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Abstract

We describe the system developed by the
DFKI-TalkingRobots Team for the CODI-
CRAC 2021 Shared-Task on anaphora resolu-
tion in dialogue. Our system consists of three
subsystems: (1) the Workspace Coreference
System (WCS) incrementally clusters men-
tions using semantic similarity based on em-
beddings combined with lexical feature heuris-
tics; (2) the Mention-to-Mention (M2M) coref-
erence resolution system pairs same entity
mentions; (3) the Discourse Deixis Resolution
(DDR) system employs a Siamese Network
to detect discourse anaphor-antecedent pairs.
WCS achieved F1-score of 55.6% averaged
across the evaluation test sets, M2M 57.2%
and DDR 21.5%, all on predicted mentions.

1 Introduction

This paper describes the anaphora resolution
system developed by the DFKI-TalkingRobots
Team for the CODI-CRAC 2021 Shared-Task
(CCST)1 (Khosla et al., 2021). Anaphora reso-
lution (AR) is important for many natural language
processing tasks, such as information extraction,
summarization, question answering, etc. Most ex-
isting systems have been developed for AR in text
and focus on coreference resolution. CCST was set
up to address AR in dialogue, including not only
coreference but also bridging and discourse deixis.

We were inspired to join CCST, although we did
not have an existing AR system to start with. Ini-
tial small tests of publicly available pre-trained AR
models from the AllenNLP and HuggingFace li-
braries on our dialogue data in the domain of disas-
ter response team communication (Skachkova and
Kruijff-Korbayová, 2020) yielded discouraging re-
sults. Participating in CCST was a way to kick start
the development of an AR system of our own. Our
long-term aim is to develop a domain-independent

1URL: competitions.codalab.org/
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Table 1: Systems summary

AR system to be used in several projects of the
Talking Robots Group at DFKI2, including for the
interpretation of team communication in disaster
response (Willms et al., 2019).

Our system for the CCST is the first step in
this direction, and should be considered work in
progress. It consists of two independent AR sub-
systems: Workspace Coreference Resolution Sys-
tem (WCS, Sec. 2.1); Mention-to-Mention Coref-
erence Resolution System (M2M, Sec. 2.2); and
the Discourse Deixis Resolution System (DDR,
Sec. 2.4).The subsystems were developed using the
data provided for CCST and evaluated in the CCST
tracks Eval-AR and Eval-DD (Pred), respectively.
See Tab. 1 for a summary.

Sec. 2 describes the subsystems one by one, in-
cluding the respective approach, mention detection
method and how we used the CCST data. We also
highlight the differences between our approaches
and recent related work in the respective subsec-
tions. In Sec. 3 we provide the results and error
analysis for each subsystem. We conclude and
point out future work in Sec. 4.

2 System description

2.1 Workspace Coreference System (WCS)

We designed and implemented a system for iden-
tity anaphora resolution based on the following

2URL: dfki.de/mlt
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principles. First, our system processes the input
incrementally to make the learning process resem-
ble the way humans read and understand text and
resolve coreference. Second, we restrict the num-
ber of possible coreference clusters considered at
each step to only the salient candidates (i.e., those
clusters that have been referred to recently in the
conversation). Inspired by the clustering ideas out-
lined in Rahman and Ng (2011) our system creates
clusters on-the-fly by comparing the current men-
tion to the most recent members from each of the
clusters available in the workspace.

We combined workspace-based clustering with
a binary classification of referring expressions. Fig.
1 shows an overview of the whole system that con-
siders one mention at each step and computes the
probabilities for clustering this mention with other
mentions available in the workspace.

mention

workspace
clusters

referring/non-referring
classification

clustering probabilities clustering
loss

cluster
coherence
loss

referring
loss

cluster
assignment

workspace
clusters
update

history
clusters

Figure 1: Workspace Coreference System Overview

Our implementation differs from other submis-
sions to the Shared Task. Both winning models (lx-
ucs and UTD_NLP) are based on the pairwise scor-
ing of mentions and extend the coreference model
from (Xu and Choi, 2020). The model submitted
by KU_NLP is based on pointer networks whereas
our system is more similar in spirit to the incre-
mental approach introduced in (Xia et al., 2020).
Similarly to their work we are building clusters of
mentions incrementally and remove old mentions
from the workspace if the corresponding clusters
have not been updated for a long time.3

However, there are some important differences
between our model and the work by Xia et al.
(2020). For example, we do not use separate rep-
resentations for clusters, but rather take the latest
5 mentions from each cluster and compute an av-
erage probability of assigning a new mention to
the same cluster. Moreover, Xia et al. (2020) evict

3The limit was set to 100 steps without updates in our
experiments.

clusters based on their size and distance while our
decision to remove a cluster from the workspace is
based on the number of singletons that are allowed
in the workspace as well as recency of the cluster
updates. We also have substantial differences in
the training procedure, e.g., rather than considering
all correct antecedents, Xia et al. (2020) focus only
on the most recent one while our system checks
all antecedents, i.e., compares how many mentions
in the assigned cluster are actually coreferent with
the mention. We also update the parameters after
each clustering decision and not once per document.
Moreover, our model does not use SpanBERT em-
beddings or any other components pre-trained on
coreference data4 and is more focused on exploring
different kinds of embeddings and how their com-
binations contribute to the coreference resolution.

