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Abstract

Object detection is one of the most important percep-
tion tasks for advanced driver assistant systems and au-
tonomous driving. Due to its complementary features and
moderate cost, radar-camera fusion is of particular inter-
est in the automotive industry but comes with the challenge
of how to optimally fuse the heterogeneous data sources. To
solve this for 2D object detection, we propose two new tech-
niques to project the radar detections onto the image plane,
exploiting additional uncertainty information. We also in-
troduce a new technique called fusion point pruning, which
automatically finds the best fusion points of radar and im-
age features in the neural network architecture. These new
approaches combined surpass the state of the art in 2D ob-
ject detection performance for radar-camera fusion models,
evaluated with the nuScenes dataset. We further find that
the utilization of radar-camera fusion is especially benefi-
cial for night scenes.

1. Introduction
To further advance the field of advanced driver assistant

systems and autonomous driving, a robust perception of the
environment is needed. Since single sensor setups typi-
cally have limitations, current research aims at leveraging
the strengths of diverse sensor combinations. Radar-camera
fusion is a particularly interesting sensor combination for
the automotive industry due to its moderate cost, comple-
mentary environmental information and possibility for un-
obtrusive sensor integration.

One of the main challenges of radar-camera fusion is
to handle the heterogeneity of the data sources. While the
camera provides raw sensor information in the form of RGB
images, the radar typically provides a pre-processed list of
detections, containing measurements of the distance, rela-

Figure 1. Visualization of the camera image, augmented with the
uncertainty weighted RCS channel values highlighted in red.

tive velocity, azimuth angle, and radar cross-section (RCS).
Note that the information from the radar is sparse when
compared with the dense camera images. A common ap-
proach for fusing the different representations is to project
the radar detections onto the image plane to construct ad-
ditional channels with parameters of the radar detections.
The radar detections can be represented in the form of a
small pixel area around the projected image location [3],
or a vertical line of fixed height [19] to reflect the eleva-
tion uncertainty of the radar measurement. In this paper, we
suggest to additionally incorporate the azimuth uncertainty
when constructing the radar channels. In particular, we as-
sume that the measured azimuth angle follows a Gaussian
distribution around the actual measurement, where the stan-
dard deviation corresponds to the accuracy value from the
sensor’s technical data sheet. Thereby, we are able to effec-
tively use the additional uncertainty information and create
visually denser radar channels. An example of the obtained
representation is shown in Fig. 1.

When designing a neural network to process both radar
and camera channels, it is challenging to determine the ideal



method for how and when to fuse the branches of radar and
camera. In the literature, fusion strategies are often catego-
rized into early, deep and late fusion [5], [10], [4]. When
choosing one of these fusion strategies, the main concerns
are that fusing too early may not be ideal considering the
heterogeneity of the data sources, while fusing too late may
not enable the network to take advantage of potential syn-
ergies. A recent work from Nobis et al. [19] aims to solve
this problem by designing a network architecture that con-
catenates radar and camera features at multiple early, deep
and late stages in the network, to which we refer as fusion
points. Their idea is to enable the network to adjust its
weights for each fusion point during training and thereby
to implicitly find the ideal fusion points. However, this ap-
proach does not lead to significant performance improve-
ments compared to an image-only baseline, which shows
that the network is not able to fully leverage the advantages
of the added radar modality. In contrast to [19], we show
that, surprisingly, too many fusion points can limit the per-
formance of the network. We introduce a technique that is
inspired by network pruning and automatically selects the
ideal fusion points during training, effectively optimizing
the network architecture and performance.

To summarize, the main contributions of this paper are:

• Two new projection techniques to create dense radar
channels by incorporating elevation and azimuth un-
certainty.

• A fusion point pruning (FPP) technique to automati-
cally optimize the network architecture.

• An overall radar-camera fusion pipeline that achieves
state-of-the-art performance in 2D object detection
evaluated using the nuScenes [2] dataset.

