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Abstract: Tables in document images are an important entity since they contain crucial informa-
tion. Therefore, accurate table detection can significantly improve the information extraction from
documents. In this work, we present a novel end-to-end trainable pipeline, HybridTabNet, for table
detection in scanned document images. Our two-stage table detector uses the ResNeXt-101 backbone
for feature extraction and Hybrid Task Cascade (HTC) to localize the tables in scanned document
images. Moreover, we replace conventional convolutions with deformable convolutions in the back-
bone network. This enables our network to detect tables of arbitrary layouts precisely. We evaluate
our approach comprehensively on ICDAR-13, ICDAR-17 POD, ICDAR-19, TableBank, Marmot,
and UNLV. Apart from the ICDAR-17 POD dataset, our proposed HybridTabNet outperformed
earlier state-of-the-art results without depending on pre- and post-processing steps. Furthermore,
to investigate how the proposed method generalizes unseen data, we conduct an exhaustive leave-
one-out-evaluation. In comparison to prior state-of-the-art results, our method reduced the relative
error by 27.57% on ICDAR-2019-TrackA-Modern, 42.64% on TableBank (Latex), 41.33% on TableBank
(Word), 55.73% on TableBank (Latex + Word), 10% on Marmot, and 9.67% on the UNLV dataset. The
achieved results reflect the superior performance of the proposed method.

Keywords: table detection; table localization; deep learning; hybrid task cascade; object
detection; deformable convolution; deep neural networks; computer vision; scanned document
images; document image analysis

1. Introduction

Rapid growth in the digitization of documents has alleviated the demand for methods
that can process information accurately and efficiently. Due to the size of the corpus, it
has become impractical to employ humans to extract the information. Along with the
text, the digital documents contain various graphical page objects, such as tables, figures,
and formulas [1]. While state-of-the-art OCR (Optical Character Recognition) [2–4] systems
can process the raw text in document images, they are vulnerable to extracting information
from graphical page objects [5].

Hence, it is important to first localize these page objects in document images such
that the information can be retrieved accurately. Tables are one of the most important page
objects in documents because they summarize a major piece of information compactly
and precisely. In this paper, we have taken a step forward towards improving the table
detection methods in document images.
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It has already been established in the community of table understanding [6–12] that
table detection in document images hold two major challenges: (1) low inter-class variance
(between different classes, such as tables, figures and charts) and (2) high intra-class
variance (within the single class, such as tables with and without ruling lines). Due to
these challenges, it is highly complex to come up with custom heuristics that can assist in
developing robust and generic table detection system [13].

Thus far, we have seen a similar trend in the advancement of object detection algo-
rithms in computer vision [14–17] with the progress in table detection systems [6–8,11,12].
Although recent object detection frameworks have noticeably improved the performance of
table detection approaches [7,18], there is room in further reducing the close false positives.
These case of close false positives can be resolved by leveraging the instance segmentation
networks where an additional segmentation loss is added along with the bounding box
and classification loss [12,17,19].

In this paper, we advanced the research for the problem of table detection in scanned
document images by introducing the idea of implementing novel state-of-the-art hybrid
task cascade networks [20] equipped with deformable convolutions [21]. Unlike prior
methods, the proposed technique neither relies on prepossessing methods to transform the
raw document images nor requires any rule-based post-processing method to refine the
predictions. Moreover, the introduced method is not only applicable for scanned document
images but also for PDF documents. Furthermore, the added deformable convolutions in
our employed ResNeXt-101 backbone network solve the problem of detecting tables with
arbitrary layouts.

In particular, the contributions of this paper are summarized as follows:

• We propose HybridTabNet, a novel table detection system by incorporating de-
formable convolutions in the backbone network of an instance segmentation-based
Hybrid Task Cascade (HTC) network.

• During our exhaustive evaluation, we accomplish state-of-the-art performance on
five well-recognized publicly available datasets for table detection in scanned docu-
ment images.

• We present the superiority of the proposed method by reporting results with a leave-
one-out scheme on several table detection datasets. The employed strategy sets a new
direction, indicating the generalization capabilities of the proposed method.

The remaining paper is organized as follows: Section 2 briefly discusses the earlier
literature available on the task of table detection. Section 2.1 talks about the rule-based
methods, whereas Section 2.2 highlights learning-based approaches. Section 3 explains the
proposed table detection framework by discussing the employed deformable convolutions,
backbone network, and object detection algorithm. Section 4 describes the essential details
of the datasets that are utilized in the experiments. Section 5 explains the evaluation criteria,
whereas Section 6 provides the experiment details and presents both a quantitative and
qualitative analysis of the proposed method. Section 7 concludes the paper and outlines
possible future directions.

2. Related Work

Table understanding is an integral step towards document image analysis. Over the
past few decades, several researchers have presented solutions for the task of detecting
tables having arbitrary layouts in documents. Earlier, most of the proposed methods either
relied on custom heuristics or leveraged the external meta-data information to tackle the
problem of table detection [22–26]. Later, researchers exploited statistical learning [27]
followed by deep-learning-based approaches to alleviate the generalization capabilities of
table detection systems [6–8,10–12,28–32]. This section presents a brief overview of some
of these approaches.
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2.1. Rule-Based Approaches

Based on our knowledge, the first work on detecting tables in document images was
introduced by Itonori et al. [22] in 1993. The approach defines the table as a block of text
that follows fixed constraints. In that same year, Chandran and Kasturi [24] developed a
table detection method that relies on vertical and horizontal lines. Pyreddy and Croft [33]
presented a system that leverages the custom heuristics to retrieve structural elements from
text and separates tabular areas from the extracted elements.

Pivk et al. [34] published a system that is capable of transforming tables embedded in
HTML documents into logical structures. This work defines the set of relevant table layout,
which are exploited to extract tables. Along with tabular layouts, grammar was defined
to recognize tables in documents [26]. Hu et al. [35] proposed a table detection method
relying on the correlation of white spaces and vertical connected component analysis.
For the comprehensive summarization of these rule-based approaches, readers may refer
to [13,36–39].