2.1.1 Data
We used the data provided by the CCST or-
ganizers and split it into train and develop-
ment set for WCS as follows. First, we
extracted individual documents from each of
the files (RST_DTreeBank, Gnome_Subset2,
Pear_Stories, Trains_91, Trains_93, AMI_dev,
LDC2021E05_Switchboard_3_dev, light_dev and
Persuasion_dev). Then we randomly shuffled
these documents to create a training set with 550
documents and a development set with 61 docu-
ments. We did not use any additional data for train-
ing/development. The system was tested on the
CCST test set in the Eval-AR track.

2.1.2 SpaCy-based Mention Detection
We use SpaCy5 to extract mention candidates
(markables) for WCS. The candidates include all
noun chunks detected by SpaCy (based on the
en_core_web_trf model). We add all pronouns
and adverbs like ‘here’, ‘there’, ‘now’ and ‘then’
because they are not recognized by SpaCy as noun
phrases. We also check for each noun phrase
whether it has a prepositional phrase or clause
(based on the dependency relations ‘prep’ and
‘relcl’ in SpaCy) and extend the span if necessary.

After the release of the CCST annotated test set
we checked the performance of our SpaCy-based
approach by comparing the gold spans to those
extracted by our system. We got the following

4Xia et al. (2020) used encoder weights that were already
fine-tuned on the OntoNotes dataset and adopted both mention
and pairwise scorers from (Joshi et al., 2020).

5https://spacy.io

https://spacy.io
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micro-F1 scores: 72.4% on AMI, 85.6% on Light,
81.6% on Persuasion and 81.5% on Switchboard.
These results show that the quality of the mention
extraction significantly impacts the overall perfor-
mance of the coreference resolution system. E.g.,
WCS had the lowest F1 score on AMI (43.93%)
and the highest score on Light (67.28%), which is
in line with the mention extraction performance.

2.1.3 WCS Input and Architecture
After extracting mentions we pre-process all sen-
tences in the documents using BERT (pre-trained
cased version) and extract various features for each
mention, including the mention position within the
document, the head lemma, head number,6 animacy
classification,7 speaker embedding, BERT embed-
ding (Devlin et al., 2018) of the mention’s head,
averaged BERT embedding for the span of the men-
tion, Numberbatch concept embedding (Speer et al.,
2017) for the head lemma, GloVe embedding (Pen-
nington et al., 2014) for the head lemma, averaged
GloVe span embedding and the masked language
model (MLM) embedding for the mention. For the
MLM embedding we use BERT (pre-trained cased
base model) and take the current and the previous
dialogue turns, mask the mention’s head in the turn
and ask the model to predict the top candidate for
the masked token. We take the GloVe embedding
of this candidate as the MLM embedding.

When processing a new mention we compare its
representation to each of the workspace clusters.
Note that the very first position in the workspace
is always reserved for the singleton case. All em-
beddings for the singleton case have zero values
but keep the same dimensions as the real cluster
members. In order to compare a mention to the
workspace clusters we took up to 5 latest members
from each cluster and computed the probability for
each member-mention pair. The individual pair-
based probabilities were averaged to obtain the
cluster-level probabilities as shown in Fig. 2.

When training the model we used the extracted
features of different types and concatenated each
mention feature with the corresponding member
feature (e.g., mention speaker with the member
speaker embedding) before passing them through
the linear layers and activation functions to obtain
the final embedding. A separate list of layers (a.k.a.
channels) was used for each embedding type. We

6We use SpaCy Lemmatization and number annotation.
7We trained a separate classifier for this using the CCST

entity type annotations.
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Figure 2: Workspace Clustering Example

concatenated the output of different channels and
passed it to the feed-forward network. We used
ReLU as an activation function for most of the
channels. ReLU was also used for the final de-
cision (when combining the outputs of different
channels). In parallel, we performed a binary refer-
ring expression classification using a network with
two linear layers. This network helped the model
to decide whether an input mention is referring or
not. If it was classified as non-referring it was not
clustered with any of the workspace clusters.

