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Abstract. To improve the accuracy of convolutional neural networks in
discriminating between nevi and melanomas, we test nine different com-
binations of masking and cropping on three datasets of skin lesion images
(ISIC2016, ISIC2018, and MedNode). Our experiments, confirmed by 10-
fold cross-validation, show that cropping increases classification perfor-
mances, but specificity decreases when cropping is applied together with
masking out healthy skin regions. An analysis of Grad-CAM saliency
maps shows that in fact our CNN models have the tendency to focus on
healthy skin at the border when a nevus is classified.
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1 Introduction

As reported in the 2019 USA cancer statistics, skin diseases have been steadily
increasing over the years, whereby skin cancer (with more than 100k cases)
represents 7% of the total cancer cases, of which more than 90% are classified
as melanoma. The importance of detecting skin cancer is evident from the high
percentage of survival (92%) after surgery resulting from early detection [21].

The classification of skin lesions using computer vision algorithms has been a
subject of recent research (e.g., [14,6,11]). One of the breakthroughs is the work
of Esteva et al. [8], who report a better performance than expert dermatologists
(on carefully selected cases) using a deep convolutional neural network (CNN).

Given the promising progress of computer vision algorithms in aiding skin le-
sion classification, the ISIC [10] hosts a competition for the automated analysis of
skin lesions. In the years from 2016 to 2018 (see [13,5,4]), the challenge included
three tasks: segmentation, attribute extraction, and classification. These tasks
replicate the procedure usually followed by dermatologists: identify the contour
of the skin lesion, highlight the areas in the lesion that suggest malignancy, and
classify the specific type of lesion.

Masking skin lesion images, i.e., using segmentation to remove the pixels of
the healthy skin while retaining the pixels belonging to the lesion, is an image
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Fig. 1. Example for each of the masking policies.

pre-processing technique that is supposed to help the classification of skin lesions
not only because it helps the systems to focus on the lesion itself, but also because
it removes image artifacts. In fact, Winkler et al. [25] found that the presence of
gentian violet ink, often used by dermatologists to mark the skin in proximity to
suspicious lesions, can disrupt the correct classification and lower the specificity
of commercial Diagnosis Support Systems (DSS). Moreover, recently Bissoto
et al. [2] found a strong bias in the ISIC 2018 dataset; by removing 70% of the
central part of the images (hence likely removing the totality of pixels containing
the skin lesions), the CNN model was still able to reach 0.74 AUC (the Area
Under the Curve of the receiver operating characteristic), with respect to 0.88
AUC reached with full images. This suggests a strong bias of the dataset and
image borders.

To date, while there seem to be clear advantages of masking out the skin sur-
rounding the lesion area, it is not clear to what extent masking images influences
(positively or negatively) the quality of classification (e.g., by removing bias).
Likewise, what are the other consequences for the process of training classifiers
when for example learning the wrong, and medically irrelevant, concept?

In this paper, we present a detailed investigation and discussion on image
masking by, first, assessing the presence of biases at the dataset images’ borders,
and, second, comparing the classification performances when applying several
types of masks. Third, we analyse the CNN attention patterns through a visual
inspection by Grad-CAM [20] saliency maps to take (at least) visual explanations
into account that account for medically relevant spatial regions (though not the
semantic medical concepts behind). This analysis employs four basic types of
masks (see figure 1, top):

1. Rectangular Mask (RM) removes 30% of the image surface around the bor-
der. This is the opposite of the masking utilized by Bissoto et al. [2] to prove
a bias at the image borders.
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2. Circular Mask (CM) draws a circle at the middle of images. Here, we evaluate
if removing the corners of the images and inspecting only its central part
retains model performance.

3. Full Mask (M0) reveals only the lesion pixels. It is used to reveal whether
completely removing the skin surrounding a lesion improves prediction per-
formance.

4. Extended Mask (M1) applies a mask extended by a factor 1.1 around its
center, thus showing lesion pixels together with a fraction of the surrounding
skin. It is used to check if providing information about the surrounding
healthy skin improves prediction performances.

