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Abstract—The research presented in this paper aims to acceler-
ate the natural science research process by partially automating
the execution of experiments using AI-assisted Concept-Change
Detection (C-CD), e.g., for monitoring systems and studying
biodiversity and ecosystem functions. The purpose of C-CD is
to detect concept changes, also known as concept drift, that
may be relevant to the study or ecosystem state. For example,
in intertidal marine ecosystems, the event of sudden flooding
can lead to dramatic changes in biodiversity. It could also be
of scientific interest to take sensor samples more frequently in
the period leading up to such events. The paper proposes an
architecture for C-CD to customize AI-based analysis of sensor
data streams. Furthermore, the paper implements portions of the
architecture and is applied on sensor data from the Spiekeroog
Coastal Observatory (SCO) as a feasibility study. The study
demonstrates C-CD’s ability to detect anomalies that are either
of scientific or technical interest to the operation and exploration
activities of SCO.

Index Terms—Anomaly Detection, Concept Change Detection,
Marine Ecosystems, Marine Sensor Systems

I. INTRODUCTION

Oceans and coastal areas are critical for food supply, climate
regulation, transportation, energy production, and quality of
life. There is an urgent need for easier fact-based ocean man-
agement to protect the oceans and ensure sustainable use of
ocean resources. This calls for reliable general monitoring of
changes in marine environments and health characteristics, as
well as monitoring for sustainable and cost-effective industrial
exploitation of oceanic and coastal areas. Data from such
systems will give valuable input to industry, governmental
bodies, and researchers focusing on oceans and climate.

The overarching motivation for the United Nations’ Decade
of Ocean Science for Sustainable Development (2021-2030)
[1] is to “support efforts to reverse the cycle of decline in
ocean health and create improved conditions for sustainable
development of the ocean”. In the JPI Oceans Strategic Re-
search and Innovation Agenda 2015-2020 [2], supported by the
European Union, a key expectation is “strengthening observa-
tion and monitoring capacities through enabling technologies,

new platforms and sensors; addressing under-sampling, and
ensuring that new environmental parameters can be rapidly
and accurately measured”. Moreover, the OECD report [3] em-
phasizes “[. . . ] the drive for miniaturization and automation,
the growing demand for low-power, low-cost devices for the
measurement and graphic display of the physical environment”
and moves to endow the sensor itself with intelligence. The
last three decades have seen substantial progress in sensors and
(smart) sensor systems, enhancing our monitoring capacities.
Still there are two challenges, firstly essential biological and
geochemical parameters are not accessible (yet) with sensors
[4] and secondly, sampling strategies need to be adaptive and
intelligent [5].

To overcome these challenges, a first prototype of an
automatic Concept-Change Detection (C-CD) technique in
marine environments based on machine learning algorithms
is presented. In machine learning, concept change is the drift
of the relationship between input and output data over time.
For example, sensor readings may change over time such
that Pt1(X) ̸= Pt2(X) given t1 ̸= t2, with X denoting a
random variable representing the sensor reading. Whereas con-
cept change denotes long-term changes, anomalies represent
short-term deviations. Both concept changes and anomalies
might indicate the presence of events pertaining to a natural
scientist’s research interests. C-CD can be used for systems
monitoring and applications, such as investigating biodiversity
and ecosystem functioning. The system automatically detects
concept changes that might be relevant to the investigation or
the health of the ecosystem. For example, in intertidal marine
ecosystems the event of sudden flooding may cause dramatic
changes to biodiversity, and it may also be of scientific interest
to take more frequent sensor samples during the time leading
up to such events. The presented technique can be used to
trigger more frequent data sampling.

C-CD extends to multimodal data streams, for example a
water level sensor on its own may not be enough to predict
sudden flooding, only to detect the flood as it is already
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happening. However, a volatile water level combined with a
change of the direction of wind, and reports of rain in certain
locations, may indicate imminent flooding. Here the system
needs to combine and analyze diverse kinds of data in real-
time. C-CD draws on existing algorithms to detect changes
in data streams such as Drift Detection Method, Early Drift
Detection Method, Micro-Cluster Nearest Neighbor [6]–[8]
concept change detection techniques and anomaly detection
algorithms such as Isolation Forests or Local Outlier Factor
[9], [10]. However, such techniques expect clean and accurate
data and are often limited to certain types of change [8].
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Fig. 1: Concept-Change Detection system overview

Fig. 1 depicts C-CD conceptually. Solid lines represent
aspects of C-CD realized and presented in this paper, and
dashed components are ongoing developments. C-CD is ap-
plicable in real-time and allows prompt responses to sensors
and scientists by automating the data pipeline from data
ingestion and integration, sensor feedback to real-time result
production. The analyst also works as a human in the loop
and may adjust parameter settings in real-time. A prototype
of C-CD is tested using real data from Spiekeroog Coastal
Observatory—as a proof of concept—and is presented in this
paper. The results show C-CD’s capability to detect changes
in multimodal marine sensor systems in real-time.