After obtaining a probability for each of the
workspace clusters as shown in Fig. 2 we assign the
mention to the most likely cluster. Then we add the
new mention to the workspace clusters, either as a
new member of some existing cluster or as a new
singleton cluster. In each iteration the clusters in
the workspace have to be re-arranged. If some clus-
ters have not been updated for more than 100 steps
they are removed from the workspace and stored
in the history. Additionally, we limit the maximum
number of singleton clusters in the workspace to
20. When deciding whether to put the cluster in
the history or keep it in the workspace we sort all
candidates by the recency of the last update.

We experimented with different kinds of embed-
dings and their combinations on a subset of the
data. The details are presented in A.

2.1.4 WCS Training
In order to provide a learning signal for the network
we combined three different loss functions. The
first loss compares the gold clusters to the ones gen-
erated by the model (clustering loss). The second
loss checks how heterogeneous are the mentions
that appear in the same cluster (cluster coherence
loss) and the third loss is a simple cross-entropy
loss for the binary classification of referring/non-
referring mentions (referring loss).

While training our model we used a teacher forc-
ing ratio of 0.3 to enforce the correct clustering in
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30% of all cases and make the network converge
faster. We also checked the compatibility between
the clusters based on the features typically used
in coreference systems. These features include
number and animacy compatibility and nesting.
E.g., number compatibility guarantees that men-
tions in plural are not clustered together with the
ones that are in singular and animacy compatibility
prevents clustering animate and inanimate objects
together. Nesting simply means that if some men-
tion is within the NP represented by another men-
tion these two should not be clustered together (e.g.,

‘a good student with a book’ and ‘a book’). These
conditions were added in order to make the learning
process easier by filtering out incompatible clusters
at an early stage. However, since our animacy clas-
sification and number annotations were not perfect,
the filtering stage could cause some mistakes in the
later clustering. Additionally, we checked first per-
son pronouns and speaker consistency. E.g., if the
current cluster has a speaker A with the mention

‘I’, another mention ‘I’ with a different speaker B
cannot be put in the same cluster.

2.1.5 WCS Post-processing
At test time we used an additional constraint that all
referential mentions that are third person pronouns
such as ‘it’ and ‘they’ cannot form a new single-
ton cluster and must be clustered with one of the
preceding workspace clusters. In order to score the
workspace clusters for this task we ordered them
by recency starting with the most recent ones and
checked the mention-cluster compatibility as ex-
plained above (using animacy, number and nesting
constraints). Among the compatible clusters we
selected the one that had the highest probability
according to the masked language model. For this
we masked the current mention in the original sen-
tence and checked one by one the likelihoods of
mentions from different clusters to fill the position.
These likelihoods were averaged for each cluster
based on the 5 most recent members and finally
the cluster with the highest likelihood was selected.
We trained WCS for 5 epochs with a learning rate
of 0.0001 and Adam as an optimizer.

2.2 Mention-to-Mention System (M2M)

Coreference resolution systems aim to find the men-
tions of the same entities which might be referred
to by different expressions (e.g., synonyms, pro-
nouns, etc.) or the same expressions according
to their presented context in the document. This

is challenging because changes in the context and
mentions of the entities strongly affect the coref-
erence resolution systems. Additionally, the same
expressions might also refer to different entities
in the real world. These noted points cause three
different challenges that the M2M model aims to
overcome. The first is pairing the same mentions of
different entities because of the same context. The
second is the problem with the different contexts
of the same entities when they are referred to by
the same expressions. The third one is the different
mentions of the same entities in different contexts.

Most coreference resolution models have been
adapted to rank the antecedents based on average
embeddings (Lee et al., 2017, 2018) and contextual-
ized embeddings (Joshi et al., 2019, 2020). Further-
more, Xu and Choi (2020) has adapted the model
implementation from (Lee et al., 2018) and used the
contextualized span embeddings (Joshi et al., 2020)
to obtain the mention candidates through span enu-
meration and aggressive pruning. The M2M sys-
tem combines the average and contextualized em-
beddings instead of using them alone, to avoid con-
text variation of the same mentions and capture lex-
ical similarities of different mentions. Therefore,
the M2M system is designed with the aim of sup-
pressing the context variations of different or the
same entities. This simply means that the different
mentions might be paired because their contexts are
similar, and on the contrary, the same expressions
might not be paired together because their context
or tokens are different. Therefore, we aim first to
investigate the effect of mention-mention match-
ing, and then pooling them together with the paired
entities into the same clusters. Therefore, the M2M
system is designed to cluster the mentions which
are paired with the common candidates.

Whereas the M2M implementation differs from
the system of pointer network by KU_NLP, it
is similar to the winning systems lxucs and
UTD_NLP because it is designed to match the
most similar entities with a pairwise comparison.
M2M, however, forms clusters based on transitive
closure over the mention-mention pairs, i.e., pairs
which have a common mention are clustered to-
gether. Additionally, our mention representation
method differs by the included distance vector.