In addition, we investigate the change in performances when cropping the images
with a rectangle circumscribing masks of type M0 and M1 (see figure 1, bottom):
– In condition CR0-A, the images are cropped at mask M0 and show the pixels

of the surrounding skin.
– In condition CR0-M, the images are cropped at mask M0, but outside pixels

are blacked out.
– In condition CR1-A, the images are cropped at mask M1 and show the pixels

of the surrounding skin.
– Finally, in condition CR1-M, the images are cropped at mask M1, but outside

pixels are blacked out.
In the rest of this paper, we conduct experiments on three popular skin lesion
image datasets (ISIC 2016, ISIC 2018, and MedNode), each evaluated through
a 10-fold cross validation approach to overcome biases due to randomization.

To our knowledge, this is the first work measuring with such detail the role
of masking and reporting that an excessive masking can in fact deteriorate per-
formances, rather than improve them.

2 Related Work

Following the popular approach presented by Esteva et al. [8], all performant
neural-network-based solutions for skin lesion classification are based on a trans-
fer learning approach [23], where a baseline deep CNN is pre-trained for example
on the ImageNet dataset [7], and the transfer-learning step consists of substitut-
ing the final fully-connect layers of the network with a few randomly initialized
ones, then to continue training the model on skin lesion images. In our work,
we perform transfer learning using pre-trained versions of the VGG16 architec-
ture [22].

Kawahara et al. [11] pointed out that much work focuses on improving bench-
marks. Differently, our goal in this contribution is to investigate the change in
performance when using plain images with respect to segmented ones for a classi-
fication task. To train our classifiers, we rely on three publicly available datasets:
ISIC 2016 [13], ISIC 2018 [4], and MedNode [9]; all of which are used to train
several models on a number of masking conditions (see Section 3).

Burdick et al. [3] performed a systematic study on the importance of masking
skin lesion images. They measured the performance of a CNN using the full
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images compared to applying masks on several levels; from fully masking out the
surrounding skin to exposing some portion of the skin surrounding the lesion.
Tests show best results when only a limited portion of the surrounding skin
is kept for training. The hypothesis is that masking the healthy skin helps in
classification while showing too much of the healthy skin in the image “confuses”
the network, that is, it becomes more probable that the network learns image
artifacts.

In general, an image mask is a binary black/white image wherein white is as-
sociated with pixels of interest, and black is associated with the non-interesting
or the confounding part of the image to be discarded in subsequent processing
steps. In skin lesion pre-processing, the identification of the contour of the con-
tiguous area of lesioned skin is also known as segmentation. Ronnenberg et al.
[19] first proposed the application of the convolution-deconvolution network (U-
Net) for medical image segmentation. Variants of this model have shown to be
very effective in past ISIC segmentation challenges, with a Jaccard index score of
0.765 and 0.802 in the ISIC2017 and ISIC2018 editions, respectively (see [1,18]).
In this paper, we implement a segmentation model to show the effects of masking
in melanoma images by using a variation of the Ronnenberg’s method described
by Nguyen et al. [15].

3 Method Overview

The experimental method is composed of three phases: preparation of the seg-
mentation model, masked images construction, training of classification models.

As segmentation model we utilize the images from Task 1 of the ISIC 2018
to train a masking model based on the U-Net architecture [19] using the method
of Nguyen et al. [15]. The train dataset comprised 2594 RGB skin lesion images,
and for each sample the ground truth is a binary mask in the same resolution
as the input image.

Figure 2 shows the U-Net architecture together with a sample input and
output (binary mask). The architecture is composed of 9 convolution blocks,
where each of them is a pair of 2D same convolution with a kernel size of 3x3x3.
Downsampling is the result of a max-pooling with size 2x2. Upsampling is the
result of a 2x2 transposed 2D same convolution. After each upsampling step,
the deconvolution is performed on the concatenation of the upsampling result
and the output of the downsampling with corresponding resolution. The initial
number of filters (32) doubles at each downsampling. For this work, we used an
input/output resolution of 160x160 pixels.

The segmentation model described above is used to extract the masks for
Melanoma and Nevus images of the ISIC 2018 Task 3, ISIC 2016, and MedNode
datasets. From ISIC 2018 Task 3, we selected only nevus (NV) and melanoma
(MEL) classes (the same used to train the segmentation model) because, after
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Fig. 2. The U-Net architecture used for lesion segmentation. The input image is 3-
channel RGB, while the output image is 1-channel gray-scale with the same resolution.

an initial visual inspection, we realized that applying the mask prediction to any
of the other 6 classes often led to erroneous results.