The paper is organized as follows: Section II discusses
related work and Section III discusses the developed C-CD
system requirements, architecture and algorithms. The follow-
ing section, Section IV, provides an experimental evaluation
of the C-CD prototype. Finally, ongoing and future work is
discussed in Section V; followed by concluding remarks in
Section VI.

II. RELATED WORK

A. Marine Environment Monitoring

Biodiversity is changing at an unprecedentedly high rate
[11], reflecting the anthropogenic alteration of Earth’s ecosys-
tems [12]. Consequently, research on biodiversity-ecosystem
relationships including experimental setups and monitoring
initiatives has become of major interest [13]–[15].

Marine environments are influenced by a wide diversity of
anthropogenic and natural substances and organisms that may

have adverse effects on human health and ecosystems. Real-
time measurements of biochemical parameters and marine
pollutants across a range of spatial scales are required to
adequately monitor ecosystem health and potential hazards
[16]. Significant technological advancements have been made
in recent years for the detection and analysis of the marine
ecosystem status [17]. In Germany this is especially focused
on observatories, like COSYNA [18], [19] or the Spiekeroog
Coastal Observatory (SCO, operated by the Institute for Chem-
istry and Biology of the Marine Environment). In particular,
multispectral sensors deployed on a variety of mobile and
fixed-point observing platforms provide a valuable means to
assess status, dynamics and hazards alike [20]. The authors
of [21] classified sensors by their adaptability to various
platforms, addressing large, intermediate, or small areal scales,
identifying an urgent need for new sensors to detect changes
in marine ecosystems at all scales in autonomous real-time
mode.

Current progress in sensor technology is expected to depend
on the development of small-scale smart sensor technologies
with a high sensitivity and specificity towards target analytes
or organisms [22]. However, deployable systems must comply
with platform requirements as these connect the three areal
scales. Future developments will include the integration of
data stream mining and machine learning [23] into complex
and operational sensing systems, enabling a comprehensive
situational awareness and long-term monitoring. The last three
decades have seen substantial progress in sensors and (smart)
sensor systems, enhancing our monitoring capacities [24]. Still
there are two challenges a) as essential biological and geo-
chemical parameters are not accessible (yet) with sensors [4]
and b) sampling strategies need to be adaptive and intelligent
[5].

B. Concept Change and Anomaly Detection

Traditional machine learning for data mining builds its
models on static batch training sets, enabling several iterations
over the data. This is different in Data Stream Mining (DSM)
as (new) models need to be built in linear or sub-linear time
complexity [25]. Furthermore, DSM techniques need to enable
dynamic adaptations to concept changes, which are changes in
the patterns encoded in the stream [25]. Data mining models
must reflect an accurate representation of the current pattern.
In natural sciences, sensor systems represent an application
for DSM techniques, where detecting such change is essential
for applications.

Techniques to detect concept change exist, e.g., EDDM,
DDM, MC-NN [7], [8] to name a few. However, they expect
relatively clean and accurate data and are limited to certain
types of change—gradual, sudden, recurring or incremental for
example. These change detectors can identify events of interest
to the natural scientist. However, research of obtaining tangible
event identification is often tailored for specific applications,
such as telecommunications [26] or chemical process industry
[27]. There is very little work towards general purpose early



event detection, and thus C-CD will close this gap for natural
science applications making use of sensor networks.

As mentioned earlier, change detection techniques expect
relatively clean and accurate data, yet quite often this is not
the case for Natural Science sensor networks. Here issues such
as calibration changes, faults or extreme weather conditions
influence the quality of the data. Hence, change detectors need
to be accompanied by appropriate pre-processing techniques.
Yet, off-the-shelf pre-processing techniques from standard
machine learning toolboxes are often not fit for this purpose
due to the variability of the data [8]: For example minimum
and maximum values of a sensor may change over time,
rendering previous normalization operations inaccurate. An
attempt at integrating several pre-processing techniques into
a single multi-purpose tool has been co-developed by one of
the investigators [8].