2.2.1 Data
To train the M2M model we use the Light, Persua-
sion, and Switchboard data provided by the CCST
organizers. All three datasets are used to train the
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Pronoun and Noun Models (see below). For train-
ing the Self Model (see below) the Switchboard
data is not used, because the speaker of the cor-
responding utterances is not given in the training
data, only in test data. Therefore, only the Light
and Persuasion data is used to train the Self Model.

2.2.2 Mention Detection with BiLSTM-CRF
We treat mention detection as a sequence tagging
task, analogous to the common approach to Named
Entity Recognition. Given an input sequence of
tokens, our mention detection model extracts mark-
able chunks by tagging the tokens in the IOB2 for-
mat, i.e., with the beginning of each chunk tagged
B, any subsequent tokens in the chunk tagged I,
and tokens not in any chunk tagged O.

We implemented a Bidirectional LSTM - Con-
ditional Random Field (BiLSTM-CRF) Model,
shown to be effective in sequence tagging (Huang
et al., 2015). As the standard IOB2 format only
annotates flat chunks, our model only predicts the
markables with the widest scope in cases of nest-
ing. We flattened the training data accordingly
when converting it to the IOB2 format.

The architecture of the model is as follows: the
input data (in IOB2 format) is first passed through
an ELMo layer (Peters et al., 2018), where contex-
tualized word representations (embeddings) were
extracted for each word. The ELMo embeddings
are then passed to the BiLSTM-CRF model. Fi-
nally, the CRF model predicts the tags for the in-
put tokens. In a post-processing step, we used
SpaCy (en_core_web_trf ) to extract any nested
noun chunks from the markables predicted by the
model. Maximum sentence length was set to 50,
and we used the Adam optimizer with a learning
rate of 0.0005 and trained the model for 4 epochs.

The training and development sets are created
as an 8:2 split of the documents in each CCST
dataset. This was done to include sentences from
all datasets and prevent bias towards one dataset.
The label distribution is shown in Tab. 2.

Tag # in data F1 score

O 139,703 0.99
B 55,947 0.90
I 136,752 0.92

Table 2: BiLSTM-CRF : label distribution and F1-
score on CCST train/development data

While our model achieves an overall F1 score of
0.98 on the development set, a breakdown of the

score by label (Tab. 2) shows that the F1 score for B
and I tags are significantly lower, at 0.92 and 0.90,
respectively. This means that our current model
is overly conservative in predicting the markable
chunks, indicated by a large number of false neg-
atives for the B and I tags. The false negatives
result in incomplete markables being extracted and
impact the performance of the downstream task.

2.3 M2M Training

We use contextualized word embeddings BERT
and ELMo, and average word embeddings GloVe
and Fasttext (Joulin et al., 2016). The individual
utterances are considered as the input for the em-
bedding systems to extract the vectors for the head
and span of the mentions. In order to obtain the
rich feature representation of the mentions, word
embedding models are used under four different
contributions: (1) the 10-th layer of BERT is used
to obtain a significant local representation without
global context of utterances; (2) ELMo is employed
for positional encoding of full context of the utter-
ances; (3) GloVe is applied to represent the external
global context of each token; (4) Fasttext is utilized
to extract the n-gram features of words. Because
a mention can be represented with different lan-
guage forms such as a span of multiple words, one
word entity, pronoun, etc., we used different em-
beddings to obtain the vectors: only BERT is used
for span representation, while a combination of
BERT, ELMo, GloVe, and Fasttext is used for head
representation of each mention.

Each mention is represented by using the word
embedding methods with four different feature sets:
(1) head embedding to represent similarities be-
tween the different mentions of the same entities;
(2) span embeddings to represent the differences
between similar mentions of the different entities;
(3) the distance feature vector is obtained by using
distance functions between the head embeddings of
mentions to represent the similarities via a distance
7-d vector; (4) speaker embeddings by using the
average embeddings.

Three different models are designed as part of
the M2M system. The Self Model is built for per-
sonal pronouns with average embeddings of the
speaker and head features of the mentions. The
Pronoun Model is designed to pair the third person
and place pronouns to the corresponding candidate
by exploiting the head average embeddings of men-
tions. The Noun Model attempts to find the pairs of
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Figure 3: M2M Noun Model Architecture and Training

the mentions by using head and span embeddings
with contextualized and average embeddings when
they are noun phrases. Fig. 3 shows the Noun
Model.

2.3.1 M2M Architecture and Training
The models are designed with linear layers with a
ReLU activation function for the head, speaker and
span features. Then the extracted vectors from em-
beddings are concatenated with a distance vector
to train a linear layer with a ReLU activation func-
tion. Then a linear layer with a Sigmoid activation
function is used for output probabilities.

The models are trained with the same hyper-
parameters. The learning rate is defined as 0.0001
and the optimizer is Adam. For computing the loss,
we specify BCELoss which is a criterion that mea-
sures the Binary Cross Entropy between the target
and the output. Training is done for 30 epochs.

