subjects.

We first downscale the images 320×188 and normalize them. Next, the images
from different views from the same timestep are stacked together channel-wise.
This increases the information space for the neural network to learn from. We
present different neural network architectures based on CNNs and RNNs trained
on IR images to perform AR glasses pose estimation. We create sequences from
these multi-view images using the individual frames’ timestamp as required by
RNN-based networks. The data split acquired while sequence generation is used
for all the networks, CNNs or RNNs. Figure 2 gives an overview of the pipeline
of pre-processing such sequences. We train and evaluate various networks based

t1 t2 t3

(a) (b)

Fig. 2. Our pipeline to conduct sequence generation from multi-view IR images for
LSTM-based methods. (a) We first stack IR images channel-wise and then (b) generate
sequences of the stacked images according to their timestamp.

on single frames and sequences to regress the 6-DoF pose of AR glasses.

3.2 CNN Baseline Methods

We benchmark two networks that only utilize CNNs to see the effect of learn-
ing by using spatial information only. The networks are called ”BaselineCNN”
and ”GlassPoseRN”. GlassPoseRN is a deeper model containing a ResNet-18
backbone compared to BaselineCNN. The two networks act as our baseline to
compare with our networks based on RNNs.
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Fig. 3. Network architecture of separable convolution-based CNN-LSTM model. (a)
shows our CNN architecture, including the separable convolutions highlighted in (b),
which elaborates on their working principle [7]. The light green layers right after the
separable convolutions are max pooling layers. In (c), the output of the network is fed
into LSTM layers, performing estimation of the orientation in quaternions and position
in Euclidean space.

BaselineCNN Our first approach is a basic convolutional neural network,
which we consider as our baseline. We name this method ”BaselineCNN”. It is
inspired by the ”GlassPose” method in [11]. Instead of decoupling the network
into subnetworks for translation and rotation, we take one branch for 6-DoF
pose estimation. BaselineCNN does neither use any extra cropped images of
glasses nor the bounding box of glasses in the translation subnetwork. It utilizes
full downscaled images to regress the 6-DoF pose per frame triple. The network
learns the rotations in quaternion space and translation in Euclidean space.

The network comprises nine layers in total, with six convolutional and three
fully connected layers. The input to the network is of size 320 × 188 pixels.
Initially, the images are processed by three convolutional layers of filter size
5 × 5, each having 32 neurons followed by a max pooling layer of 2 × 2. The
remaining three convolutional layers have a filter size of 3 × 3. The fourth and
fifth convolution layers have a hidden size of 32, while the sixth convolution layer
has 128 neurons. Only the fourth layer has a consecutive max pooling layer. In
the end, the fully connected layers of sizes 128, 80, and 7 neurons are used to
regress the 6-DoF pose.

GlassPoseRN We benchmark the state-of-the-art pose estimation ”GlassPoseRN”
[11] approach of the HMDPose dataset. We compare our methods to the Glass-
PoseRN method, as it performs better than the benchmarked Regression via
Classification head pose estimator [1] and a point cloud based object pose es-
timator called CloudPose [15] on the HMDPose dataset [13, 14]. It also shows
better results than the point cloud-based P2P method [14]. We retrain this net-
work on our 80/10/10 data split. We give more details on our data split in
Subsection 3.5. The model consists of a ResNet-18 [17] backbone. GlassPoseRN
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maintains information and feature within the building blocks of ResNet with
skip connection as described in [17]. The ResNet-18 block of the network is fol-
lowed by two dense layers of size 256 and 64 with a final output layer which
regresses the translation and orientation together.

3.3 LSTM-based approaches

As an alternative to the models mentioned above, we introduce RNN-based net-
works to compare the convolution and recurrent operations. The idea is to exploit
the temporal information in the data by introducing RNNs in the network. Our
custom-built hybrid CNN-RNN model utilizes this enhanced spatio-temporal
feature space to learn the glass pose in an improved way. CNNs can learn the
spatial information avoiding feature engineering, while RNNs avoid manual en-
gineering of object tracking logic, which can be prone to errors. They learn
the temporal information directly from the data. Hence, a hybrid model could
achieve enhanced AR glasses pose estimation.

We use LSTMs as our RNN variant due to their ability to avoid vanishing
gradient problem and the poses time-dependent property. The LSTMs map the
pose estimation per frame in a sequence to the sequence of known ground truth
poses.