Although these rule-based methods work well on documents with similar tabular
layouts, they are laborious in terms of finding optimal heuristics. Furthermore, these con-
ventional approaches are vulnerable to producing generic solutions. Therefore, approaches
with better generalization capabilities are required to solve the problem of table detection
in document images.

2.2. Learning-Based Approaches

Kieninger and Dengel [40] introduced T-Recs, which is a clustering approach to
detect tables in documents. Later, in a follow up work, PDF-TREX [41] is proposed. This
method applied T-Recs to extract tables from PDF documents. Along with unsupervised
learning [40,42], supervised learning was exploited to detect tables in documents [43].

The proposed system, Tabfinder, transforms a document into an MXY tree repre-
sentation. Subsequently, the method proposes the possible tables by looking for the
blocks that are enclosed in vertical and horizontal ruling lines. Hidden Markov Models
(HMMs) [44,45] and the combination of SVM classifier and custom heuristics [46] has also
been exploited to produce table detection methods that depend on visible ruling lines in
tables. Although machine learning-based methods have improved the performance of
table detection systems, they either rely on the additional meta-data information or tables
having specific layouts, such as the presence of ruling lines and so on.

With the recent surge of deep learning-based algorithms in computer vision, a similar
trend can be seen in the table understanding community. To begin with, Hao et al. [47]
implemented a deep Convolutional Neural Network (CNN) to extract spatial features,
which were later combined with custom heuristics and meta-information from PDF to
classify the tabular regions in documents. Later object detection algorithms [10,14–17]
were heavily explored to develop robust and data-driven image-based table detection
systems [6,8–12,28,30].

Gilani et al. [11] employed Faster R-CNN [15] to detect tables in document images.
In this work, the raw document images were first transformed by modifying their pixel
values using the distance transform mechanism. These transformed images were fed
to the object detection network to aid the process of recognizing tabular structures. An
end-to-end image based table detection method was published by Schreiber et al. [6].
The proposed method exploited Faster R-CNN [15] with a pretrained backbone (ZFNet [48]
and VGG-16 [49]).

The system GOD (Graphical Object Detection) [12] is an object detection framework
that detects graphical page objects in document images. In the proposed work, the au-
thor empirically claimed that Mask R-CNN [16] worked better as compared to Faster
R-CNN [15] in recognizing graphical page objects in scanned document images. A simi-
lar conclusion was presented by Zhong et al. [50] in which their novel proposed dataset
PubLayNet was evaluated on both Faster and Mask R-CNN.
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Instead of conventional convolutions, Siddiqui et al. [7] employed deformable convo-
lutions to detect tables in document images. The authors empirically established that the
dynamic receptive field of deformable convolutions adapted better in detecting tabular
boundaries with arbitrary layouts. In another work, Faster R-CNN [29] was employed
to tackle the problem of table detection in document images. The final tabular area was
retrieved by refining the coroners of predicted tabular boundaries. Vo et al. [30] presented
an ensembling technique in which Fast R-CNN [14] and Faster R-CNN [15] were combined
to detect graphical page objects in document images.

Since tabular images are limited in number, several of the above-mentioned ap-
proaches leverage fine-tuning techniques [6,7,11]. In one of the recent works [28], it has
been proposed that close-domain fine-tuning performs better as compared to open-domain
fine-tuning for detecting tables in document images. In order to establish this conclu-
sion, the authors exploited Mask R-CNN [16], RetinaNet [51], SSD [52], and YOLO [53] to
perform the task of table detection.

CascadeTabNet [8] is an end-to-end table detection system that operates on Cascade
Mask R-CNN, which is an extension of Cascade R-CNN [17]. Along with the novel object
detection network, the proposed approach relies upon transfer learning, image transfor-
mation, and data augmentation techniques to produce state-of-the-art results for table
detection in document images.

3. Method

Figure 1 illustrates the pipeline of the proposed HybridTabNet. It comprises a
ResNeXt-101 [54] with deformable convolution layers and a Hybrid Task Cascade network
(HTC). ResNeXt-101 extracts features maps from the dataset, and HTC uses the extracted
feature maps to propose regions through Region Proposal Network (RPN). It performs
Region of Interest (ROI) align or pooling on the proposed regions, and the bounding box
and semantic heads use pooled feature maps to compute bounding boxes and semantic
regions. The whole pipeline is trained in an end to end manner. The following sections will
describe the essential components of our proposed approach.

Feature Extraction
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Figure 1. HybridTabNet for Table detection and segmentation. In the first step, the network performs feature extraction
using ResNeXt-101 [54] with deformable convolution layers. The second step utilizes the Hybrid Task Cascade network to
regress the bounding box and semantic mask coordinates of the table in the image.

3.1. Deformable Convolution

Convolutional Networks [55] have been very successful over the past years on ap-
plications, including object detection and segmentation [56–58]. However, they cannot
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model complex geometric transformations due to their fixed kernel size. Deformable
convolutional layers [21] were introduced to overcome this limitation. The intuition behind
deformable convolutional layers is to add 2D offsets at regular grid sampling positions
in the standard convolution operation, which deforms the constant receptive field of the
preceding activation unit.

The added offsets are learnable from the preceding feature maps. The receptive fields
of the deformable layers are adaptive, which changes according to the scale of the object,
and this allows the capture of objects at different scales [21]. The deformable layers use
the same number of learnable parameters as convolutional layers, but exploit a much
larger receptive field. This makes the performance of deformable layer s superior to that of
convolutional layers [21].