In total, starting from the full images (condition A, containing all of the pix-
els), we generated the other eight datasets described in the introduction: RM,
CM, M0, M1, CR0-A, CR0-M, CR1-A, CR1-M (See figure 1). For the M1 and
CR1-* datasets, the mask is first scaled around its center by a factor of 1.1 to
reveal a portion of the surrounding skin (as suggested by Burdick et al. [3]).
For the CR*-* datasets, the mask is utilized to identify a rectangular cropping
region containing the lesions contour. The CR*-* datasets contains a few less
samples than the others because an initial visual inspection revealed that the
masks of samples with a thin lesion–foreground pixel variation result in very
small (mostly inaccurate) lesion blobs. Hence, we automatically filtered away
images whose mask was less than 1

8 of the picture area.

Finally, for each of the nine masking conditions, we trained 10 binary clas-
sification models using a 10-fold splitting strategy. Each fold was composed
using 10% of the dataset for testing and another random 10% for validation.
While splitting, we ensured to preserve the proportion between classes. In the
rest of this paper, performance metrics are reported as the mean (and the stan-
dard deviation) among the 10 folds. The performance of the binary classifiers in
discriminating nevi (negative case) from melanomas (positive case) are reported
in terms of accuracy, specificity, sensitivity, and ROC AUC (Receiver Operating
Curve - Area Under the Curve) on the test set.

As already successfully employed in previous research (e.g., [8]), all of the
binary classifiers are based on the transfer learning approach with CNNs [23].
The base CNN model is the VGG16 architecture [22], which has been pre-trained
on ImageNet [12]. We then substituted the original three final fully connected
layers with a sequence of two 2048-node fully connected layers, each followed by
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Table 1. Results for the ISIC2018 dataset. Left: classification performances in all
masking conditions, indicating with bold the values significantly above the baseline
(condition A) and with italic the values significantly below the baseline. Right: signif-
icantly different masking conditions and their mutual absolute and relative variations.

set testacc testspec testsens testauc

A .902 (.014) .926 (.020) .752 (.048) .944 (.010)
RM .898 (.011) .920 (.012) .768 (.053) .940 (.012)
CM .905 (.012) .933 (.015) .738 (.063) .944 (.012)
M0 .885 (.010) .905 (.016) .762 (.060) .936 (.012)
M1 .885 (.010) .905 (.012) .764 (.042) .935 (.010)
CR0-A .926 (.013) .947 (.016) .801 (.054) .961 (.009)
CR0-M .833 (.018) .845 (.027) .757 (.042) .915 (.010)
CR1-A .922 (.007) .948 (.012) .770 (.057) .958 (.009)
CR1-M .884 (.008) .911 (.013) .729 (.046) .921 (.014)

Condition Metr. Diff. % p

A vs. M0 ACC -.0172 -1.91% **
A vs. M0 SPEC -.0217 -2.34% *

A vs. M1 ACC -.0168 -1.86% **
A vs. M1 SPEC -.0214 -2.31% *
A vs. M1 AUC -.0092 -0.97% +

A vs. CR0-A ACC .0239 2.65% **
A vs. CR0-A SPEC .0201 2.17% *
A vs. CR0-A SENS .0485 6.45% +
A vs. CR0-A AUC .0171 1.81% **

A vs. CR0-M ACC -.0689 -7.64% ***
A vs. CR0-M SPEC -.0812 -8.76% ***
A vs. CR0-M AUC -.0299 -3.17% ***

A vs. CR1-A ACC .0201 2.23% **
A vs. CR1-A SPEC .0211 2.28% *
A vs. CR1-A AUC .0141 1.49% **

A vs. CR1-M ACC -.0173 -1.92% **
A vs. CR1-M SPEC -.0160 -1.73% +
A vs. CR1-M AUC -.0236 -2.50% ***

a dropout of 0.5, and a final 2-class discrimination softmax layer. Each model
was trained for a maximum of 100 epochs and optimized for accuracy. Input im-
ages were fed to the network with an 8x augmentation factor, where each image
was horizontally flipped and rotated by 0, 90, 180, and 270 degrees. To avoid
the generation of black bands, images were rotated after scaling to the CNN
input resolution (227x227) using a nearest neighbor filter. Other training pa-
rameters are: SGD optimizer, learning rate=1e-5, decay=1e-4, momentum=0.9,
nesterov=True. Class imbalance was taken into account using a compensation
factor in the loss-function (parameter class weight in the fit method of the
Keras framework). All training was performed on Linux workstations using our
toolkit for Interactive Machine Learning (TIML) [16]. Our reference Hardware
is an 8-core Intel 9th-gen i7 CPU with 64GB RAM and an NVIDIA RTX Titan
24GB GPU.