2. Related work

2.1. Image-only object detection

The use of deep neural networks for object detection in
images has lead to a significant increase in detection accu-
racy. The early methods are characterized by a two-stage
approach: First, a region proposal network (RPN) is used to
identify regions of interest (ROIs) in the image. Second, an
image classification network is used to classify the object
in each ROI. An exemplary algorithm using this approach
is Faster R-CNN [21]. To reduce the computational cost
of these approaches, one-stage object detectors were intro-
duced. They eliminate the need for a RPN by replacing the
ROIs with pre-defined anchor boxes. Examples of this tech-
nique include SSD [16] and RetinaNet [15]. In this paper,
we build our architecture based on a modified variant of the
RetinaNet architecture.

2.2. Radar-camera fusion object detection

Most of the radar-camera fusion approaches for 2D ob-
ject detection use a modified image-only detection network
that is enhanced by the integration of the radar.

For two-stage approaches, the radar is often used to find
ROIs in the image, which can then be used for further image
processing. In [6], the radar determines square ROIs in the
image, which are then classified by a custom CNN with a
contrastive loss function. More recently, Nabati & Qi [17]
show that the RPN can be replaced by a radar-based region
proposal to reduce computational cost and obtain better re-
sults on the nuScenes dataset [2]. One of their key ideas is to
generate multiple anchor boxes per radar detection, which
have different sizes, scales and alignments with the radar
point either in the center, to the left, right or bottom of the
box. In [18], the authors further develop this idea by gener-
ating 3D proposals for each radar detection, mapping them
to the image and refining them using radar and image fea-
tures to generate 2D radar proposals. These are then fused
with 2D image proposals created by a RPN and used as in-
put for the detection stage of the algorithm. A limitation of
these sequential approaches is that the performance at each
stage is limited by the corresponding sensor, rather than ex-
ploiting the synergies of multiple sensor inputs used at the
same stage.

To enhance one-stage approaches, most algorithms first
create additional image channels by projecting the radar
points onto the image. The idea is to enable the network to
learn how to make the best use of the complementary inputs.
John & Mita [10] introduce the RVNet, a 2D object detec-
tion algorithm with two input and two output branches. The
input branches are for the radar and camera input, respec-
tively. The radar detections are transformed to the image
plane to form a three channel radar image using the mea-
sured depth and the lateral and longitudinal velocity. The
two output branches are used to detect small and large ob-
stacles. The authors also develop the SO-Net [11], which
extends the RVNet by adding another output branch for se-
mantic segmentation, making it a multi-task learning algo-
rithm. Chadwick et al. [3] show that the radar is especially
useful for the detection of distant, small vehicles. They
project the radar detections as small circles to reflect their
uncertainty and use the range and the range-rate as chan-
nels of the radar image. In contrast, Nobis et al. [19] ar-
gue that the radar detections should rather be projected as
a vertical line, since the radar is mainly uncertain in terms
of the object’s elevation. They assume a fixed height for
each object and use the distance and RCS as the radar chan-
nels. They also introduce a new training technique BlackIn,
which blacks out the camera inputs at a fraction of the train-
ing steps, to encourage the network to rely more heavily
on radar data. In this paper, we improve upon above men-
tioned techniques by incorporating azimuth uncertainty in



Figure 2. Model architecture showing the fusion points as concatenations of radar and image features. Dashed lines indicate that the
connections are optional depending on the fusion point hyper-parameters.

the radar projection and introducing a method to automati-
cally find the best fusion points in the network architecture.

2.3. Network pruning

Neural network pruning has been researched since the
late 1980s [13], [9]. Its goal is to remove less relevant parts
of the network to reduce computational cost and storage
space while maintaining most of its performance. A recent
overview of network pruning is given in [1].