CNN-LSTM The first hybrid model is referred to as ”CNN-LSTM”. The CNN
part of the network extracts optimal features from the IR images, and LSTM
tracks the extracted features as sequences. Therefore, the features from a single
triple image in a sequence act as one time step for LSTM. The designed model
takes a sequence of IR images as input and outputs continuous 6-DoF pose of
AR glasses, tracking the pose in all the frames of a sequence.

The architecture consists of only six layers in total. The CNN part is kept
identical to BaselineCNN to enable a fair comparison. The CNN consists of four
layers where each is followed by max pooling layer of 2 × 2. Two convolutional
layers have a filter size of 5×5, and the remaining two layers have a filter size of
3 × 3. The hidden size of each layer is 32 neurons. The features from the CNN
are flattened before using it as an input to the LSTMs. The LSTM network
comprises two layers, each having 128 neurons. The dense layers are used as the
output layers to regress the continuous 6-DoF pose of AR glasses.

SepConv-LSTM This method introduces a more efficient network by utilizing
depthwise separable convolutions instead of normal convolutions. Depthwise sep-
arable convolutions [7] are a special type of convolutions in which convolution
operations are separately applied to channels. The information from multiple
channels in the input is not mixed together, which are the different views of the
triple images in our case. Pointwise convolutions increase the depth of the output
to be further processed. Separable convolutions increase efficiency by decreasing
the number of computations. They are also used in standard architectures like
MobileNet [18].
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Figure 3 shows an overview of the architecture, referred as ”SepConv-LSTM”.
The network architecture remains the same as CNN-LSTM. Only normal 2D
convolution layers are replaced with separable convolutions. Table 1 highlights
the difference in parameters, showing the reduction of approximately 40,000
parameters using separable convolutions.

Table 1. Size and parameter comparison of CNN-LSTM and SepConv-LSTM.

Network Total Parameters

CNN-LSTM 3,849,575
SepConv-LSTM 3,808,274

GlassPoseRN-LSTM The next LSTM-based model is the GlassPoseRN method
coupled with LSTMs. This model is designed for spatio-temporal data. The
LSTM at the end of the network learns from the temporal information and is
used in a regression manner to predict continuous 6-DoF AR glasses pose. We
call this model ”GlassPoseRN-LSTM”. The model is built over the ResNet-18
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Fig. 4. Network architecture of non-local block-based CNN-LSTM model. (a) shows
our CNN architecture, including the non-local layers highlighted in (b), which elab-
orates on their working principle [37]. In this block, ⊗ denotes matrix multiplication
and ⊕ represents element wise addition. The light blue box within non-local block
represents the 1x1x1 convolutions. In (c), the output of the network is fed into LSTM
layers, performing estimation of the orientation in quaternions and position in Eu-
clidean space.

architecture as in GlassPoseRN. The reason for using the same backbone is to
compare the effect of RNNs and CNN-based methods.

The GlassPoseRN model is modified by removing the three dense layers from
the end and adding the LSTM layers. It is done by first adding a global average



Pose Tracking vs. Pose Estimation of AR Glasses 11

pooling layer right after the ResNet blocks to reshape the feature maps. This
pooling layer is followed by the two LSTM layers with 128 neurons each. In the
end, a dense layer is used to regress the translation and rotations, making it a
layer of 7 neurons.

3.4 RNN with Non-Local Blocks

In previous sections, convolutional and recurrent operations were used to build
networks due to our data modality’s nature. This subsection describes a novel
neural network architecture based on non-local operations. Non-local operations
help in learning long-range dependencies in the video sequence. Wang et al.[37]
introduced non-local filtering as general operations in a neural network as a
building block to learn the non-local neighbourhood information and long-range
dependencies. Before introducing this variant, learning the long-range dependen-
cies was done by either repeatedly deep stacking convolutional operations with
large receptive fields or deep stacking of recurrent operations consecutively. This
multi-hop dependency with deep stacked networks, however, is hard to model
and difficult to optimize making it an inefficient and computationally expensive
solution.

NL-CNN-LSTM We alter our hybrid CNN-LSTM model by adapting non-
local blocks in the CNN part of the network. The convolution and recurrent
layers only consider the local neighbourhood of a given pixel position while
learning features from the input and the fully connected layers lose the positional
correspondence. Hence, the long-range dependencies between the sequenced IR
frames and even the non-local neighbor pixels within one frame are missed.
Therefore, non-local blocks add the capability to learn this non-local information
within a single frame and between multiple frames of a sequence to the network.