The deformable convolution operation can be defined as follows.

y(p0) = ∑
pn∈R

w(pn) · x(p0 + pn + ∆pn) (1)

where R is any kernel of size n× n, w is the weight of the kernel, x is the input feature
map, y is the output of convolution operation, p0 is the starting position of each kernel, pn
is enumerating along with all the positions inR, and ∆pn denotes the offsets added to the
normal convolution operation.

Figure 2a depicts that 2D offsets for the deformable layer are obtained by applying a
convolutional layer over the input feature maps. The spatial resolution and dilation of the
convolution kernel are the same as in the current convolutional layer. The output channels
are of dimension 2N, where N corresponds to the number of 2D offsets.

Deformable
Convolutional

Grid

Input Feature Maps Output Feature Maps

Traditional
Convolutional Grid

Receptive Field Offsets

Offsets

Offset FieldConv

(a) Visualization of 3× 3 deformable convolution.

256,1x1,4 256,1x1,4 256,1x1,4

4,1x1,256 4,1x1,256 4,1x1,256

4,3x3,4 4,3x3,4 4,3x3,4Deformable
Convolutions

....Total 64 Paths

256-dim input

256-dim output

(b) Architecture of modified ResNeXt-101 block.

Figure 2. The components of our feature extraction pipeline. Part (a) shows the structure of deformable convolutions
where the traditional convolutional grid (in blue) is transformed into deformable grid (in white) by adding 2D offsets.
Part (b) shows that the conventional convolutions are replaced with deformable convolutions in ResNeXt-101 to extract
tables at multiple scales.

3.2. ResNeXt-101

ResNeXt [54] is a variant of ResNet [59], and it exposes a new dimension called Cardi-
nality along with the width and depth. Cardinality defines the size of the transform set,
which greatly contributes to the performance of ResNeXt [54]. Experiments demonstrated
that cardinality showed better performance than going wide and deep [54]. We used
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ResNeXt-101 as a backbone for feature extraction with Cardinality = 64 and bottleneck
width = 4d. Figure 2b illustrates that the convolutional layers in blocks c3–c5 are replaced
by deformable layers.

3.3. Hybrid Task Cascade

Cascade architecture has been very successful and effective in tasks, such as object
detection [17]. However, to successfully apply the idea of cascade architecture to instance
segmentation problems was still an open-ended research question until HTC [20] was
introduced. The main idea behind HTC is to leverage the relationship between object
detection and segmentation tasks. Instead of treating detection and segmentation as
different problems, it performs joint multi-stage processing.

The joint multi-stage processing refers to the combination of object detection and
segmentation at each stage. Due to the joint multi-stage processing, the improvement
in one task, e.g., detection, improves the mask prediction and segmentation task [20].
It also utilizes the spatial context to distinguish the background from the foreground.
The semantic branch (S) provides spatial cues, which complement the bounding box and
mask features.

Figure 3 exhibits the architecture of HTC. It has multiple heads for both bounding box
and semantic segmentation to process input at different scales. It consists of a segmentation
branch (S) with mask (M1,M2,M3) and bounding box (B1,B2,B3) heads. The RPN head
predicts preliminary object proposals for these feature maps, whereas the semantic seg-
mentation branch predicts per-pixel semantic segmentation for the whole image through a
fully convolutional architecture trained jointly with other branches.

In the first stage of architecture, the RPN head applies RoI pooling to the output
features maps of the backbone model. B1 takes the output of RoI pooling as an input to
make RoI-wise predictions. Each head makes two predictions: bounding box classification
scores and box regression points. In the second stage, M1 generates pixel-wise segmentation
masks for positive RoIs. The rest of the stages follow the same flow. At the inference time,
object detection made by Bbox heads is complemented with segmentation masks made by
the mask head for all detected objects.
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Figure 3. Explained architecture of the Hybrid Task Cascade Network. This network utilizes three
box and mask heads in a cascading architecture to produce accurate predictions.

Equation (2) explains the flow of Figure 3.

xbox
t = P(x, rt−1) + P(S(x), rt−1)

rt = Bt

(
xbox

t

)
xmask

t = P(x, rt) + P(S(x), rt)

mt = Mt

(
F
(

xmask
t , m−t−1

)) (2)
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where S indicates the semantic segmentation head, x indicates the CNN features of back-
bone network, and xbox

t and xmask
t indicate the box and mask features derived from x and the

input RoI. P(.) is a pooling operator, which could be RoI Align or RoI pooling; Bt and Mt
denote the box and mask head at the t-th stage; and rt and mt represent the corresponding
box predictions and mask predictions. Equation (2) indicates that the box and mask heads
of each stage take RoI features extracted by the backbone network and semantic features
given by semantic segmentation head. It is essential for HTC because it can differentiate
between tables in a cluttered background by exploiting the semantic features.

Since the modules given in Equation (2) are differentiable [20]. HTC can be trained
in an end-to-end manner. The overall loss function can be formulated in the form of
multi-tasking [20] learning.

L = ∑T
t=1 αt

(
Lt

bbox + L
t
mask

)
+ βLseg,

Lt
bbox(ci, rt, ĉt, r̂t) = Lcls(ct, ĉt) + Lreg(rt, r̂t),
Lt

mask(mt, m̂t) = BCE(mt, m̂t)
Lseg = CE(s, ŝ).

(3)

where Lt
bbox is the loss of the bounding box predictions at stage t, and it combines two

terms Lcls and Lreg, respectively, for classification and bounding box regression. Lt
mask

is the loss of mask prediction at stage t, which adopts the binary cross entropy form as
in Mask R-CNN [16]. Lseg is the semantic segmentation loss in the form of cross entropy.
BCE represents the binary cross entropy loss, and CE denotes the cross entropy loss [60,61].
The coefficients αt and β are used to balance the contributions of different stages and tasks.
For all the experiments, we chose αt = [1, 0.5, 0.25] and β = 1 [20].