Most network pruning techniques follow a simple high-
level algorithm: The network is first trained to convergence
with its original architecture. Then, its structural elements
are assigned with an impact score that determines their im-
portance. The least important structural elements are re-
moved and the network is fine-tuned with its new archi-
tecture. The last steps can be repeated iteratively until a
desired performance trade-off is achieved [7]. The impact
score is mostly calculated using the magnitude of weights,
but sometimes other metrics like gradients, contributions
to layer activations or special importance coefficients are
used [1]. Activation based impact scores were first intro-
duced in [22] as the contribution of a single weight to the ac-
tivation of a single neuron. Later works generalize this idea
to the contribution of each channel in a layer to the convolu-
tional filter activation [20], more closely related to the tech-
nique proposed in this paper. In contrast to the above works,

we consider a pruning of fusion points, which deals with the
challenge of calculating an impact score in the presence of
heterogeneous data sources of different magnitude.

3. Methodology
3.1. Radar input generation

We project each radar detection onto the image plane us-
ing the measured azimuth angle and range, as well as the
camera’s extrinsic and intrinsic calibration parameters. The
corresponding entries in the resulting radar channels can be
filled with information from the detections like the mea-
sured distance, relative velocity, or RCS. To reflect the mea-
surement uncertainty of the radar, we model the elevation
and azimuth uncertainty in our projection technique. We
follow [19] in the generation of vertical lines assuming a
height of 3 m for each detection to represent the elevation
uncertainty. Additionally, we introduce new techniques to
further reflect the detection azimuth uncertainty. We pro-
pose the following two techniques which have been experi-
mentally evaluated in this paper.

3.1.1 Uncertainty channel

The first method is an additional radar channel that contains
information on the azimuth uncertainty of each detection.



We assume a Gaussian distribution for the measurement of
the azimuth angle and calculate the density values using the
measured azimuth angle as mean and the accuracy from the
technical data sheet as standard deviation. Instead of a ver-
tical line with a width of one pixel, we now generate a vi-
sually denser radar input where the corresponding entries
of each detection are horizontally spread across several pix-
els, according to the Gaussian density curve. In the case of
overlapping entries, we keep the highest value.

3.1.2 Uncertainty weighted RCS channel

The second method makes use of the idea of the first method
but further enriches the radar input channel by its RCS in-
formation. To this end, we calculate the uncertainty channel
as described in the previous section and multiply the den-
sity values of each detection with its measured RCS value.
Since the RCS is a measure that represents object reflectiv-
ity and is often used for object size classification, we ex-
pect this to be a meaningful weighting. A visualization of
the camera image, augmented with the uncertainty weighted
RCS channel values highlighted in red, is given in Fig. 1.

3.2. Model architecture

The model architecture is shown in Fig. 2. It is based
on a RetinaNet [15] architecture with a ResNet [8] back-
bone, a subsequent Feature Pyramid Net (FPN) [14] and
the classification and regression detection heads. Addition-
ally, we use a radar branch with max pooling layers to ad-
just the shape of the radar inputs according to the different
stages in the network, similar to the CRF-Net introduced
by [19]. The radar features are fed into the network on sev-
eral different fusion points at early, deep and late stages of
the network. The fusion operation is a concatenation of the
respective feature tensors. The network is thereby expected
to learn the ideal stages for the radar fusion.

In contrast to the CRF-Net [19], we add flexibility
to the network architecture by introducing binary hyper-
parameters to enable or disable each of the fusion points.
We can use these hyper-parameters to experimentally ex-
amine the effectiveness of each fusion point. Also, we
can dynamically change the network architecture during the
training. We use pre-trained weights from ImageNet [12]
for each layer that is identical with the RetinaNet architec-
ture. The layers after each fusion point have additional in-
put channels, whose weights are randomly initialized and
get discarded when the corresponding fusion point is elimi-
nated.

3.3. Fusion point pruning (FPP)

We propose a novel network pruning technique to im-
prove the capability of the network to find the best fusion
points. We note that this technique is not limited to radar-

camera fusion as shown in this paper and can be applied
to other fusion problems as well. After several epochs of
training, we evaluate the relative importance of each fusion
point to decide if it should be kept in the architecture.