The network is designed by modifying the CNN-LSTM architecture. The
change includes the addition of non-local blocks in a conventional convolutional
network part to experiment with their performance in an LSTM-based network.
The architecture is visualized in Figure 4. The light blue blocks in the figure
represent the location of where the non-local blocks are inserted. Due to limited
computation resources and a large image resolution size, the non-local block is
not inserted after the first convolutional layer, despite it potential benefit to the
overall network. The architecture is kept similar to the CNN-LSTM architecture
to keep a fair comparison between the two models. This network consists of
six layers with four convolutional layers, three non-local blocks, and two LSTM
layers. The convolutional layers are identical to the CNN part of the CNN-
LSTM neural network. The non-local blocks do not affect the size of the input
feature maps. The block performs multiple 1×1 convolutions to receive different
embeddings. The embeddings are later used in element-wise multiplication and
get the final output feature vector, representing the similarity between a pixel
and its non-local neighbours. This approach is an extension of our hybrid CNN-
LSTM model, with the potential to learn the long-range dependencies of different
objects for the AR glasses pose estimation task.
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NL-SepConv-LSTM Following the idea of depth-wise separation of convolu-
tions just like SepConv-LSTM, we designed a similar model with the additional
inclusion of non-local blocks. As non-local blocks are introduced to learn non-
local neighbor features [37], by their inclusion in our network, we aim to learn
the non-local neighbor features from separate views.

The architecture of the network remains the same as NL-CNN-LSTM, which
we described in the previous subsection. The only change is the replacement
of normal convolution layers by separable convolutions. We call this network
”NL-SepConv-LSTM”.

Fig. 5. Example triple images of the four AR glasses models included in the HMD-
Pose [12] dataset. It includes the four glasses models a) Mini Augmented Vision, b)
Everysight Raptor, c) Microsoft Hololens 1, and d) North Focal Generation 1.

3.5 Network Training

Our training, validation, and test split is 80% for training and 10% for validation
and test set. In contrast to the 94/3/3 split used in [13], more extensive test and
validation sets are required, as sequencing data comes with the loss of frames.
For this reason, we train the GlassPoseRN method again on our data split to
enable comparability with our LSTM-based models. We split the dataset for all
individual glasses types as well as for individual subjects. For the CNN baseline
methods, the dataset is being shuffled.

We train our models with an Adam optimizer with the initial learning rate
α = 0.01. The learning rate is scheduled to decrease if the validation loss has
not improved for more than ten epochs. For our RNN-based neural networks,
sequences are generated by stacking the frames, sorted according to the times-
tamp. Our activation function for all layers besides the output layer is the ReLU
activation. We deploy a linear activation for the output layers.

We use the weighted L2 Euclidean distance for translation and orientation.
The loss function is based on Kedall et al. [20] and is defined as follows:

Loss = β||t− t̃||2 + ||q − q̃

||q̃||
||2 + γ||q|| (1)

q and t describe the ground truth quaternion and translation, whereas q̃ and t̃
represent the estimated quaternion and translation. We normalize the predicted
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quaternion and compute the Euclidean distance to the ground truth quaternion.
It is important to note that regularization parameter γ and the norm of the
predicted quaternion are added in the loss to cater to any large predictions.
In addition, the Euclidean distance is being computed for the translation. The
translation is weighted accordingly through the scaling factor β to have similar
scaling to the orientation before adding the orientation loss, which we set em-
pirically. We train all networks on two NVIDIA GeForce 2080Ti GPUs for 200
epochs for all glasses combined and individually. All the networks are trained
on full images down-scaled to 320× 188 pixels. The initial learning rate is set to
0.001 and scheduled to 50% decrease after every 10 epochs if the validation loss
has not improved from previous best loss. The batch size used for CNN base-
line methods is 128, while, for RNN-based methods, a sequence length of 8 and
batch size of 32 was utilized while training. The trained networks can predict an
absolute 6-DoF pose per frame, up to a pose per sequence of 8 frames.