4. Datasets
4.1. ICDAR-13

ICDAR-2013 [62] is a widely used dataset not only for the problem of table detection
but also for table structure recognition. The dataset consists of PDF files that are converted
into images to perform an image-based table detection method. There are a total of 238
images that are utilized in evaluating our approach. In order to obtain a direct comparison
with prior state-of-the-art-approaches [6,7], we used an IoU threshold of 0.5 to calculate
the f1-score.

4.2. ICDAR-17 POD

ICDAR-2017-POD (Page Object Detection) [1] is another dataset that was released at
ICDAR in 2017. Along with tables, the dataset also has information for the boundaries of
figures and formulas. This is a larger dataset than ICDAR-13 [62]. The dataset consists of
2417 images in total, where 1600 images are used for the training purpose, and 817 images
are employed in testing. Since the prior works [7] were evaluated with IoU thresholds of
0.6 and 0.8, we also evaluated our approach in the same manner.

4.3. ICDAR-19

ICDAR-2019 [63] is the outcome of the recently organized competition for table recog-
nition at ICDAR 2019. This novel dataset contains two types of document images (modern
and historical). Modern document images were retrieved from scientific papers and
commercial documents whereas the archival part of the dataset contains hand-written
document images. As suggested in the competition, for the modern part of the dataset,
600 images were allocated for training, whereas 240 images were for testing. Similarly,
for the historical part, 600 images were assigned for training, and 199 images are adopted
for the testing.

4.4. Marmot

Before the advent of TableBank [64], Marmot was one of the largest publicly available
datasets for the task of table detection. The Institute of Computer Science and Technology
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(Peking University) proposed this dataset, which was later elaborated by Fang et al. [65].
The dataset consists of 2000 images, where a ratio of almost 1:1 is present between the
positive to negative samples. Since the original version of the dataset has few incorrect
annotations, we employed the corrected version of the dataset from [6]. Hence, instead of
2000, 1967 images were utilized in our evaluation.

4.5. UNLV

UNLV dataset is one of the most recognized datasets in the document analysis com-
munity. In general, the dataset is comprised of almost 10,000 document images. However,
only 427 of them contain tables. In our experiments, we only utilized the document images
that contained tabular information.

4.6. TableBank

Li et al. [64] introduced TableBank as one of the most prominent datasets in the table
community. Since this dataset has 417,000 document images, we use this dataset to train
our network. It is essential to highlight that, instead of the whole dataset, we utilized
1500 images each from Word and Latex split and 3000 images from the Word + Latex split
to compare our results with prior state-of-the-art approaches [8].

5. Evaluation Metrics

In this section, we discuss the evaluation criteria used to evaluate our approach to table
detection. We used similar evaluation metrics to current state-of-the-art approaches [7,8,12]
for comparison with our results.

The precision, recall, and F1-scores were calculated on IoU [66,67] thresholds of 0.5,
0.6, 0.7, 0.8, and 0.9.

5.1. Intersection of Union

The Intersection over Union (IoU) [66,67] is one of the most prominent evaluation
metrics used in object detection benchmarks. It measures the overlap between predicted
and ground truth data. A higher value of IoU means that there is more overlap in the
predicted and ground truth regions. We used IoU thresholds from 0.5, 0.6, 0.7, 0.8, and
0.9 to evaluate our table predictions. The formula for IoU is summarized in Equation (4).

IoU =
Area o f Intersection

Area o f Union
(4)

5.2. Precision

Precision is the ratio of correctly predicted observations to the total predicted observa-
tions. Equation (5) depicts the formula of precision.

Precision =
True Positives

True Positives + False Positives
(5)

5.3. Recall

Recall is the ratio of correctly predicted observations to the total observations in
ground truth. Equation (6) depicts the formula of recall.

Recall =
True Positives

True Positives + False Negatives
(6)

5.4. F1-Score

F1-score is the harmonic mean of precision and recall. Equation (7) exhibits the formula
of the F1-score.

F1-score = 2× Precision × Recall
Precision + Recall

(7)
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5.5. Weighted-Average

We evaluated the F1-score at IoU thresholds 0.5, 0.6, 0.7, 0.8, and 0.9 and report
the weighted-average (W.Avg) on the datasets. This allows us to give more importance to
f1-scores, precision and recall with higher IoU thresholds. Equation (8) depicts the formula
of the weighted-average.

Weighted-Average =

0.9

∑
n=0.5

n× Sn

0.9

∑
n=0.5

Sn

(8)

where n represents the IoU threshold and Sn highlights the score achieved on a specific IoU
threshold, ranging from 0.5 to 0.9. The weighted- average precision, recall, and F1-score
were all calculated in a similar fashion.

6. Experiments and Results

To perform all of our experiments, we used the MMDetection [68] framework, an open-
source framework for object detection based on Pytorch [69]. We used HTC with backbone
models ResNet-50 [59] and ResNeXt-101 [54] with deformable convolutions on different
datasets to extract the best possible results. We use the configuration files resnet50_fpn
and rexnext101_64x4d_fpn_c3–c5 _deconv (cardinality = 64 and Bottleneck width = 4 with
deformable convolutions in resnet stage 3 to 5) from MMDetection [68] to implement our
backbone models. Both of the models were pretrained on the COCO-2017 [70] dataset and
used a Feature Pyramid Network (FPN) [71] neck. FPN extracts features at multiple spatial
scales to obtain both low and high-level structures in an image.

ResNet-50 [59] uses a learning schedule of 1×, whereas ResNeXt-101 [54] uses a 20e
learning schedule. Both of the learning schedules use Adam’s optimizer with an initial
learning rate of 1.25× 10−4 with a step-based learning rate decay policy. The learning
schedule of 1× decays initial learning rate decays by a factor of 10 at the 8 and 16th
epochs. Similarly, the learning rate schedule of 20e decays the initial learning rate by a
factor of 10 at the 16th and 19th epochs. We used a batch size of 1 in all of our experiments.