Some fully real-time adaptive (data instance by data in-
stance) algorithms do exist that mimic standard data mining
techniques such as the adaptive predictive Concept Drift
Very Fast Decision Tree (CVFDT) [28], Hoeffding Rules
[29], Very Fast Decision Rules (VFDR) [30], or descriptive
adaptive algorithms such as CluStream (Cluster Analysis) [31],
Adaptive Generalised Rules [32], etc. However, please note
that predictive DSM algorithms tend to be supervised and
thus are not suitable for all natural science applications, as
they need frequent and timely feedback about their predictive
performance in order to adapt. Some predictive hybrids exist
that have alternative feedback mechanisms in addition to
predictive performance, such as [33], [34].

Compared with concept change, anomalies are short-term
changes of the pattern encoded in the data stream, in extreme
cases an anomaly may comprise only a single data instance,
i.e., an outlier. Anomalies are difficult to learn from machine
learning algorithms, since typically there are few examples to
learn from. However, a common approach to detect anomalies
is to learn a model that reflects normal behaviour and to flag
up data that does not fit this model well. Common algorithms
used in anomaly detection are for example Isolation Forests
[9], Local Outlier Factor [10] and k-Nearest Neighbors [35].
A recently published paper describes an ensemble anomaly
detection method for detecting computer network attacks.
A comprehensive survey on anomaly detection methods is
available in [36].

C. Data Stream Processing Frameworks and Libraries

A few relevant software frameworks and libraries have
been developed in recent years. A workbench for bench-
marking DSM algorithms and implementing DSM applica-
tions is the Massive Online Analysis (MOA) framework
[23]. MOA implements a couple of standard predictive and
descriptive DSM algorithms, but also offers other important
DSM techniques, such as outlier detection, concept drift de-
tection, etc. However, MOA does not offer workflow building
mechanisms, lacks pre-processing techniques and only offers
limited visualisation facilities. The Open Mobile Miner [37]
is an early platform for situation aware DSM. However,

OMM is tailored for resource constraint mobile environments
such as smartphones and implements versions of DSM al-
gorithms which can be computationally tailored to available
computational resources. However, this often comes with a
trade-off to analytics performance. Some recent developments
on data stream processing frameworks are Apache Flink
(https://flink.apache.org/), Storm (http://storm.apache.org/) and
SAMOA (https://samoa.incubator.apache.org/). Apache Flink
offers an execution framework for building real-time data
stream mining workflows. There, Apache Flink excels at
scalability by parallelizing the workflow execution. Another
parallel stream processing framework is Storm. However, both
Apache Flink and Storm lack true instance by instance DSM
algorithms as needed by natural scientists in the field. SAMOA
on the other hand, incorporates instance by instance parallel
data stream mining techniques. Furthermore, the paralleliza-
tion capability comes as a considerable overhead, and thus
Apache Flink, SAMOA & Storm are more suitable to real-
time data processing in dedicated computer clusters rather
than on mobile hardware systems suitable for field campaigns.
Odysseus (https://www.offis.de/offis/projekt/odysseus.html) is
a framework for constructing custom event stream manage-
ment systems and provides a set of modules as foundation
for processing event streams. Although Odysseus is relatively
lightweight, a holistic implementation of C-CD for mobile
field computing infrastructure is outside the scope of this paper
and subject to future research.

III. C-CD: CONCEPT CHANGE DETECTOR SYSTEM

This section describes the C-CD System in detail. Hereby,
Section III-A explains the requirements of C-CD and Section
III-B discusses the C-CD architecture, while Section III-C
gives details on the algorithms and workflow implemented in
the C-CD prototype.