4 Evaluation

4.1 Dataset and Evaluation Metrics

We conduct the training and evaluation of our approaches on the HMDPose
dataset [12]. The large-scale multi-view IR dataset HMDPose contains around
3 million images with AR glasses pose annotations, resulting in 1 million image
triples. The dataset has been recorded with 14 different subjects, wearing four
different AR glasses models each. It includes the four glasses models Everysight
Raptor, Microsoft Hololens 1, North Focal Generation 1, and Mini Augmented
Vision (Figure 5). In our paper’s evaluation, we refer to the Everysight Rap-
tor as EVS, Hololens 1 as HOLO, North Focal Generation 1 as NORTH, the
Mini Augmented Vision glasses as MAV, and all glasses combined as ALL for
readability. There are around 250,000 image triples per glasses model available.

We benchmark our results on the same metrics as Firintepe et al. [13], with
one exception. We consider the Mean Absolute Error (MAE) and the Root Mean
Squared Error (RMSE) for orientation. An additional metric is the Balanced
Mean Angular Error (BMAE), which takes the unbalanced amount of the full
range of head orientations by introducing sections [30, 31, 11] into account. De-
spite its interesting insight into a networks’ performance over the complete range,
we exclude this metric, as the section definition is invalid for sequenced data.
This would implicate the definition of ranges per sequence, where the sample
size is too small to represent the test set. We use the L2 loss for the position
error on all axes separately and together for the position estimation.

4.2 Results

Frame-by-Frame Pose Estimation Approaches We benchmark two frame-
by-frame pose estimation methods for comparison. The first network is our
GlassPose-inspired BaselineCNN, the second network being the state-of-the-art
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Table 2. Rotation results of the Frame-by-Frame Pose Estimators BaselineCNN and
GlassPoseRN[13] as well as our LSTM-based Pose Trackers CNN-LSTM, SepConv-
LSTM, NL-CNN-LSTM, NL-SepConv-LSTM, and GlassPoseRN-LSTM on the given
error metrics in degrees. The Everysight Raptor is referenced as EVS, Hololens 1 as
HOLO, North Focal Generation 1 as NORTH and the Mini Augmented Vision glasses
as MAV. ALL stands for all glasses combined. The average value of all three axes is
given on the defined metrics in this table. The full results including the errors regarding
roll, pitch, and yaw can be seen in the end of the document in Table 4.

Frame-by-Frame LSTM-based
Pose Estimation Pose Tracking

Glasses-
Metric

Method Baseline GlassPose CNN SepConv NL-CNN NL-SepConv GlassPoseRN
Type -CNN -RN[13] -LSTM -LSTM -LSTM -LSTM -LSTM

EVS
MAE 2.62 1.79 0.74 0.76 0.76 1.27 1.34

RMSE 3.95 2.71 0.77 0.79 0.80 1.34 1.43

MAV
MAE 2.71 2.25 0.81 0.79 0.82 0.78 1.22

RMSE 3.94 3.26 0.84 0.82 0.85 0.82 1.37

HOLO
MAE 2.75 3.31 0.94 0.86 0.97 2.57 1.67

RMSE 4.63 4.82 0.97 0.90 1.01 2.68 1.77

NORTH
MAE 2.47 1.40 0.89 0.91 0.89 2.33 1.37

RMSE 4.29 2.98 0.94 0.97 0.94 2.44 1.47

ALL
MAE 2.98 3.86 0.88 0.81 0.94 0.92 1.90

RMSE 4.33 5.26 0.92 0.86 1.00 0.98 1.98

Table 3. Results for the positional, Euclidean error in millimeters of the Frame-by-
Frame Pose Estimators BaselineCNN and GlassPoseRN[13] as well as our LSTM-based
Pose Trackers CNN-LSTM, SepConv-LSTM, NL-CNN-LSTM, NL-SepConv-LSTM,
and GlassPoseRN-LSTM on all three axes combined. The Everysight Raptor is ref-
erenced as EVS, Hololens 1 as HOLO, North Focal Generation 1 as NORTH and the
Mini Augmented Vision glasses as MAV. ALL stands for all glasses combined. The full
results including the errors regarding the x-, y-, and z-axes can be seen in the end of
the document in Table 5.