We evaluated our results on the IoU thresholds of 0.5, 0.6, 0.7, 0.8, and 0.9, which
allowed us to perform direct comparison with state-of-the-art approaches [6–8,12] in table
detection and segmentation.

In the subsequent sections, we discuss our results on different datasets and compare
them with state-of-the-art methods.

6.1. ICDAR-19

We finetuned HybridTabNet [20] with backbone models i.e., ResNet-50 [59] and
ResNeXt-101 [54] on ICDAR 2019 Track-A Modern dataset [63]. For training and evaluation
of our approach, We used the official train-test split given by ICDAR 2019 [63]. Table 1
summarizes the quantitative results of our approach. Our approach achieved the highest
precision of 0.953 and a recall of 0.952 on a lower IoU threshold of 0.5 with the ResNeXt-101
backbone. However, from the IoU threshold of 0.5 to 0.8, there was only a slight decline in
f1-scores.

This shows that the performance of our approach was not only limited to the lower
IoU threshold. ResNet-50 backbone achieved the highest precision of 0.928 and a recall of
0.920 at the 0.5 IoU threshold, which is lower than the ResNext-101 backbone. Moreover,
compared to ResNeXt-101 W.Avg of 0.928, the W.Avg of f1-score for ResNet-50 was only
0.887. Therefore, in the succeeding datasets, HybridTabNet used only ResNeXt-101 with
deformable convolutions as the backbone in our experiments.

Figure 4 presents the qualitative results of the HybridTabNet on the ICDAR-2019
dataset. In Figure 4b, this network confused a group of bar charts with the table, whereas
in Figure 4c, it failed to detect a table without a boundary.
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Table 1. HybridTabNet results on the ICDAR-19 dataset with deformable ResNeXt-101 and ResNet-50
backbones. W.Avg denotes the weighted-average of the respective measure on the IoU threshold.

Backbone IOU Threshold Precision Recall F1-Score

ResNeXt-101

0.5 0.954 0.953 0.953

0.6 0.937 0.948 0.942

0.7 0.927 0.948 0.933

0.8 0.920 0.9331 0.927

0.9 0.895 0.905 0.901

W.Avg 0.923 0.934 0.928

ResNet-50

0.5 0.928 0.920 0.924

0.6 0.905 0.922 0.913

0.7 0.894 0.910 0.902

0.8 0.879 0.895 0.887

0.9 0.831 0.846 0.838

W.Avg 0.881 0.894 0.887

(a) True Positive.

(b) False Positive.

(c) False Negative.

Figure 4. HybridTabNet results on ICDAR-2019 Track-A Modern dataset. (a–c) True positive, False positive, and False
negative results, respectively. The blue outline shows the predicted table, and the red outline highlights the ground
truth table.

6.2. ICDAR-17 POD

We finetuned HybridTabNet with a ResNeXt-101 backbone on the ICDAR-17-POD [1]
dataset. Table 2 quantifies the results of HybridTabNet on the ICDAR-17-POD dataset. This
achieved the highest precision of 0.882 and recall of 0.997 on the IoU thresholds of 0.5 to
0.8. On the IoU threshold 0.9, it achieved a recall of 0.983 and precision of 0.869. Overall,
the recall value was high and close to 1, whereas the precision value was low. This result
means that it rarely failed to detect the table region in the image but also incorrectly labeled
regions as tables. Figure 5 depicts the qualitative results of HybridTabNet. Figure 5b shows
a False Positive predicted by our model where it confused an image containing a graph
as a table. Figure 5c shows a False Negative of our approach where it failed to detect a
clear table.
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Table 2. HybridTabNet results ICDAR-17 POD results with a deformable ResNeXt-101 back-
bone. W.Avg denotes weighted-average of the respective measure on the IoU threshold.

Model IOU Threshold Precision Recall F1-Score

HybridTabNet

0.5 0.882 0.997 0.936

0.6 0.882 0.997 0.936

0.7 0.882 0.997 0.936

0.8 0.879 0.994 0.933

0.9 0.870 0.983 0.926

W.Avg 0.878 0.993 0.932

(a) True Positive.

(b) False Positive.

(c) False Negative.

Figure 5. HybridTabNet results on the ICDAR-2017 dataset. (a–c) True positive, False positive, and False negative results,
respectively. The blue outline shows the predicted table, and the red outline highlights the ground truth table.

6.3. TableBank

TableBank [64] is a unique dataset that comprises three types of documents, i.e., Latex,
Word, and a mixture of Latex and Word documents. It has a separate dataset for each
document type. We used a smaller train-test split for training, which was defined by the
current state-of-the-art approach [8]. This allowed us to perform a direct comparison of
our results with their results. We performed finetuning of HybridTabNet on each of the
three datasets in the TableBank dataset.

Table 3 summarizes the results of HybridTabNet on TableBank dataset. It achieved the
highest F1-score of 0.980 on the 0.5 IoU threshold in Latex documents. There was only a
slight drop in the f1-score of HybridTabNet from IoU thresholds of 0.6 to 0.8, which shows
that its performance was not limited to lower IoU thresholds. However, at the IoU threshold
of 0.9, there was a significant drop in the performance of our approach. Similarly, in Word
and a mixture of Latex and Word documents, the F1-score almost remained constant from
0.5 to 0.8. For the IoU threshold of 0.9, the F1-score of Word was similar to lower thresholds,
i.e., from 0.5 to 0.8. Conversely, for the mixture of Latex and Word, the F1-score at 0.9
was low.
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Table 3. HybridTabNet results on each document type of TableBank dataset. W.Avg denotes the
weighted-average of the respective measure on the IoU threshold.