A. Requirements

For the C-CD System under development, the following
requirements have been identified:

a) Anomaly detection: The definition of an anomaly
depends on the application domain, in this work we assume
that anomalies are outliers. Due to a potentially large quantity
of data in marine data streams labelling, anomalies may
be prohibitively expensive. Therefore, unsupervised anomaly
detection algorithms must be employed, which commonly
detect anomalies by identifying outliers [38].

b) Concept change detection: Concept change may occur
suddenly, incrementally, gradually or recurring as illustrated in
Fig. 2. We argue that at least three types of concept changes
exist in marine ecosystems, incrementally changing, sudden
changes and gradual changes. The tidal cycle, the day and
night cycle as well as seasonal effects may cause incremental
changes, e.g., to the wind direction, water temperature or
air humidity [39]. Sudden changes may occur during abrupt
weather changes such as storms or floods. Lastly, sensor
degradation may be caused by constant exposure to saline
water and in turn lead to gradual changes of the pattern



encoded in the sensor data stream. Hence, there is a need
for C-CD to detect sudden, incremental and gradual concept
changes over time.
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Fig. 2: Types of concept change

c) Missing value imputation: A variety of reasons can
cause missing values. Individual sensor outages as well as
power outages can cause loss of individual sensor readings or
the loss of an entire data frame respectively. The same holds
true for maintenance, during which parts of the system need
to be shut down. Thus, strategies for processing or imputing
missing values must be incorporated.

d) Self-contained mobile platform for fieldwork: A sys-
tem such as C-CD needs to be applicable in the field within
different contexts, for example on board of a research vessel.
Therefore, the system needs to be integrated into a self
contained mobile mission control system, which is easy to
configure for different applications of C-CD.

B. System Architecture

The architecture of C-CD and its context in natural sciences
are given in Fig. 3. The dotted line represents the system’s
boundaries.
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Fig. 3: C-CD system architecture

Outside the boundaries are the users (natural scientists),
the sensor ecosystem (data hub)—in our case the Spiekeroog
Coastal Observatory (SCO)—and knowledge derived by the
natural scientists. User-defined requirements determine the
use-cases and create application-specific workflows to be
executed in the system. In the figure, the sensor data are
generated by the sensors (SCO data hub) and flows from
left to right. Essentially, a natural scientist defines meta-data
which describes the investigated scenario and data or system
configurations at a high level, i.e., which sensors are available
and what data is expected from each sensor. The system then
ingests the data and processes it using implemented machine

learning techniques to detect imminent concept changes of the
sensor system and their causality.

Based on the type of identified imminent change, the system
may issue a warning or inform the natural scientist to act
upon. For example, the scientist may make use of the detected
change to infer new knowledge in their chosen field, or they
may adjust the sensor system through calibration, maintenance
or rescue missions. However, the C-CD system may also
communicate with the sensor system directly: an imminent
flooding event may be interesting to the research question (as
specified in the meta-data) and thus C-CD triggers an auto-
mated sampling system to produce more fine-grained research
data for the scientist. The system comprises 2 modules, (a)
data ingestion and (b) early event detector:

a) Data Ingestion: This module provides a data frame
composer, plausibility checker and real-time missing value
imputation (see left-hand side of Fig. 3). In multimodal data
streams, sensor readings may be taken at different points in
time. It is the data frame composer’s responsibility to resolve
these issues and create a sensible data frame. In the SCO case
study, this component was not required, and its development
is still ongoing.

The plausibility checker optionally checks the consistency
of the data received as compared with the required meta-data
format, data resolution specification, provenance etc. to ensure
that the data frames received satisfy the requirements and to
avoid processing any miss-matched data types or obviously
corrupted data. For example, detecting a negative wind speed is
not possible and should be flagged by the plausibility checker.
The plausibility checker is the only but a very much necessary
component, which is not based on AI.

Sensors may not always deliver readings, and thus missing
values are a very likely occurrence. The missing value imputa-
tion module implements strategies which are either defined by
the natural scientist or by the system itself, depending on the
context and circumstances. Such strategies range from simple
averaging, deletion of data records with missing values, to the
more complex prediction of missing values.

b) Early Event Detector: The early event detector re-
ceives the cleaned data frames from the data ingestion com-
ponent (see right-hand side of Fig. 3). The sub-components
of this module are based on artificial intelligence techniques.
Intelligent adaptive pre-processing prepares the data for the
later components, it comprises techniques such as real-time
normalization or outlier detection. Normalization techniques
are provided by the data stream mining framework River [40].

The change detector component comprises various tech-
niques to detect potential medium to longer term changes of
the pattern encoded in the data stream. As ground truth con-
cept changes are rarely—if ever—available, concept change
detectors typically are supervised in the sense that they require
labelled data to observe supervised algorithms. Although no
labels are available in our case study, we use supervised
concept change detectors due to a lack of readily available
unsupervised concept change detectors. In the future, the use
of unsupervised concept change detectors is desired.