2.4 Discourse Deixis Resolution(DDR)

Webber (1991) defines discourse deixis as refer-
ence to a discourse entity such as a proposition, de-
scription, event, speech act, etc. The discourse en-
tity is a part of the discourse model of the dialogue
participant and is realized in a certain discourse
segment, i.e. a chunk of a linguistic text, e.g., a
sequence of clauses or utterances. The exact bound-
aries of discourse segments are often hard to define
even for humans (Webber, 1991; Artstein and Poe-
sio, 2006). In addition, the resolution of discourse
deixis mentions requires cross-sentence informa-
tion about rhetorical relations and focus/attention
which is often not annotated. All this makes dis-
course deixis resolution a very challenging task.

There exist only a few frameworks focusing
on the resolution of discourse deixis mentions.
Most early works that we know of (e.g., Eckert
and Strube (2000), Navarretta (2000), or Byron
(2002)) are rule-based. They use hand-crafted rules
to pick out anaphors, which are usually demon-
strative pronouns. The right antecedent for each
anaphor is found relying on candidates’ dialogue
act types. Early machine learning approaches are
presented, e.g., by Strube and Müller (2003) and

Müller (2008), who use many elaborate manually
created feature vectors to represent markables, and
train classifiers to predict whether an antecedent-
anaphor pair is valid or not. Marasović et al. (2017)
introduce a model that relies on a neural network
(a Siamese Net) to rank potential antecedent candi-
dates given an anaphor. The input for the network,
i.e. sentences containing anaphors and antecedent
candidates, is represented as feature vectors (em-
beddings) using bi-LSTM.

Works focusing on automatic identification of
discourse deixis anaphors are also not many. An
algorithm based on hand-crafted features to recog-
nize discourse deictic it, this and that is suggested,
e.g., by Müller (2008). Other works, e.g., by Eck-
ert and Strube (2000), Kolhatkar et al. (2018), or
Roussel et al. (2018) present analyses of anaphors
with non-nominal antecedents and their properties,
but no actual implementations.

Our approach combines machine learning and
hand-crafted rules. The machine learning part is
inspired by the mention-ranking model for abstract
anaphora resolution by Marasović et al. (2017).
Given a discourse deixis mention that needs to be
resolved, the task is to choose the most suitable
antecedent among several candidates. To do so, we
train a scorer implemented as a Siamese Net with
the goal to assign a higher score to true anaphor-
antecedent pairs and lower scores to false ones. Our
implementation of the Siamese Net is much sim-
pler than that of Marasović et al. (2017) - instead
of bi-LSTM we use BERT’s [CLS] token to extract
utterance embeddings, and our antecedent-anaphor
score is defined as simple Euclidean distance be-
tween the two vectors produced by the Siamese
Net. Identification of anaphors and the antecedent
candidates is rule-based. We explain the details of
our system below.

2.4.1 Data
The scorer is trained on all the CCST train and de-
velopment data. Before that the light_dev file was
used to work on the heuristic rules. We built our
dataset as follows. For each utterance containing
a discourse deixis anaphor (anchor utterance) we
create a pair of examples (see Fig. 4) by replac-
ing the anaphor with its true antecedent (a positive
example) and with a false candidate (a negative
example), which is usually the utterance before the
true antecedent. The idea is to make the Siamese
Net learn that the true antecedent fits semantically
into the utterance containing the anaphor. In total
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Anchor: That certainly scared the eternal day-
lights out of me !
Positive example: I myself happened to look
out from the kitchen and see his dangling legs in
front of the window . certainly scared the eternal
daylights out of me !
Negative example: He never experimented
with flying contraptions again . certainly scared
the eternal daylights out of me !

Figure 4: Discourse deixis dataset instance

the dataset contains 5,171 examples.

2.4.2 Discourse Deixis Mention Detection

We do not assume that markables are given during
testing, so it is our task to recognize and cluster
them. For this we employ heuristic rules that are
based on observations in the light_dev data.

First, we want to find discourse deixis mentions
that need to be resolved. For now we focus only
on demonstrative pronouns, which we detect using
the SpaCy NLP pipeline (Honnibal et al., 2020).
SpaCy does not distinguish between different types
of non-personal pronouns, and labels them all with
a DET tag. So, we consider all subtrees with a
DET head linked to a parent node via ‘dobj’, ‘pobj’,

‘nsubj’ or ‘attr’ relations as discourse deixis mark-
ables that need to be resolved.

Next, we need to find the antecedents of the
detected discourse deixis mentions and cluster the
right mentions together. It should be noticed that, in
most cases these clusters only include 2-3 mentions,
and the antecedents can be found within the local
context of several previous utterances. We assume
that the antecedents are verbal phrases, clauses, or
sequences of clauses (split antecedent cases).