Dataset IOU Threshold Precision Recall F1-Score

Latex

0.5 0.977 0.983 0.980

0.6 0.977 0.982 0.979

0.7 0.975 0.980 0.978

0.8 0.969 0.974 0.971

0.9 0.932 0.937 0.934

W.Avg 0.963 0.968 0.966

Word

0.5 0.955 0.985 0.970

0.6 0.953 0.982 0.967

0.7 0.951 0.980 0.965

0.8 0.950 0.978 0.964

0.9 0.948 0.977 0.962

W.Avg 0.950 0.979 0.965

Both

0.5 0.963 0.986 0.974

0.6 0.961 0.984 0.972

0.7 0.959 0.982 0.970

0.8 0.955 0.978 0.967

0.9 0.938 0.960 0.949

W.Avg 0.953 0.976 0.965

Figures 6–8 illustrate the results on Latex, Word, and the mixture of Latex and Word,
respectively. Figure 6a, Figure 7a and Figure 8a show the correct predictions of HybridTab-
Net. Figure 6b shows the over-segmentation of tables, whereas Figure 6c displays the table
that our approach failed to detect. Figures 7b and 8b show the case where a figure that is
similar to a table was predicted as a table. Analysis of Figures 7c and 8c, show that our
approach faced difficulty when the table had no border.

(a) True Positive.

(b) False Positive.
(c) False Negative.

Figure 6. HybridTabNet results on TableBank Latex dataset. (a–c) True positive, False positive, and False negative results,
respectively. The blue outline shows the predicted table, and the red outline highlights the ground truth table.
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(a) True Positive.
(b) False Positive.

(c) False Negative.

Figure 7. HybridTabNet results on TableBank Word dataset. (a–c) True positive, False positive, and False negative results,
respectively. The blue outline shows the predicted table, and the red outline highlights the ground truth table.

(a) True Positive.
(b) False Positive.

(c) False Negative.

Figure 8. HybridTabNet results on TableBank Both (Latex + Word) dataset. (a–c) True positive, False positive, and False
negative results, respectively. The blue outline shows the predicted table, and the red outline highlights the ground
truth table.

6.4. Marmot

The Marmot [65] dataset comprises English and Chinese documents. We performed a
mixture of both types to create a new dataset. We used HybridTabNet, which was finetuned
on the ICDAR-17 dataset, to extract results on the mixed Marmot dataset. Table 4 shows
the results of HybridTabNet on the Marmot dataset. Our approach achieved the highest
precision of 0.962 and recall of 0.961 at the IoU threshold of 0.5. There was a slight decrease
in precision and recall for the IoU thresholds of 0.6 and 0.7. However, the IoU thresholds
0.8 and 0.9 achieved lower precision and recall than other IoU thresholds due to the mixed
language of documents.
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Table 4. HybridTabNet results on the mixed (Chinese + English) Marmot dataset. W.Avg denotes
weighted-average of the respective measure on the IoU threshold.

IOU Threshold Precision Recall F1-Score

0.5 0.962 0.961 0.956

0.6 0.952 0.955 0.953

0.7 0.947 0.950 0.948

0.8 0.934 0.938 0.936

0.9 0.900 0.903 0.901

W.Avg 0.935 0.937 0.935

Figure 9 shows the qualitative results of HybridTabNet on the mixed Marmot dataset.
Figure 9b shows the under-segmentation of the tables, whereas, in Figure 9c, our approach
failed to detect two tables without proper boundaries.

(a) True Positive.

(b) False Positive. (c) False Negative.

Figure 9. HybridTabNet results on Marmot dataset. (a–c) True positive, False positive, and False negative results, respectively.
The blue outline shows the predicted table, and the red outline highlights the ground truth table.

6.5. UNLV

We finetuned HybridTabNet on the UNLV [72] dataset. Table 5 illustrates the results
of HybridTabNet on the UNLV dataset. Our approach achieved the highest precision
of 0.926 and recall of 0.962 on the IoU threshold of 0.5. There was a slight decrease in
the precision and recall for IoU thresholds of 0.6, 0.7, and 0.8. However, at 0.9 IoU, our
approach achieved precision of 0.792 and recall of 0.822, which was worse than lower
thresholds. We manually inspected the failure cases and found that the boundaries of
tables and figures were ambiguous in the dataset. Such cases are shown in Figure 10.

Figure 10 depicts the results of HybridTabNet on the UNLV dataset. Figure 10b
shows the False Positive predicted by our model in which our approach performed over-
segmentation of the table. Figure 10c illustrates the False Negative result, which shows
that our approach failed to detect boundary-less tables.
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Table 5. HybridTabNet results on UNLV dataset. W.Avg denotes the weighted-average of the
respective measure on the IoU threshold.

IOU Threshold Precision Recall F1-Score

0.5 0.926 0.962 0.944

0.6 0.914 0.949 0.931

0.7 0.914 0.949 0.931

0.8 0.902 0.936 0.919

0.9 0.792 0.822 0.807

W.Avg 0.882 0.915 0.898

(a) True Positive. (b) False Positive. (c) False Negative.

Figure 10. HNet results on UNLV dataset. (a–c) True positive, False positive, and False negative results, respectively. The
blue outline shows the predicted table, and the red outline highlights the ground truth table.

6.6. Comparison with State-of-the-Art Approaches
6.6.1. ICDAR-19

Table 6 summarizes the comparison of HybridTabNet and the current state-of-the-art
approaches [8,63] on the ICDAR-2019-TrackA-Modern dataset. Our approach achieved a
W.Avg of 0.928, which is close to the state-of-the-art performance. This does not beat the
state-of-the-art performance of table region detection because they utilize image processing
techniques, such as Dilation and Smudging for effective learning.

The advantage of our approach is that we did not use any image preprocessing or
post-processing techniques on the data. Our model directly takes the raw training data
without any image preprocessing technique and learns effective representations. It outputs
the accurate table region masks and bounding boxes directly at inference time due to its
architectural design and the techniques implanted during its training.