Whereas concept changes are longer lasting pattern changes,
the anomaly detector can flag unusual data readings that
potentially constitute short term pattern changes in the data.
These short-term changes might indicate to the natural scientist
that an event such as a severe weather change or damage to
the system is happening [41].

C. Algorithms

Two types of algorithms are currently implemented in C-
CD, anomaly detection algorithms and concept change detec-
tion algorithms:

a) Anomaly detectors: In order to detect anomalies, a
heterogeneous ensemble of outlier detectors is used. With few
exceptions, most detectors used in this work detect outliers
either through distance-based, spatial detection or through
the construction of probability distributions. The ensemble
consists of the following algorithms:

• Clustering Based Local Outlier Factor (CBLOF) deter-
mines the anomaly score by clustering input data and
evaluating the size of the cluster the data was assigned
to, as well as the distance of the data to large clusters
[42].

• Copula Based Outlier Detector (COPOD) identifies out-
liers by computing copulas on the input data. Anomaly
scores are calculated by predicting probabilities for each
data point [43].

• Histogram-based Outlier Score (HBOS) predicts outliers
by constructing independent histograms for each feature
of the input data [44].

• Isolation Forest (iForest) performs anomaly detection by
isolating anomalies rather than learning models of inliers
[9].

• k-Nearest Neighbors (KNN) outlier detection determines
anomaly scores as a measure of distance to each data
point’s nearest neighbours [35].

• Lightweight On-line Detector of Anomalies (LODA) em-
ploys an ensemble comprised of multiple weak anomaly
detectors. For the weak detectors, one-dimensional his-
tograms are constructed from the input data [45].

• Local Outlier Factor (LOF) identifies outliers by observ-
ing the density of the neighbourhood of each data point
[10].

• Principal Component Analysis (PCA) outlier detection
uses singular value decomposition and compares data
points based on their eigenvectors and eigenvalues [46].
b) Concept change detectors: The most commonly used

concept change detectors observe their learner’s prediction
error rate. In general, they signal a concept change, if the
prediction error rate rises above a threshold determined by
the respective detector. We use the following concept change
detectors in our evaluation:

• Adaptive Windowing (ADWIN) detects concept changes
by comparing two windows of recent prediction errors
[47]. The size of the windows is automatically adapted
by the algorithm, and concept change is determined by a
statistical test of the average errors of the two windows.

North Sea

Germany

Denmark

Netherlands

Spiekeroog

Fig. 4: Island of Spiekeroog located in
the German Bight in the North Sea

• Drift Detection Method (DDM) assumes a consistently
decreasing error rate. A concept change is detected, if
the learner’s error rate increases and surpasses a threshold
determined from the error rate and its standard deviation
[6]

• Early Drift Detection Method (EDDM) is a modification
of DDM that tracks not only the error rate but also the
time between errors [7].

• HDDMA and HDDMW are two variants of a con-
cept change detection method based on probability in-
equalities. HDDMA considers a moving average of the
learner’s error rate and derives a confidence bound for
concept change detection from Hoeffding’s inequality.
HDDMW follows the same approach, however it observes
a weighted moving average and derives its confidence
bound from McDiarmid’s inequality [48].

IV. EXPERIMENTAL EVALUATION ON SPIEKEROOG
COASTAL OBSERVATORY CASE STUDY

This section describes the application of C-CD in a case
study on data from the Spiekeroog Coastal Observatory (SCO).
Section IV-A and IV-B give an overview of the case study area
and the available data. In Section IV-C the workflow for the
anomaly detection and concept change detection is explained,
whereas the evaluation of the results for both is presented in
Section IV-D.

A. Case Study Description

The data used in this paper originate from a large scale and
long-term coastal observation onto and around the German
island of Spiekeroog in the southern North Sea (see Fig. 4).
As part of the Wadden Sea, it belongs to the UNESCO
world natural heritage since 2009. Spiekeroog accommodates
the Spiekeroog Coastal Observatory (SCO), which consists
of different elements for marine and terrestrial ecosystem
research and started in 2002 with a time series station to
measure oceanographic, meteorological, and biogeochemical



data. Since then, it is under continuous development with
different research sites distributed across the whole area and
a dedicated research center added. As a part of the SCO,
artificial islands and a weather measurement station were used
for an environmental conditions and biodiversity study of the
back-barrier salt-marsh of the island [39]. The weather station
is located approximately 500 m north of the southern shoreline
(53◦45′57.10′′ N, 007◦43′34.11′′ E) and installed at 10 m
height. It was the primary data source for the evaluations,
because of familiarity with the environment and easy access to
raw data as well as domain expert feedback. Although there are
no labeled anomalies available, we expect to find anomalies
during rare weather events and consult Deutscher Wetterdi-
enst’s (German Meteorological Services) weather reports for
the North Sea region [49] for validation.