4 Experiments

We report the details of the classification performances on the three datasets
(ISIC2018, MedNode, and ISIC2016) for each of the nine masking conditions
and the results of the statistical analyses comparing among masking conditions.
The analysis focuses on determining a potential bias from the border of the
images and the change in performances when masks are applied to the lesion
border or are extended to reveal part of the healthy skin.
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The ISIC2018 dataset consisted of 7818 samples (7645 correctly cropped),
of which 85.8% were nevi. Training a full model (6256 samples, 100 epochs) takes
about 9 hours on our reference hardware. Table 1, left, show the results of the
tests as mean (and standard deviation) over a 10-fold cross-validation.

In order to measure the statistical significance of the difference of the metrics
among conditions, we run a set of t-tests for independent samples (N=10) be-
tween the no-mask condition (A) against all the others. The results of the test are
reported in table 1, right. The table reports the compared conditions, followed by
the compared metric, their absolute and relative difference, and the significance
code for the p-value (+: p < .1; *: p < .05; **: p < .01; ***: p < 0.001).

Both rectangular (RM) and circular masks (CM) did not lead to any sig-
nificant change. Differently, both the full (M0) and the extended masks (M1)
lower the performances in accuracy and specificity. For M1 condition, also AUC
is slightly decreasing.

This result seems to be in contrast with the observation of Bissoto et al.
[2], who claims a positive bias at the border. In fact, by removing the 30% of
the external image border (RM condition), we would have expected a drop in
performance. We can’t so far find an explanation for the loss of performances in
the masking conditions M0 and M1, which could be caused by the imprecision
of the segmentation algorithm or related to the following observations on the
cropping conditions.

For the cropping conditions we observe a clear pattern. When the cropping
is applied leaving visible healthy skin (CR0-A and CR1-A) the performances
increase, up to a +2.65% accuracy and +6.45% sensitivity. This can be explained
by the fact that when images are cropped almost all of the 227x227 pixels sent
to the CNN are covered by the lesion–hence increasing the quantity of details
attributed to the lesioned skin.

However, when the cropping is combined with a masking of the healthy pixels,
the performances drop in terms of specificity. This is especially notable in the
CR0-M condition, where no healthy skin is supposed to be visible.

This leads us to a question. As we cannot state that there is a bias at the im-
ages border, and that by removing all of the healthy skin pixels from the image
performances drop: can we state that indeed healthy skin contains fundamental
useful information for a better classification? This will be discussed in section 6
together with the results on the two other datasets, MedNode and ISIC2016,
presented in the following.

The MedNode dataset consisted of 170 samples (169 correctly cropped), of
which 58.8% were nevi. Training one fold of the full dataset (about 136 samples,
100 epochs) takes about 15 minutes on our reference hardware. Appendix A
reports the results of the t-tests for independent samples between the no-mask
condition (A) against all the others. The only notable performance difference is
in the CR0-M condition, with a 10.85% drop in specificity, which is in line with
the observation on ISIC2018, though with a limited significance (p < 0.1).
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The ISIC2016 dataset consisted of 900 samples (884 correctly cropped), of
which 80.8% were nevi. Training one fold of the full dataset (722 samples, 100
epochs) takes about 1h 30m on our reference hardware. Appendix B reports the
results of the t-tests for independent samples between the no-mask condition (A)
against all the others. As for the ISIC2018 dataset, the masking conditions M0
and M1 lead to a drop in specificity. For this dataset, the drop is present also
for the CM condition (essentially removing the angles of the images). Again in
line with ISI2018, there is a significant drop in performances in the crop & mask
conditions (CR0-M and CR1-M), both in accuracy and specificity.