For extracting the antecedent candidates we con-
sider the current utterance containing the mention,
and 3 previous ones. Each previous utterance, as
well as their continuous sequences are viewed as
possible (split) antecedents. Besides, we find all
subtrees with VERB or AUX heads linked to the
ROOT node via ‘relcl’, ‘conj’, ‘ccomp’, or ‘advcl’
relations. We remove all overlapping candidates
and candidates that occur after the mention to be
resolved. In case of nested candidates, the longest
one is chosen. We also apply the following sim-
ple heuristics to exclude unlikely candidates and
improve the results. First, we limit the size of the
clusters by two elements. Here we also consider

Figure 5: DDR scorer architecture

cases of anaphors referring to split antecedents,
which form their own singleton clusters. Second,
we disregard all candidates that do not have verbal
roots.

2.4.3 DDR Architecture and Training
The discourse deixis resolution system ranks the an-
tecedent candidates using a scorer, sorts the scores
in descending order and selects the top candidate.
At this step we limit the output of the scorer to 5
candidates and re-sort them giving preference to
the candidates closest to the anaphor, as usually the
anaphor immediately follows its antecedent.

Being a Siamese Net, the scorer consists of two
independent pipelines that have identical architec-
tures. One pipeline is designed for the anchor, the
other for an antecedent candidate. Each pipeline
accepts input in the form of BERT input IDs, which
are then fed into the BERTBASE model. We use the
models’ pooler output to represent each sequence,
which is next processed by a simple multilayer
perceptron (MLP) network containing two linear
layers with a batch normalization and a ReLU ac-
tivation function. Finally, the Euclidean distance
between the feature representations produced by
both MLP networks is calculated, and the pair with
the smallest distance gets the biggest score. The
scorer’s architecture is shown in Fig. 5.

The scorer is trained for 12 epochs. We use adap-
tive learning rate starting with 3e-5, the AdamW
optimizer and the TripletMarginLoss loss function.

3 Results and Error Analysis

3.1 Workspace Coreference System (WCS)
WCS achieved an average F1-score of 64.99% on
Light, 43.93% on AMI, 59.93% on Persuasion and
53.55% on Switchboard. Although the results are
lower than those of the top-performing systems, we
believe that our approach presents a new way to
treat coreference as an incremental clustering task
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and can be further improved by experimenting with
different configurations of input and hyperparame-
ters as well as more robust feature extraction.

We believe that our system should benefit from
better animacy and number annotations because
these are crucial for the decision on the mention-
cluster compatibility as explained in Section 2.1.
Using a better mention extraction model should fur-
ther improve the scores. We also evaluated WCS
using the gold mentions as input and obtained the
following results: 73.24% on Light, 56.48% on
AMI, 72.06% on Persuasion and 62.85% on Switch-
board. The difference in scores shows that WCS
gains up to 12% F-score on AMI and Persuasion,
up to 9% on Switchboard and 6% on Light when it
uses the correct mentions. We noticed that quite of-
ten markables extracted by SpaCy were incomplete
and sometimes even missing. E.g., NPs such as ‘my
two year old’ and ‘the whole time’ were not recog-
nized as NPs by SpaCy and some parts of complex
NPs such as ‘the kind of things you’re supposed to
look for’ were missing. Nested NPs present another
big challenge for SpaCy, e.g., ‘case’ in ‘the case
material’ was not recognized as a markable. Our
feature extraction process heavily relies on SpaCy
because we use it together with some heuristics
to find a head in each mention span and perform
the lemmatization. For instance, in one case ‘some-
ones’ was selected as a head in ‘someones free will’,
hence the incorrect embedding for ‘someone’ in-
stead of ‘will’ was used for the clustering decision.

Some of the rules and heuristics we implemented
for WCS do not apply in some cases. E.g., the AMI
dataset proved to be especially challenging because
the dialogues in AMI have several participants and
there are references to objects that were not previ-
ously mentioned in the text. For instance, a third
person pronoun ‘it’ in ‘do you wanna hold it’ does
not have an antecedent in the preceding text be-
cause the object can be inferred from the physical
context. But our algorithm requires to find an an-
tecedent for each mention of ‘it’ that is a referring
expression, hence ‘it’ ends up in the wrong cluster.

We plan to continue our experiments with WCS
by improving the feature extraction process and
applying WCS to different domains and genres.

3.2 Mention-to-Mention System (M2M)

The M2M system achieved F1-score of 61.26%
on Light, 59.20% on Persuasion and 51.24% on
Switchboard. Whereas Self Model shows high pair-

ing performance, we observe that Pronoun Model
struggles with lexical variation between pronouns
and the corresponding nouns. We assume that the
high performance of Self Model is based on the
speaker invariant, i.e. two speakers occur in the
data. For example, the model pairs the mentions

‘I’ and ‘my’ of a speaker always with the corre-
sponding speaker. On the other hand, the delicate
performance with the Pronoun Model is observed
based on the high lexical variation: ‘He’ needs to
be paired with the ‘father’ as well as ‘his’. How-
ever, the design of M2M is not able to handle more
than one possible pair even though the correct pair
count is more. The Noun Model is also affected by
this problem.