B. Data Set

The data used in this paper originate from the previously
described weather station and covers a period of about five
years, from November 2014 until September 2019. The sam-
pling interval is 1 min with an averaging time of 10 s. From
the 18 variables recorded at the weather station, 8 were
chosen for the application: wind speed, wind direction, air
temperature, relative humidity, pressure, maximum brightness,
brightness direction and precipitation. Among the 10 unused
attributes there are 4 further attributes related to brightness, 3
more attributes related to precipitation, 2 attributes for solar
elevation and azimuth angle and the date of the data frame.
These were dropped due to redundancies or low correlation
with other values.

Due to malfunction of the pressure sensor (July 2015
to March 2016) and maintenance and re-calibration by the
manufacturer (April 2016 to September 2016 and July 2017
to February 2018), gaps in the data set exist accordingly. This
results in a data availability of 64 % and therefore an overall
amount of about 1.6 million data points. The raw data are
provided by [39] upon request; processed data was published
by the authors using PANGAEA data publisher services [50]–
[52]. In their processing step, the authors erased defective
recordings and removed outliers. As a basis for our analysis,
the unprocessed raw data was used, provided by the authors
of the original study. Some post-processing that was necessary
to correct wind direction values (because the sensor could not
be properly aligned to North) were reapplied.

C. Workflow

The requirements (a) anomaly detection, (b) concept change
detection and (c) missing value imputation have been partially
implemented. Requirement (d) self-contained mobile platform
is subject to future work. The components have been imple-
mented in Python.

Pre-processing operations such as missing value imputation
and data normalization are executed first. Afterwards, anomaly
detection and concept change detection can be performed
simultaneously.

a) Anomaly detection: Anomaly detection is performed
using a heterogeneous ensemble of unsupervised anomaly
detectors, as outlined in Section III-C. The detectors are
provided by the PyOD library [53]. We normalize the data
using the min-max normalization:

x′ .
= x−min(x)

max(x)−min(x)

where x′ is the normalized data and x represents the training
data. The same minimum and maximum values are used to
normalize the test data.

The anomaly detectors are trained on all data from 2014-11-
19 through 2018-09-24, which leaves exactly one year of data
for testing. This results in a train-test split of 68% training data
and 32% test data. Then, the threshold for anomaly detection
is determined by ordering anomaly scores on the training data
and choosing the top λ, 0 ≤ λ ≤ 1 anomaly score as a
cut-off. Any anomaly score higher than this cut-off will be
regarded as an anomaly in the test set. Assuming a similar
distribution of anomaly scores in the training and test data,
this should result in roughly the same proportion of the test
data being labelled as anomalies. This value can be customized
by the natural scientist, e.g., to account for sampling capacities
of auto samplers. In this work, we determine the value of λ
empirically and choose λ = 0.002.

b) Concept change detection: Concept change detection
is based upon a modified pipeline in River [40]. Data are
normalized using an online min-max normalization provided
by the River framework, which maintains a running minimum
and maximum.

Classifiers are trained on data as they are observed in an
interleaved test-train scheme in online machine learning. This
means that classifiers are prompted to predict the next label
first based on the provided features. Only after predicting
the label do they receive the true label, which they may
then use for further training. Whilst the data stream is being
processed by the classifiers, the concept change detectors
observe the error rate of their respective classifier. Once they
detect a concept change, the corresponding classifier is re-
trained starting with recent data.

Since our data stream contains no labels assigned by a
domain expert, we generate a pseudo-label by binning temper-
ature values. Temperature values were chosen as the pseudo-
label, because analysis has shown that they are the most
strongly correlated with other features. Finally, we create 10
bins of equal size resulting in roughly 160000 items per class.
Naturally, the temperature readings are not included in the
features anymore.

c) Missing value imputation: Missing value imputation
is currently facilitated by replacing the missing value with
the last known valid value. However, future versions of C-CD
will implement more sophisticated missing value imputation
strategies and develop missing value imputation strategies that
take concept change into consideration. A possible approach
that merits further testing is shown in Section IV-D.
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Fig. 5: Anomaly detection results with 5 groups of anomalies highlighted for easier identification.
In text, these groups are highlighted using the same color.