A 2D convolution can be mathematically described using
3D tensors for input I and activation map A with width w,
height h, as well as input and activation map channels cI
and cA, respectively, and a 4D tensor for the kernel weights
K with uneven kernel size k. For a stride of s = 1 and same
padding p = k−1

2 , an element of A at row m, column n and
channel a can be calculated by:

A[m,n, a] =

cI∑
i=1

k∑
u=1

k∑
v=1

K[u, v, i, a]

× I[m+ u− k + 1

2
, n+ v − k + 1

2
, i] (1)

For regular network pruning, the importance of neuron
connections is usually determined by examining the magni-
tude of their corresponding weights [9], [1]. However, since
we are dealing with heterogeneous data sources of different
magnitude, this does not appear meaningful to us. Instead,
we calculate the relative importance of the input channels
at our fusion points using their impact on the next layer’s
activation map A. To this end, we separately calculate the
activations Ai for each of the input channels i in the first
layer after a fusion point:

Ai[m,n, a] =

k∑
u=1

k∑
v=1

K[u, v, i, a]

× I[m+ u− k + 1

2
, n+ v − k + 1

2
, i] (2)

We then take the magnitude in terms of the L1-norm of
each channel’s activation and normalize it to determine the
relative impacti of each input layer i in the feature tensor
at a fusion point:

impacti =
∥Ai∥1∑cI
j=1 ∥Aj∥1

(3)

We sum up the relative impacts of the radar channels that
were concatenated at each fusion point to measure the im-
portance of fusion taking place at this point in the network.
We iteratively eliminate the least effective fusion points and
their corresponding weights in the following layer after a
predefined number of training epochs and save the corre-
sponding model checkpoint. This is repeated until a single
fusion point remains. Finally, we use the model checkpoints
to evaluate the performance and select the best performing
model with the optimal set of fusion points.



Table 1. Quantitative evaluation
Camera Radar Car Truck Person Bus Bicycle Motorcycle mAP wmAP Night wmAP Runtime‡

Faster R-CNN* [21] ✓ 51.46 33.26 27.06 47.73 24.27 25.93 34.95 43.78 — —
RRPN* [17] ✓ ✓ 41.80 44.70 17.10 57.20 21.40 30.50 35.45 — — —

Nabati & Qi 2020* [18] ✓ ✓ 52.31 34.45 27.59 48.30 25.00 25.97 35.60 44.49 — —
RetinaNet [15] ✓ 55.69 31.89 37.10 — 21.80 27.27 34.75 45.65 43.24 36.4ms
CRF-Net [19] ✓ ✓ 53.71 33.72 36.50 — 18.62 22.09 32.93 44.91 (43.95†) 46.42 37.6ms

Ours - UC ✓ ✓ 55.40 34.15 37.23 — 23.27 28.14 35.64 45.99 49.56 37.1ms
Ours - UwRCS ✓ ✓ 55.46 35.26 37.63 — 25.02 27.43 36.16 46.33 48.11 36.8ms

Ours - UC + FPP ✓ ✓ 55.69 35.42 37.36 — 23.42 28.78 36.14 46.43 48.56 37.0ms
Ours - UwRCS + FPP ✓ ✓ 55.94 35.60 37.77 — 25.74 28.84 36.78 46.73 50.53 36.7ms

* The results in these rows were calculated by Nabati & Qi [18] and use a slightly different class mapping, which leads to the mAP metric being less comparable.
† Nobis et al. [19] only report this wmAP based on a slightly different class mapping. We therefore additionally list results that we calculated ourselves with the
CRF-Net using our class mapping.
‡ Average inference runtime per frame was calculated on NVIDIA GeForce RTX 2080.

4. Experimental Results

We use the nuScenes dataset [2] to train and evaluate our
network. To the best of our knowledge, this is currently
one of the largest datasets for autonomous driving and also
the only one with series-production automotive radar sen-
sors. The nuScenes dataset contains 3D bounding box an-
notations of 27 classes. As in [19] and [18], we obtain 2D
bounding box annotations by projecting the 3D bounding
boxes onto the image plane, and apply a similar class map-
ping to obtain five high-level classes: car, person, bicycle,
motorcycle and truck. We train and evaluate the algorithms
using the front camera and radar with the official train and
val scene splits containing 28130 training and 6019 valida-
tion frames. Additionally, we evaluate them using a subset
of the validation scenes consisting of 608 frames that were
taken at night. The networks are trained using the Adam op-
timizer with an initial learning rate of 10−5 that is reduced
by a factor of 10 when the optimization reaches a plateau.