In summary, for all of the three datasets, the application of a rectangular
mask (RM) did not affect classification performances. As such, even though
Bissoto et al. [2] claimed that the 30% of the border around the lesion is enough to
reach an important classification result, with our experiments we could not state
that removing the borders compromises the accuracy. In other words, although
there is a bias in the images border, it is also true that when the lesioned skin
is fully visible, this biased information are not affecting the performances as the
network is fully concentrating on the lesioned area.

Another behavior common to the three datasets is that cropping and mask-
ing the images deteriorates performances. These are the conditions where all of
the healthy skin pixels are blacked out (CR0-M, CR1-M). Hence, while it is true
that removing some healthy skin pixels from the borders doesn’t affect perfor-
mances, removing all of the healthy skin negatively affect the classification. For
the ISIC2018 dataset, we could also find that cropping but leaving healthy skin
visible increases performance (CR0-A, CR1-A). This last finding couldn’t be
verified statistically on the MedNode and ISIC2016 datasets, possibly because
of their lower amount of samples.

There seems hence to be contrast between the intuitive urge to help the
neural network improving its performance by removing pixels of healthy skin,
and the progressive degradation of performances as healthy skin pixels are less
and less visible. To get a better understanding of this phenomenon, we ran a
set of visual inspections and statistical analyses, which are presented in the next
section.

5 Visual Inspection

In order to visually explain the characteristics that influenced model predictions,
we leveraged the Grad-CAM method [20] to generate the saliency maps of atten-
tion. Figures 3 and 4 show the heatmaps of a correctly classified melanoma and
a nevus in all masking conditions. All the saliency maps were extracted from the
last convolutional layer of the VGG16 architecture (block5 conv3).

Two contrasting patterns emerge, thus giving additional details about the
model’s discrimination strategy. For images correctly predicted as melanoma
(Figure 3), the saliency is higher on the skin lesion pixels, focused towards the
center of the image. In contrast, for pictures correctly classified as nevus (Fig-
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Fig. 3. Heatmaps of an ISIC2018 melanoma (ISIC 0032797) in all masking conditions.
Notice how heatmaps concentrate towards the center of the image.

Fig. 4. Heatmaps of an ISIC2018 nevus (ISIC 0027548) in all masking conditions.
Notice how heatmaps (except CR0-A) concentrate towards the border of the image.

ure 4), the saliency is higher on the skin pixels, towards the borders. The opposite
happens when images are wrongly classified (not shown in the pictures), with
the attention for wrongly classified nevus towards the center and the attention
for wrongly classified melanomas towards the border.

From a closer look at conditions A, CM, RM, and M0 in figure 4, it seems
that, as the healthy skin is progressively removed from the image, the network
has the tendency to avoid black areas and tries to “justify” nevi by increasing
its highest attention (red areas) towards the visible healthy skin pixels. This
doesn’t hold for condition M1, where the network is finally “discharging” its
attention on the black borders. The same behaviour can be observed in the
cropping conditions, especially for CR1-A.

Our intuition is that, in order to justify a nevus, the network needs an area
of alternative attention to “motivate” its choice, otherwise it will be forced to
look at the lesioned skin and might be induced in a wrong decision. This would
explain the deterioration in terms of specificity observed in the ISIC2018 dataset
when switching from CR*-A conditions to CR*-M conditions.

To confirm this intuition, we perform an analysis by measuring the degree
of overlap between (thresholded) saliency maps and segmentation masks on the
cropping conditions (CR0-A, CR0-M, CR1-A, CR1-M). For each of the four
conditions, we apply the following procedure to each image:

1. Define S0.5 as the saliency map thresholded at 0.5, where white pixels cor-
respond to high saliency;

2. define L as the segmentation mask (as used for CR0-M or CR1-M), where
white pixels mark the area with lesion pixels;
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Fig. 5. Box plots of Jaccard indices between thresholded saliency and mask areas in
all cropping (and masking) conditions.

3. define B as the complement of L, hence the “masked-away” area at the
border;

4. compute JL as the Jaccard index between S0.5 and L; and

5. compute JB as the Jaccard index between S0.5 and B.

This leads to the creation of four datasets, each of them associating images to
two Jaccard indices: JL, representing the degree of overlap between the saliency
and the lesioned skin, and JB , representing the degree of overlap between the
saliency and the healthy skin (or the black area). Figure 5 shows the box-plots
of the resulting Jaccard indices JL and JB , for each dataset, divided by lesion
type (MEL/NV).