D. Evaluation

a) Anomaly detection: Currently C-CD implements the
anomaly and concept change detection components. In order
to evaluate detected anomalies and concept change, a domain
expert about SCO was consulted to confirm anomalies and
concept change detected by C-CD. Also, multiple anomalies
are aligned with noteworthy weather events. After showing the
impact of concept change detection in a classification task, the
benefit on regression is demonstrated. In future development,
regression combined with concept change detection could be
used for missing value imputation [54].

In Fig. 5a and 5b, the detected anomalies are displayed on
a time series plot of the wind speed and humidity, respec-
tively. Additionally, scatter plots in Fig. 5c and 5d highlight
anomalies as arguments of wind speed and precipitation as
well as humidity and temperature. On the one hand, the plot
in Fig. 5c was chosen, because it shows the prevalence of
anomalies featuring high wind speed and precipitation; these
anomalies might indicate the presence of a storm. On the
other hand, Fig. 5d alerted us to the presence of heat waves
and near-tropical weather conditions in the North Sea. In the
following, certain months are highlighted in the same color as
their counterparts in the aforementioned figures.

We confirmed that detected anomalies align with rare
weather by visual inspection. Further comparison of detected

anomalies with weather reports for the North Sea region
by Deutscher Wetterdienst (German Meteorological Services)
show that several anomalies align with storms [49]:

• Anomalies in early December 2018 align with the
MARIELOU storm front, which featured above average
wind speeds, precipitation and temperature.

• Anomalies in the first half of March 2019 align with a
series of storm fronts, which brought high wind speed
and above average precipitation.

Other anomalies, such as the anomalies detected in late
February 2019, late July 2019 and late August 2019, feature
low humidity paired with high temperatures. In fact, Deutscher
Wetterdienst noted the same irregularities. They even declared
the event in late July a heat wave and stressed the unusual
temperatures in August [49].

However, not all anomalies can be attributed to such events:
For example, low humidity anomalies in May 2019 do not
align with unusual temperature events. Additionally, only
a few anomalies in the first half of August 2019 can be
attributed to storm fronts; other anomalies in that time span
do not coincide with notable events from weather reports of
Deutscher Wetterdienst.

These preliminary results indicate the capability of the
proposed system to detect notable anomalies, which might
merit further research by natural scientists for example through



analysis of water samples. On the other hand, they also show
the need to further refine and improve the anomaly detection
component of C-CD. We outline further steps to accomplish
this goal in Section V.

b) Concept change detection: We evaluate the concept
change detection component of C-CD by examining the perfor-
mances of classifiers enhanced with concept change detectors
and comparing them to base classifiers trained without concept
change detectors. Again, since the SCO data sets are unlabeled,
pseudo-labels are generated by creating 10 bins of equal size
from temperature values. We assume that the presence of con-
cept changes will have a notable impact on the performance of
classifiers. Therefore, enhancing these classifiers with concept
change detectors should result in a notable improvement of
the respective classifier’s performance.

To this end, an F1 score is computed over the entire data
stream and a global performance metric across all 10 classes is
obtained by performing micro-averaging [55]. The F1 score is
the harmonic mean of two different metrics, the precision and
the recall. According to [55], precision denotes the “proportion
of instances classified as positive that are really positive”,
whereas recall denotes the proportion of positive instances
classified as such. In a multi-class setting like in this case
study, precision and recall are computed by regarding a single
class as positive and all others as negative. We do not state
the precision and recall in our evaluation, since the micro-
averaging results in the global precision and recall having the
same value as the global F1 score.

The concept change detectors given in Section III-C are
tested with two base classifiers each, a Hoeffding Tree (HT)
and a Naive Bayes (NB) classifier [55], as the detectors depend
on the classifier’s prediction error rate.

Table I contains the F1 scores calculated over the entire
data stream. The base classifiers—HT and NB—show notably
worse performances than their enhanced counterparts, with NB
classifier performances being slightly lower than that of HT
in general. As the use of concept change detectors leads to an
improvement of the F1 score of at least 0.67 in the case of
the NB classifier and an improvement of at least 0.37 in the
case of the HT, we argue that concept changes are present in
the given data.

To further support our claim and highlight a possible
immediate use of concept change detection in the context of
marine ecosystems, we perform a regression on temperature
values. As before, we compare a base regressor with regression
methods supported by concept change detectors and measure
their performance by tracking the mean squared error of each
regressor. The mean squared error is given by 1

nΣ
n
i=1(yi−ŷi)

2,
with y denoting the true value and ŷ denoting the predicted
value.