4.1. Quantitative Results

Experimental setup. The most common metric to evalu-
ate object detection performance is the mean average preci-
sion (mAP), which is calculated as the mean of the average
precision (AP) across each class c of the dataset. Work-
ing with the nuScenes dataset, many researchers choose in-
dividual class mappings to reduce the 27 classes to a set
of selected classes C. A downside of the mAP is its de-
pendency on the class mapping, where even small changes
can lead to substantial differences in the calculated mAP.
Hence, in recent work [19], [18], the weighted mean av-
erage precision (wmAP) is additionally reported, which is
calculated as a weighted mean of the AP for each class,
using the amount of objects per class Nc as weights and
divided by the total amount of objects N . This metric is
less dependent on the underlying class mapping. In turn,
the classes with more objects tend to dominate the results
of the wmAP. We calculate the mAP and wmAP using an

intersection-over-union (IoU) threshold of 0.5 as:

mAP =
1

C

C∑
c=1

APc (4)

wmAP =
1

N

C∑
c=1

NcAPc (5)

We report both the mAP and the wmAP, as well as class
APs to ensure the best comparison possible in Table 1. Ad-
ditionally, we provide the night scene wmAP, which high-
lights the benefits of radar-camera fusion in adverse condi-
tions for the camera. We list the results of two image-only
networks, RetinaNet [15] and Faster R-CNN [21], which
are used as baselines for three radar-camera fusion algo-
rithms, RRPN [17], Nabati & Qi 2020 [18] and CRF-Net
[19], as well as our own results with the uncertainty chan-
nel (UC) and uncertainty weighted RCS channel (UwRCS),
with or without FPP. The results from Faster R-CNN, RRPN
and Nabati & Qi 2020 were calculated in [18] and use a
slightly different class mapping. Their mapping includes a
Bus class that we chose to merge with the Truck class in
our class mapping. We compute the remaining results with
the same training and evaluation settings and based on the
same RetinaNet [15] as core architecture to ensure compa-
rability. In our experiments, we choose to work with a small
ResNet-18 backbone due to the real-time requirements in
automotive systems. However, the results should be appli-
cable to larger backbones as well. In the CRF-Net paper,
Nobis et al. [19] only report the wmAP based on a differ-
ent class mapping, which we additionally list. They further
list results which were produced by filtering data based on
ground truth information that is not available in a real-world
scenario, which we therefore discard.

Discussion. Looking at the results, we see that all of our
own methods outperform the other methods in terms of
mAP and wmAP, leading to a new state of the art in radar-
camera fusion for 2D object detection. Our best performing
model is the UwRCS channel in combination with FPP. It



Figure 3. Qualitative comparison of detection results. Red: Car, Green: Truck, Blue: Pedestrian.

should be noted that the mAP and wmAP of all methods
are in a relatively close range. The best mAP is 3.85 above
the lowest, which is a relative increase of 11.7%, while the
relative increase in terms of the wmAP is even less. We can
observe that the Nabati & Qi 2020 [18] model only slightly
outperforms its image-only baseline Faster R-CNN, while
the CRF-Net [19] does not outperform its image-only base-
line RetinaNet [15] in our evaluation. From our own exper-
iments, we find that this is due to the many fusion points in
the CRF-Net architecture, which can lead to a suboptimal
detection performance.