The aforementioned points make our technique much better than the earlier state-
of-the-art methods. Even without utilizing any image preprocessing or post-processing
techniques, our model achieved better performance compared with current state-of-the-
art approaches.
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Table 6. Comparison of HybridTabNet on f1-scores with previous state-of-the-art methods. Our proposed method achieved
state-of-the-art performance on every dataset except ICDAR-2017-POD. W.Avg denotes the weighted-average of the
respective measure on the IoU threshold.

Dataset Method
IOU

W.Avg
0.5 0.6 0.7 0.8 0.9

ICDAR-2019-TrackA-Modern

TableRadar [63] – 0.969 0.957 0.951 0.897 0.940
NLPR-PAL [63] – 0.979 0.966 0.939 0.850 0.927

Cascade-TabNet [8] – 0.943 0.934 0.925 0.901 0.901
Ours 0.953 0.942 0.933 0.927 0.901 0.928

ICDAR-2017-POD

Fast Detectors [1] – 0.921 – 0.896 – –
PAL [1] – 0.960 – 0.951 – –

GOD [12] – 0.971 – 0.968 – –
DeCNT [7] – 0.968 – 0.952 – –

Ours 0.936 0.936 0.936 0.933 0.923 0.932

ICDAR-2013 Cascade-TabNet [8] 1.0 – – – – –
Ours 1.0 – – – – –

TableBank(Latex) Cascade-TabNet [8] 0.966 – – – – –
Ours 0.980 0.980 0.978 0.971 0.934 0.9661

TableBank(Word) Cascade-TabNet [8] 0.949 – – – – –
Ours 0.970 0.967 0.965 0.964 0.962 0.965

TableBank(Both) Cascade-TabNet [8] 0.943 – – – – –
Ours 0.974 0.972 0.970 0.967 0.949 0.965

Marmot
DeCNT [7] 0.895 – – – – –

CDeC-Net [9] 0.952 – – 0.840 0.769 –
Ours 0.956 0.953 0.948 0.936 0.901 0.935

UNLV
GOD [12] 0.928 – – – – –

CDeC-Net [9] 0.938 0.883 – – – –
Ours 0.944 0.931 0.931 0.919 0.807 0.898

6.6.2. ICDAR-17

From Table 6, we can observe that the current state-of-the-art approaches [7,12,63]
for ICDAR-17 dataset are evaluated only on 0.6 and 0.8 IoU thresholds. We achieve the
f1-scores of 0.936 and 0.933 on the IoU thresholds 0.6 and 0.8. If we directly compare our
approach results on the mentioned IoU thresholds with current state-of-the-art methods, it
is apparent that we do not achieve state-of-the-art performance. The inter-class variance in
ICDAR-17 is less, which makes it harder to detect the table regions.

The current state-of-the-art approach [12] on this dataset also learns the difference
between a table, figures, and equations. This enable their approach to produce less false
positives. However, in our approach, we do not learn such differences between the classes,
and instead, we learn the mapping directly for the table class. This leads to lower precision
scores but higher recall scores even on higher IoU thresholds. Furthermore, we provide
results at 0.5, 0.8, and 0.9 IoU thresholds for the sake of completeness and future bench-
marking.

6.6.3. ICDAR-13

Table 6 shows the results of HybridTabNet on the ICDAR-2013 [62] dataset. The
current state-of-the-art approach [8] already achieved the perfect f1-score of 1.0 at the 0.5
IoU threshold. Our approach achieved an f1-score of 1.0 at the 0.5 IoU threshold, which is
state-of-the-art performance.
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6.6.4. TableBank

The TableBank [64] dataset consists of three subset datasets, which are Latex, Word and
a mixture of Latex and Word documents. Table 6 shows the comparison of HybridTabNet
and the current state-of-the-art approach Cascade-TabNet [8]. Cascade-TabNet evaluates
Latex, Word, and a mixture of Latex and Word documents only at the IoU threshold of 0.5.
It achieved f1-scores of 0.966, 0.949, and 0.943 on Latex, Word, and their mixture.

We also evaluated our approach on 0.5 and achieved f1-scores of 0.980, 0.970, and
0.974 on Latex, Word and their mixture. If we directly compare the results, we achieve
state-of-the-art performance on each subset of TableBank. Moreover, CascadeTabNet [8]
applies line correction on the test data as an image postprocessing technique to improve
their results. However, we did not use any such image preprocessing or postprocessing
techniques. This makes our technique and approach far superior to CascadeTabNet [8]. Fur-
thermore, we also report results on 0.6, 0.7, 0.8, and 0.9 IoU thresholds, which can be used
for future benchmarking on the dataset.

6.6.5. Marmot

Table 6 illustrates the comparison of HybridTabNet and the current state-of-the-art
approaches DeCNT [7] and CDeC-Net [9]. DeCNT achieved the F1-score of 0.895 on the
0.5 IoU threshold, and CDeC-Net [9] achieved F1-scores of 0.952, 0.840, and 0.769 on the
0.5, 0.8, and 0.9 IoU thresholds. Similarly, our approach achieved F1-scores of 0.956, 0.936,
and 0.901 on the 0.5, 0.8, and 0.9 IoU thresholds. The direct comparison of our results with
CDeC-Net and DeCNT proves that we achieved state-of-the-art results on the Marmot
dataset. We also evaluated our approach on the 0.6 and 0.7 IoU thresholds for future
benchmarking on the dataset.

6.6.6. UNLV

The current state-of-the-art approaches GOD [12] and CDeC-Net [9] on UNLV [72]
were evaluated on the IoU thresholds of 0.5 and 0.6. Table 6 presents the comparison of
HybridTabNet and state-of-the-art approaches on the UNLV dataset. GOD achieved an
F1-score of 0.928 on the 0.5 IoU threshold, whereas CDeC-Net achieved an F1-score of 0.938
and 0.883 on the IoU thresholds of 0.5 and 0.6. For a direct comparison, we evaluated our
approach from the 0.5 to 0.9 IoU thresholds. We obtained F1-scores of 0.944 and 0.931 on
the 0.5 and 0.6 IoU thresholds, which is better than the current state-of-the-art methods,
thus, achieving state-of-the-art performance on the UNLV dataset .