The top-left boxplot (CR0-A, cropping but no black masking) shows that for
melanoma (MEL), on average, JL is higher than JB , meaning that the saliency
is more concentrated at the center. In contrast, for nevi (NV), saliency concen-
trates more at the border. However, for condition CR0-M (top-right, cropping
and masking), for nevi (NV) the opposite happens, with the saliency more con-
centrated to the center. The two bottom plots report the same behavior for the
condition pair CR1-A and CR1-M.

More formally, we formulated the following hypotheses:

– H0 In all four conditions, for MEL, mean JL is higher than mean JB ;
– H1 In CR*-A conditions (healthy skin is visible), for NV, mean JL is lower

than mean JB ;
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Table 2. Left: results of Mann-Whitney tests comparing JL and JB distributions.
Right: results of Mann-Whitney tests comparing JL and JB distributions on the NV
class between CR0-A and CR0-M (CR1-A vs. CR1-M, respectively).

Cond. Class JL JB U Sig.

CR0-A MEL 0.4010 0.1006 U=10662 ***
CR0-A NV 0.1997 0.4003 U=86403 ***
CR0-M MEL 0.2409 0.1020 U=9642 ***
CR0-M NV 0.3437 0.1562 U=336747 ***
CR1-A MEL 0.2844 0.1757 U=8692 ***
CR1-A NV 0.2662 0.5265 U=51450 ***
CR1-M MEL 0.2600 0.1182 U=9368 ***
CR1-M NV 0.3578 0.1631 U=321957 ***

Crop J A M U Sig.

CR0- JL 0.1997 0.3437 U=124265 ***
CR0- JB 0.4003 0.1562 U=375561 ***
CR1- JL 0.2662 0.3578 U=169012 ***
CR1- JB 0.5265 0.1631 U=406799 ***

– H2 In CR*-M conditions (healthy skin is masked to black), for NV, mean
JL is higher than mean JB ;

– H3 For NV, mean JL in CR*-A is lower than mean JL in CR*-M;
– H4 For NV, mean JB in CR*-A is higher than mean JB in CR*-M.

A set of Mann-Whitney U tests (table 2) confirmed a statistically significant
difference for all tests with p < .001, thus baking all of our hypotheses. In other
words, we can conclude that when some skin is visible, the nevi classification is
accumulating the saliency on the healthy skin pixels. In contrast, when no healthy
skin is visible, the CNN attention is forced towards the center of the image, thus
compromising classification specificity.

6 Discussion

The metrics measurement performed on the image datasets (ISIC2016, MedNode,
and ISIC2018) shows that, with respect to using full plain images, masking de-
creases the performances in terms of specificity. The results on ISIC2018 show
that cropping can increase the performance of the network, but cropping and
masking decreases specificity.

From the visual inspection of the saliency maps (section 5), it appears that
when images are classified as melanoma, the network concentrates most of its
“attention” in the central part of the image, as a human practitioner would do.

In contrast, when images are to be classified as nevus, the saliency map is
more spread towards the border. This last phenomenon is less pronounced in the
CR0-M and CR1-M conditions, where most of the healthy skin is absent. It seems
that, in absence of visual elements characterizing a melanoma, the network has
the tendency to find a “reason” for the competing class (nevus) elsewhere in the
image. Blacked-out areas, which are surely non-discriminating, are avoided and
healthy skin areas are preferred. This leads us to re-interpret the conclusions of
Burdick et al. [3], who found that (with respect to full masks) indeed extended
masks increase performances, but explained it in terms of “taking advantage of
the contrast between the lesioned and healthy skin”. Differently, it seems that
CNNs really need an “area of alternative attention”, which could informally
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defined as the portions of the image on which the CNN needs to focus the
activation of its layers when predicting a negative case (nevus).

7 Conclusions

In this paper, we presented a comprehensive investigation on the effect of mask-
ing on the classification of skin lesions between nevus and melanoma. We per-
formed our statistical analyses on three datasets (ISIC 2018, MedNode, and ISIC
2016) using a 10-fold cross validation procedure to discard shallow conclusions
due to the intrinsic randomness of CNN training procedures.