For our own methods, we started experimenting with the
UC and UwRCS techniques and found that we significantly
outperform the original CRF-Net [19] when reducing the
amount of fusion points in the network architecture exper-
imentally. To reduce the amount of experiments needed to
find the optimal architecture, we developed the FPP tech-
nique. It determined that the best fusion point for the UC
+ FPP technique is the concatenation of the R3 radar fea-
ture with the C3 ResNet feature, while for UwRCS + FPP
it is best to have two fusion points at R3 with C3 and at
R4 with C4, which are all located in the centre of the neu-
ral network. The fusion points late in the network, after the
FPN, have been eliminated first in our experiments, indi-
cating that a regression level fusion is not ideal to exploit
the complementary features. The fusion points early in the
network, including the concatenation of the radar and im-
age input channels, are also eliminated, indicating that it

is beneficial to separately extract some semantic informa-
tion before fusing the feature tensors. The UwRCS + FPP
technique further increases the detection performance and
performs consistently well across all classes. It has the
highest AP for Car, Person and Bicycle and second highest
for Truck and Motorcycle, where it is only outperformed
by the RRPN [17]. In fact, the RRPN [17] performs par-
ticularly well for these classes but equally poorly for the
other classes. This method seems to have some particular
strengths and weaknesses that differ from all other meth-
ods. It should be noted, that the wmAP of RRPN was
not reported by Nabati & Qi [18] but should be low due to
the weak performance of the Car and Person classes, which
have the highest number of annotated objects.

To further underline the potential of radar-camera fu-
sion in adverse conditions for the camera, we study the
performance for scenes that were recorded at night. We
can observe a more significant increase in detection per-
formance of all fusion methods with respect to the Reti-
naNet [15] baseline, with up to 16.8% relative increase in
night wmAP for the UwRCS + FPP technique. Note that
the night wmAP can be higher than the overall wmAP due
to mostly cars present at night which have high AP.

The inference times of RetinaNet [15], CRF-Net [19]
and our models are very similar because the radar branch
is inexpensive relative to the rest of the network. The run-
time slightly increases with the amount of fusion points in
the network, so the FPP can help to reduce it.



4.2. Qualitative Results

In Fig. 3, we show some qualitative results of our
proposed method with UwRCS and FPP, compared with
the RetinaNet [15] image-only baseline. The color of the
bounding boxes relates to the different classes. In the left
column, we have a very crowded urban scene with multiple
cars, trucks and pedestrians. We can see that the perfor-
mance is relatively similar and most of the objects in the
scene are correctly detected. The most notable difference
is the detection of the car and the construction worker be-
low the road sign on the right side, which both are partially
occluded by a road barrier and thus missed by the Reti-
naNet [15]. The same happens for the car that is to the right
of the truck on the left side of the image. In these circum-
stances, the radar can help to detect such occluded objects.
Another example of this observation is shown in the center
column, where the radar can help to detect a vehicle that
is occluded by bushes and would have been missed by the
RetinaNet [15]. In the right column, we have a night scene
with difficult lighting conditions. There is only one car on
the right of the image which is hardly visible in the camera
image and thus missed by the RetinaNet [15]. However, our
optimized fusion network is able to detect and localize the
car quite well.

5. Conclusion
In this paper, we presented two novel approaches to opti-

mize radar-camera fusion. First, we presented a new projec-
tion technique that takes the radar’s elevation and azimuth
uncertainty into account and creates a visually denser radar
input. Second, we developed the FPP technique that auto-
matically selects the best fusion points in the network ar-
chitecture, effectively solving the problem of when to fuse
camera and radar data. We note that this technique can
be applied to other fusion problems as well. Our contri-
butions lead to an improved state-of-the-art performance in
2D object detection, as shown in the results. While the im-
provements compared to image-only algorithms like Reti-
naNet [15] are still relatively small, we can demonstrate the
potential of radar-camera fusion for night scenes, where the
camera is less reliable. A possible drawback for the per-
formance of the fusion models is the quality of the radar
data in nuScenes. The radar pointclouds are less dense than
what can be expected from current automotive radars, so the
full potential of radar can not be demonstrated using this
dataset. In future work, we will examine fusion in 3D ob-
ject detection, where the radar might provide an even larger
advantage than on the image plane.
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