6.7. Leave-One-Out Evaluation

This section explores the employed evaluation strategy to measure the generalization
and cross datasets performance of HybridTabNet. To the best of our knowledge, this is
the first comprehensive cross dataset evaluation study that consists of several datasets.
The idea is as follows: we combined all available datasets except one into a single dataset.
This new dataset became our training dataset, whereas the dataset that was left out became
our test dataset.

In the case of ICDAR-2019-TrackA-Modern, other datasets, such as ICDAR-2017-POD,
ICDAR-2013, Marmot, UNLV, and TableBank were combined and became a single training
dataset, whereas ICDAR-2019-TrackA-Modern became our test dataset. We repeated
this process for all of the datasets, and performance evaluation was done on 0.5 to 0.9
IoU thresholds.

Table 7 presents the results of the leave-one-out evaluation of HybridTabNet. The
results were not promising for datasets, including ICDAR-2013, ICDAR-2017-POD, and
ICDAR-2019-TrackA-Modern. This is because the union of datasets included Marmot and
UNLV, which are different from the ICDAR-2013, ICDAR-2017-POD, and ICDAR-2019-
TrackA-Modern datasets. Consequently, the combined training datasets do not resemble
the test dataset, and the performance dropped. We achieved f1-scores of 0.962, 0.960, 0.956,
0.949, 0.929, and 0.949 on 0.5 to 0.9 IoU thresholds for the Marmot dataset. These results
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are better than the ones presented for Marmot in Table 6, and therefore it achieved state-of-
the-art performance. Similarly, the results on TableBank and UNLV are also comparable to
the state-of-the-art results.

Table 7. The results of our leave one out dataset strategy. HybridTabNet achieved state-of-the-art performance on the Marmot
dataset. W.Avg denotes the weighted-average of the respective measure on the IoU threshold.

Train Dataset Test Dataset
IOU

W.Avg
0.5 0.6 0.7 0.8 0.9

UNLV + ICDAR-2013
+ TableBank (Both) + Marmot

+ ICDAR-2017-POD
ICDAR-2019-Modern 0.823 0.808 0.787 0.767 0.706 0.770

ICDAR-2019-TrackA-Modern + UNLV
+ TableBank (Both) + Marmot

+ ICDAR-2013
ICDAR-2017-POD 0.895 0.890 0.884 0.846 0.813 0.860

ICDAR-2019-TrackA-Modern + UNLV
+ TableBank (Both) + Marmot

+ ICDAR-2017-POD
ICDAR-2013 0.825 0.825 0.788 0.767 0.619 0.751

ICDAR-2019-TrackA-Modern + UNLV
+ TableBank (Word) + Marmot

+ ICDAR-2017-POD + ICDAR-2013
TableBank(Latex) 0.951 0.947 0.944 0.933 0.866 0.923

ICDAR-2019-TrackA-Modern + UNLV
+ TableBank (Latex) + Marmot

+ ICDAR-2017-POD + ICDAR-2013
TableBank(Word) 0.932 0.926 0.922 0.917 0.906 0.919

ICDAR-2019-TrackA-Modern + UNLV
+ Marmot + ICDAR-2017-POD

+ ICDAR-2013
TableBank(Both) 0.949 0.943 0.940 0.932 0.886 0.926

ICDAR-2019-TrackA-Modern + UNLV
+ TableBank (Both) + UNLV

+ ICDAR-2017-POD
Marmot 0.962 0.960 0.956 0.949 0.929 0.949

ICDAR-2017-POD + Marmot
+ TableBank (Both) + ICDAR-2013

+ ICDAR-2019-TrackA-Modern
UNLV 0.808 0.787 0.766 0.711 0.503 0.898

7. Conclusions and Future Work

This paper presents a novel approach, HybridTabNet, for table detection from scanned
document images. The approach uses the ResNeXt-101 backbone for feature extraction and
also replaces regular convolutions with deformable convolutions. The proposed approach
is the Hybrid Task Cascade network for table detection that uses cascade architecture,
for instance, segmentation. Our method surpassed the existing state-of-the-art table detec-
tion methods in all the datasets except for ICDAR-2017-POD. The relative improvement
of error in terms of the weighted average amounted to 27.57% for ICDAR-2019-TrackA-
Modern, 42.64% for TableBank (Latex), 41.33% for TableBank (Word), 55.73% for TableBank
(Latex + Word), 10% for Marmot, and 9.67% for UNLV. For ICDAR-2013, the proposed
approach achieved a perfect score for precision and recall, which is on par with the previous
state-of-the-art method.

However, for ICDAR-2017-POD, the proposed approach did not outperform the state-
of-the-art methods. This is because ICDAR-2017-POD contains a lot of other graphical
page components that are similar to tables. Other methods rely on pre-and/or post-
processing to transform the data for favorable results. However, our approach works on
raw images. Moreover, we incorporated the leave-one-out evaluation for all the datasets,
which demonstrated the algorithm’s generalization capabilities—a direction for evaluating
table detection algorithms to follow in the future.
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An important future direction is the development of generalized table detection
methods that can work with various types of tables instead of being tuned for a specific
dataset. We plan to extend this work to create a unified representation that eliminates the
pre-and post-processing steps. Moreover, another interesting direction can be to explore
table structure recognition with the proposed approach. The proposed approach can be
used for cell detection directly. Afterward, cells are classified in rows and columns for the
interpretation of the complete structure of table. In addition, we can further improve the
results using a recently proposed enhanced version of deformable convolution [73].
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