Our experiments show that the best strategy to improve performance is to
crop images around the rectangular area containing the lesion segmentation
mask. Likely, performances increase thanks to the higher image detail after
zooming in the lesioned area. However, specificity decreases when cropping is
performed together with masking to black the healthy surrounding skin.

To better explain this behavior, we conducted an automated analysis on
saliency maps and formulated the hypothesis that CNNs are more effective when
an area of alternative attention is available. In summary, while it is true that
one should better maximize the area of the image with visual features able to
identify a (positive) class, at the same time some of the pixels should be left free
for the network to “justify” the complementary (negative) class.

As a result of our experiments, towards a process to standardize skin lesions
image preprocessing in CNN contexts (like in the standardization roadmap for
artificial intelligence [24]), we suggest to apply an automated process of segmen-
tation and cropping, but avoiding masking to black surrounding healthy skin.

Future work might investigate if the hypothesis of “area of alternative atten-
tion” generalizes to other contexts by testing classification performances after
cropping images on popular non-medical databases (e.g., ImageNet [7]). In fact,
it is worth noticing that most of the research in image classification has been con-
ducted on databases where the objects of interest occupy only a relatively small
portion of an image. Consequently, visual explanation methods like GradCAM
[20] and RISE [17] have been developed and tested with the goal of identifying
the relatively small subset of pixels justifying a classification. Differently, in the
domain of skin cancer detection, very often the majority (or all) of the pixels of
an image are associated to a single entity, and this condition has received so far
very little attention.

Another subject of investigation would be on understanding what CNNs see
on healthy skin that is invisible to human eyes and can point to new medically-
relevant features.
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A MedNode results

Table 3 and table 4 show the results of the experiments on the MedNode dataset.

Table 3. Classification performance on the MedNode dataset. Italic text indicates
values significantly below the baseline (condition A).

set testacc testspec testsens testauc

A .806 (.123) .870 (.100) .714 (.181) .869 (.131)
RM .753 (.094) .800 (.118) .686 (.189) .860 (.073)
CM .818 (.140) .830 (.135) .800 (.194) .890 (.114)
M0 .806 (.083) .850 (.092) .743 (.167) .890 (.107)
M1 .806 (.112) .830 (.090) .771 (.214) .880 (.111)
CR0-A .768 (.144) .820 (.087) .700 (.328) .843 (.120)
CR0-M .739 (.085) .776 (.107) .686 (.154) .823 (.092)
CR1-A .823 (.111) .870 (.090) .757 (.203) .882 (.093)
CR1-M .764 (.069) .809 (.104) .700 (.149) .816 (.090)

Table 4. Significant differences between masking conditions in the MedNode dataset.

Condition Metr. Diff. Diff. % Sig.

A vs. CR0-M SPEC -0.0944 -10.85% +
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B ISIC2016 results

Table 5 and table 6 show the results of the experiments on the ISIC2016 dataset.

Table 5. Classification performance on the ISIC2016 dataset. Italic text indicates
values significantly below the baseline (condition A).

set testacc testspec testsens testauc

A .806 (.028) .898 (.031) .416 (.163) .773 (.074)
RM .794 (.037) .878 (.069) .445 (.146) .756 (.063)
CM .788 (.026) .872 (.030) .432 (.151) .790 (.059)
M0 .792 (.039) .860 (.056) .509 (.119) .778 (.065)
M1 .781 (.033) .852 (.045) .486 (.152) .773 (.065)
CR0-A .803 (.056) .885 (.057) .467 (.140) .776 (.088)
CR0-M .760 (.037) .827 (.030) .485 (.091) .754 (.060)
CR1-A .796 (.028) .890 (.028) .410 (.115) .772 (.068)
CR1-M .757 (.036) .845 (.051) .391 (.148) .732 (.080)

Table 6. Significant differences between masking conditions in the ISIC2016 dataset.

Condition Metr. Diff. Diff. % Sig.

A vs. CM SPEC -0.0262 -2.92% +

A vs. M0 SPEC -0.0384 -4.28% +

A vs. M1 SPEC -0.0465 -5.18% *

A vs. CR0-M ACC -0.0453 -5.62% **
A vs. CR0-M SPEC -0.0712 -7.93% ***

A vs. CR1-M ACC -0.0488 -6.06% **
A vs. CR1-M SPEC -0.0529 -5.89% *
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