The mean squared errors of a HT regressor and a k-nearest
neighbor (KNN) regressor with as well as without an ADWIN
concept change detector are displayed in Table II. Resetting
the models after detecting a concept change leads to a clear
improvement of the performance in the case of the HT; the
average mean squared error over the entire data stream is

TABLE I: Comparison of base classifiers and classifiers
enhanced with concept change detectors on binned

temperatures

Classifier Concept change detector F1 score

Hoeffding Tree — 0.542
Hoeffding Tree ADWIN 0.941
Hoeffding Tree DDM 0.912
Hoeffding Tree EDDM 0.950
Hoeffding Tree HDDMA 0.960
Hoeffding Tree HDDMW 0.952
Naive Bayes — 0.214
Naive Bayes ADWIN 0.934
Naive Bayes DDM 0.885
Naive Bayes EDDM 0.945
Naive Bayes HDDMA 0.963
Naive Bayes HDDMW 0.951

TABLE II: Comparison of mean squared errors of
temperature value regression for base regressors and those

supported by ADWIN

Regressor Concept change detector Mean squared error

Hoeffding Tree — 2.352

Hoeffding Tree ADWIN 0.601

KNN — 0.044

KNN ADWIN 0.042

∼1.7 lower. In the case of the KNN the performance is
improved very little with an average mean squared error of
0.044 for the base regressor and one of 0.042 for the enhanced
one. Nevertheless, this result supports the claim that concept
changes are present in the SCO data set and that various
algorithms may benefit from concept change detection—albeit
to differing degrees.

V. ONGOING AND FUTURE WORK

Since this first feasibility study of C-CD on data from
Spiekeroog Coastal Observatory shows promising results, fur-
ther developments of the system are ongoing or planned to
improve support for natural scientists.

In order to allow the use of further sensor systems in the
future, a data frame composer (see Fig. 3) is currently being
developed to allow the use of data sources with different
measurement frequencies. This component will implement
methods to align data from different sources/sensors with po-
tentially different times of measurement and different temporal
resolution.

Due to sensor faults and maintenance, sensor readings may
be corrupted or outright missing. To maintain reliable anomaly
detection and concept change detection in the presence of these
issues, reliable missing value imputation methods are currently
being developed.

As highlighted in Fig. 1, an information dashboard is subject
to future work to provide users an overview of current data
stream properties, anomalies and concept changes. Based on



the information presented in this dashboard, users will then be
able to adjust the sampling rates of samplers attached to the
system, e.g., of automated water samplers. Furthermore, the
system shall be integrated into a mobile mission control system
hardware to enable the use of C-CD in field experiments.

Finally, the prototype developed for this paper uses super-
vised concept change detectors that must observe a learner’s
error rate. In turn, this means that a supervised classification
algorithm is required to allow the use of these detectors.
Because there are no labels assigned to the data set used in
the case study, we used the temperature as a pseudo-label.
For a more widely applicable solution, unsupervised concept
change detectors that operate on the data stream with no
immediately available ground truth are desired, investigation
in this direction in ongoing.

VI. CONCLUSION

In this paper we outlined the motivation and aims of a
Concept-Change Detection (C-CD) system that detects short-
term as well as long-term changes in data patterns to support
the research of natural scientists. The architecture of C-CD
contains pre-processing techniques as well as the aforemen-
tioned change detection algorithms, namely anomaly detection
and concept change detection algorithms. On top of developed
components, opportunities for further development and im-
provement of the system were highlighted. First and foremost,
more sophisticated missing value imputation techniques and
a data frame composer enabling the use of multimodal data
sources will be implemented.

The anomaly detection and concept change detection com-
ponents included in C-CD were evaluated on a case study
with data from the Spiekeroog Coastal Observatory. In this
case study, several anomalies could be detected and matched
to noteworthy and unusual weather events. Furthermore, the
presence of concept changes was empirically demonstrated as
well as the benefits employing concept change detection can
have on regression for missing value imputation.

Based on the results of this study we conclude that the
desired concept change detection system is feasible. We will
further expand the used data sources and evaluate C-CD’s
capabilities in cooperation with natural scientists in a real-time
setting in taking meaningful water samples in the Spiekeroog
Coastal Observatory.
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