To conclude, M2M performs effectively with
the similar lexical features of mention-candidate
pairs where the candidate variation is lower, e.g.,
personal pronouns of speakers. However, it strug-
gles to pair the mentions when they are represented
with different lexical features. At the same time, It
suffers from the same mentions of different entities.
In order to overcome the deficiencies of the M2M
system, we expect that the clustering mechanism
solves the lexical variation problem between men-
tions by obtaining one possible cluster instead of
many possible candidate mentions.

3.3 Discourse Deixic Resolution (DDR)

The DDR system achieved F1-score 20.97% on
the Light dataset, 17.43% on AMI, 23.76% on Per-
suation and 23.86% on Switchboard in the Eval-
DD (Pred) track. The submitted system combines
the scorer and four heuristic rules partially de-
scribed in Sec. 2.4, namely limiting cluster size to
two mentions, removing all non-verbal antecedent
candidates, restricting the scorer’s output to five
candidates and re-scoring them by distance to the
anaphor. For the error analysis we use fully anno-
tated test data released after the competition ended.
We perform discourse deixis mention detection as
presented in Sec. 2.4.2, and check the performance
of the system adding rules incrementally. These
results are shown in Tab. 3. The first row of shows
the F1 scores achieved by the scorer on the three
fully annotated test sets. The next two rows present
the scores for cases when the scorer is not forced to
search for clusters larger than two mentions, and is
applied after the removal of non-verbal candidates.
The last four rows show the results after re-sorting
the scorer’s output by distance to the anaphor. N
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Corpus light AMI Persuasion

bare scorer 15.65 13.27 23.36
+ limiting cluster size 16.21 12.99 23.82
+ removing non-verbal 17.11 16.99 26.48
+ sort by dist. (N = 3) 21.38 17.36 26.06
+ sort by dist. (N = 4) 21.32 17.62 24.31
+ sort by dist. (N = 5) 21.85 17.16 23.60
+ sort by dist. (N = 6) 20.79 17.22 23.63

Table 3: DDR F1 scores on fully annotated test sets

stands for the number of candidates ranked by the
scorer that we re-sort.

Without additional heuristic rules the perfor-
mance of the scorer is really poor. We assume that
the main reasons for this are as follows. First, our
model does not possess any information about the
semantics of separate tokens and utterances. The
example in Fig. 4 illustrates the problem. Using
only local context, it is impossible for the model to
understand why ‘seeing his dangling legs in front
of the window’ is a better candidate for being scary
than ‘never experimenting with flying contraptions’.
BERT, which we use to get utterance representa-
tions, is not capable of providing such deep se-
mantics. In the result, both positive and negative
examples look legitimate for the model.

Second, the model also lacks information about
the discourse structure and how different utterances
relate to each other, and thus has difficulties recog-
nizing split antecedents.

Next, our simple approach has a problem with
both recall and precision. Recall is bad because
mentions with determiner heads make up only 13%-
35% (depending on the sub-corpus) of all discourse
deixis mentions in the data. Precision is negatively
affected by the fact that the DET tag in SpaCy is
very general. As a result, we extract many false
discourse deixis mentions, like relative pronoun

‘that’ in “I use it to clean the tower that I work in
.” or a determiner phrase ‘some of these beautiful
flowers’ which is a case of ‘standard’ anaphora.

Using heuristic rules mostly has a positive ef-
fect up to 5% on the test sets. However, not all
of these rules work well with different dialogue
data. Some sub-corpora contain a lot of fragments,
many of which are rather short. As a result, the
true antecedent may lie more than three utterances
back. Some utterances are ungrammatical, and
SpaCy makes mistakes parsing them, which leads
to wrong candidate boundaries. Searching for an-
tecedent candidates, we try to split complex and
compound utterances. This often leads to rather

cumbersome SpaCy-based rules that easily fail, be-
cause dialogue speech patterns are very diverse,
so it is impossible to create an exhaustive set of
rules to capture them. Our focus on verbal (split)
antecedents may also lead to errors - we work with
transcribed dialogue data, and antecedents are not
necessarily verbal, they can also be represented by
noun phrases like ‘the inscriptions on the side of
the fountain’, prepositional phrases ‘to Bath’, ad-
verbial phrases ‘u : and back to Avon’, etc. Finally,
re-sorting the scorer’s output by distance does not
work for all types of dialogue data (see Tab. 3).