Frame-by-Frame LSTM-based
Pose Estimation Pose Tracking

Glasses- Baseline GlassPose CNN SepConv NL-CNN NL-SepConv GlassPoseRN
Type -CNN -RN[13] -LSTM -LSTM -LSTM -LSTM -LSTM

EVS 12.06 8.41 4.18 3.96 4.55 7.18 8.89

MAV 15.07 5.97 4.23 3.22 3.59 3.56 5.65

HOLO 13.10 8.75 5.31 4.57 5.93 11.67 9.39

NORTH 13.49 4.88 5.18 5.09 5.19 12.79 11.83

ALL 14.82 11.95 5.22 4.46 5.44 5.43 15.86
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”GlassPoseRN” approach. They are the only networks formed on convolutional
operations only, so they cannot work on sequential data. Table 2 and 4 lists all
orientation results of all methods on our data split. We trained and tested both
approaches on all individual glasses as well as combined. BaselineCNN achieves
comparable results among all glasses models as well as the glasses combined.
The average MAE ranges from 2.47◦ on NORTH to 2.98◦ on ALL, showing
slightly higher errors on the combination of the glasses compared to them in-
dividually. On the RMSE, the largest glasses model HOLO and the smallest
glasses NORTH result in the highest errors. GlassPoseRN shows more signifi-
cant differences among the individual glasses and combined. It can be observed
that the smaller glasses types like NORTH and EVS perform better than the
larger models. Considering all glasses at once increases the error.

We additionally evaluate the positional error of the methods on our data
split (Table 3 and 5). We trained and tested both approaches on all individ-
ual glasses as well as combined. BaselineCNN again performs similarly for all
glasses types. The GlassPoseRN errors differ more between the glasses models.
When comparing the two pose estimation approaches, we observe GlassPoseRN
to achieve mostly better results on the metrics for orientation and translation.

LSTM-based Pose Tracking Methods Based on the two pose estimation
methods, we introduced and benchmarked five AR glasses tracking approaches.

Table 2 and 4 show the orientation results. Our extension of the GlassPoseRN
method with LSTM performs better than GlassPoseRN. GlassPoseRN-LSTM
estimates the orientation with less than 1.98◦ error. Regarding the individual
glasses, we observe a similar pattern as for GlassPoseRN. ALL has a lower per-
formance than the glasses individually. On NL-SepConv-LSTM, the error is high
for NORTH and HOLO, being the smallest and the largest glasses models. The
average error of all other glasses models and their combination is below 1.50◦.
The performance of CNN-LSTM, SepConv-LSTM, and NL-CNN-LSTM is com-
parable when differences on individual glasses are considered. The averages of
all three methods for MAE on the various glasses models range from 0.74◦ to
0.94◦. On the RMSE, the average values range from 0.77◦ to 1.01◦. Regarding all
five methods, SepConv-LSTM performs consistently best overall. The method
achieves the best results on ALL and HOLO on both metrics.

The position benchmark results in a comparable pattern (Table 3 and 5).
In the case of GlassPoseRN-LSTM, the errors are the highest, with an L2 error
of 15.86mm on ALL and values between 5.65mm to 11.83mm on the individ-
ual glasses. NL-SepConv-LSTM has higher errors on HOLO and NORTH, as
already seen on the orientation error. NL-CNN-LSTM, Sep-Conv-LSTM, and
CNN-LSTM attain errors in a similar range for the individual glasses and com-
bined. Overall, SepConv-LSTM performs best among all methods. This is the
case for all objects. Although close error ranges between the three aforemen-
tioned approaches are observable, SepCon-LSTM performs consistently best.
Similar to our orientation comparison, NL-SepConv-LSTM and GlassPoseRN-
LSTM achieve higher errors than the rest.
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AR Glasses Pose Estimation & Tracking Comparison One of our fun-
damental goals in this work is comparing pose estimation and pose tracking
methods for AR glasses. For this purpose, we benchmarked two frame-by-frame
pose estimation and five pose tracking approaches. The results of the approaches
show significant improvements in favor of pose tracking methods.

Pose Accuracy Regarding pose accuracy, the best frame-by-frame method Glass-
PoseRN achieves orientation errors on the MAE between 1.40◦ and 3.86◦, which
is reduced to an error of 0.76◦ to 0.91◦ with the SepConv-LSTM method. Thus,
we observe a reduction of estimation errors of up to 76%. A similar tendency
is visible on the position estimation. Furthermore, the estimation differences
between various glasses models decrease significantly with the introduction of
LSTMs, especially with separable convolutions without non-local blocks.