We plan to continue working on discourse deixis
resolution, as our naive system offers some space
for improvement. Recall and precision of discourse
deixis mentions are first obvious aspects to work on.
For this purpose current approaches to shell nouns
resolution and event detection can be considered.

4 Conclusions and Outlook

We described the three anaphora resolution subsys-
tems we developed from scratch for CCST using
only the datasets provided by the CCST organizers.
WCS is a coreference resolution approach that in-
crementally clusters mentions using semantic simi-
larity based on embeddings combined with lexical
feature heuristics. It employs SpaCy for markable
detection. M2M is another coreference resolution
approach which pairs the mentions for the same
entities. For markable detection it uses our own
BiLSTM-CRF model trained on the CCST data.
WCS achieved F1-score of 55.6% averaged across
the CCST evaluation test sets, using predicted
markables; the M2M system achieved 57.2%. Fi-
nally, DDR employs a Siamese Network to distin-
guish true discourse anaphor-antecedent pairs. Its
markable detection is also based on SpaCy. It has
average F1-score 21.5% using predicted mentions.

Our models employ novel ideas, but are still in
the early stages of development. CCST gave us
a boost and we see many options for future work
regarding both markable detection as well as the
AR resolution models themselves. For example,
we would like to improve the feature extraction for
WCS; enhance M2M by clustering; combine WCS
and M2M; and improve the detection of discourse
deixis mentions that need to be resolved. We also
plan to apply the systems on other datasets, which
we are currently preparing.
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A Appendix: WCS Embeddings

We experimented with using different kinds of
embeddings and their combinations for the WCS
subsystem on a subset of the data. We used
RST_DTreeBank_dev, Switchboard_3_dev and
Persuasion_dev files for training and evaluated per-
formance on the light_dev data. In total, we used 50
documents for training and 20 for testing. Unlike
other participants (lxucs and UTD_NLP) we did
not use SpanBERT embeddings, but we explored
GloVe, BERT, Numberbatch, masked LM embed-
dings as well as separate embeddings for speaker,
position and distance between mentions.

Embeddings: 1 2 3 4 5 6 7 8 9 10

GloVe head + - + - - - + - + +
GloVe span - + + - - - + - + +
BERT head - - - + - + + + + +
BERT span - - - - + + + + + +
Numberbatch - - - - - - - + + +
Masked LM - - - - - - - - + +
Distance - - - - - - - - + +
Speaker - - - - - - - - + +
Position - - - - - - - - - +

CoNLL score: 65.09 62.79 66.28 64.82 66.43 66.59 66.96 68.08 68.13 70.09

Table 4: Average CoNLL scores for different combina-
tions of embeddings in WCS

Table 4 shows some of the results. GloVe
head embedding works better than GloVe span
embedding (experiments 1 and 2); the difference
in CoNLL score is 2.3% (65.09% vs. 62.79%).

Combined head and span embeddings (3) further
improve the performance by 1.2%. Interestingly,
the trend is different for BERT: BERT head (4)
achieves 64.82% and BERT span (5) 66.43%. Note
that in our case BERT span refers to an average
over all BERT embeddings of the tokens within the
mention span (this is different from SpanBERT).
We observe a very small increase in performance
when BERT span is combined with BERT head (6),
66.59% CoNLL score; BERT and Glove combined
together (7) achieve 66.96%. We also found that
WCS performs better when we add Numberbatch
embeddings, e.g., BERT with Numberbatch (8) has
68.08% CoNLL score. We found that the com-
bination of GloVe, BERT, Numberbatch, Masked
LM, distance and speaker embeddings (9) gives us
68.13% on the test data. Furthermore, when the po-
sition embedding is added (10) the score increases
to 70.09 that indicates that the positions of men-
tions within the document8 play a very important
role in resolving coreference.

Although we tested various combinations of em-
beddings, our experiments were limited to a subset
of the data (we used only 50 documents for train-
ing). Another limitation of our approach is that we
defined the dimensionality of each embedding sep-
arately, i.e., when passing an embedding through
several linear layers we defined the output dimen-
sionality independently for each embedding type.
It would be interesting to see how interactions be-
tween different embeddings affect the dimensional-
ity. For example, it might be that 100 dimensions
work well for GloVe when it is used alone but
when it is combined with BERT the dimensionality
should be increased (or decreased) to achieve better
performance. We would also like to test whether
ablation studies show similar trends with differ-
ent types of data (e.g., dialogue vs. non-dialogue,
different genres) and perform a proper statistical
analysis of the results. We see our present results as
a starting point of an investigation of interactions
between the embedding types in dialogue, to de-
termine what embeddings work best in which case
and what dimensionality they should have.

8Position embedding for each mention is computed as a
start position divided by the total number of tokens in the
document. When computing a score for clustering we con-
catenate both referent and antecedent positions and then pass
them through a linear layer that increases the dimensionality
of embedding to 200.
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