Inference Time Comparing their performance regarding inference time is possi-
ble by measuring the estimation time between feeding images into a network and
the time a network makes a prediction. Our measurements were made on a sin-
gle NVIDIA GeForce 2080Ti. The Baseline-CNN achieves 100FPS, compared to
42FPS of GlassPoseRN. The pose tracking methods all achieve similar inference
times due to their similarity in depth. Thus, each method achieves 74FPS. All
methods fulfill the real-time requirement. Only the GlassPoseRN architecture
estimates poses slower than 60 fps, which is the acquisition speed of the used
HMDPose dataset. Subsequently, both the pose tracking and frame-by-frame
pose estimation can perform similarly in real-world conditions.

Discussion We chose our methods with a mostly identical CNN-backbone to
ensure a network as similar as possible. This had the aim to deduce if the LSTM,
the additional non-local blocks, or separable convolution deployment contributes
to the changes in the accuracy. Between the various LSTM-based methods, the
combination of non-local blocks and separable convolutions decreased estimation
accuracy compared to approaches with the individual components separately. An
explanation for this might be the concurring properties of separable convolutions
and non-local blocks. Separable convolutions separately handle various channels
of the images by applying the convolutions individually, which are the individual
IR images in our case. Non-local blocks aim to learn non-local dependencies in
the images. The layers containing non-local blocks might enjoy the information
of three images mixed, which collides with the separable convolution concept.
Individually applied, they output similar errors.

Finally, the introduction of LSTMs to the ResNet-18-based GlassPoseRN
brings improvement but underperforms compared to the methods based on a
simple CNN. This underlines once more the enhancement of the pose estima-
tion accuracy with the introduction of LSTMs. The advanced feature extraction
properties of ResNet seem redundant in the case of IR image-based AR glasses
pose estimation when LSTMs are deployed. In addition, our combined meth-
ods work more efficiently compared to the GlassPoseRN approach. We achieve
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around 74FPS inference time for the BaselineCNN-LSTM combinations, whereas
the inference time for GlassPoseRN is 42 FPS.

The LSTM-based methods were trained with image sequence lengths of 8.
The images of the HMDPose dataset were recorded with 60FPS, thus, the net-
works would potentially profit from longer sequence lengths. However, a longer
sequence implicates dropping more images in the process of training, validation,
and test split generation. This would endanger a proper training of the Deep
Neural Networks, especially for individual AR glasses models. A networks with
an even lower sequence lengths than 8 frames would most likely not register
temporal information, as the movement is hardly visible.

Regarding deploying the algorithms in a real world setting where AR content
is shown to a driver of a vehicle through AR glasses, we suggest the efficient CNN
with separable convolutions named SepConv-LSTM to track the pose. They save
computation time and, compared to CNN-LSTM and NL-CNN-LSTM, achieves
better results at the same time. Thus, our LSTM-based methods improve the
pose tracking of AR glasses. As a highly accurate pose is required when AR
glasses are deployed into the car, our methods can improve the stability in which
the AR content is shown while driving, leading to an improved AR experience.

5 Conclusion

In this paper, we analyzed outside-in approaches on pose tracking and pose esti-
mation of AR glasses. We first introduced and benchmarked two frame-by-frame
pose estimation approaches. One method is the state-of-the-art GlassPoseRN
model, developed for AR glasses pose estimation. Based on the baseline vari-
ants, we extended them with LSTMs to achieve AR glasses pose tracking. We
presented methods with and without non-local blocks and further added sepa-
rable convolutions in some networks for comparison. Non-local blocks consider
non-local neighbor features in one image and among multiple images, while sep-
arable convolutions focus on maintaining the individual channels, and therefore
the triple images. We observe a significant boost on the HMDPose dataset from
pose estimation to tracking approaches. Separable convolutions improve our re-
current networks’ results, where our SepConv-LSTM algorithm shows the best
performance with an estimation error of 0.81◦ in orientation and 4.46mm in po-
sition. In contrast to GlassPoseRN, we decrease the estimation error by 76%.
The results are promising to improve the in-car AR experience in the case of AR
glasses deployment, as a high 6-DoF pose estimation accuracy positively affects
the superimposition of the real world with virtual elements, which we further
improve in this work.

On the one hand, future work will consist of potential fusion and Neural
Network ensemble methods to evaluate combinations of frame-by-frame pose
estimation and tracking approaches. On the other hand, the variance of the
performance across individuals will be analyzed.
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