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Abstract—Environmental Sound Classification (ESC) is a
rapidly evolving field that recently demonstrated the advantages
of application of visual domain techniques to the audio-related
tasks. Previous studies indicate that the domain-specific modifi-
cation of cross-domain approaches show a promise in pushing
the whole area of ESC forward.

In this paper, we present a new time-frequency transformation
layer that is based on complex frequency B-spline (fbsp) wavelets.
Being used with a high-performance audio classification model,
the proposed fbsp-layer provides an accuracy improvement over
the previously used Short-Time Fourier Transform (STFT) on
standard datasets. We also investigate the influence of different
pre-training strategies, including the joint use of two large-scale
datasets for weight initialization: ImageNet and AudioSet. Our
proposed model out-performs other approaches by achieving
accuracies of 95.20 % on the ESC-50 and 89.14 % on the
UrbanSound8K datasets.

Additionally, we assess the increase of model robustness against
additive white Gaussian noise and reduction of an effective
sample rate introduced by the proposed layer and demonstrate
that the fbsp-layer improves the model’s ability to withstand
signal perturbations, in comparison to STFT-based training. For
the sake of reproducibility, our code is made available.

Index Terms—audio, classification, ESC, Fourier transform,
fbsp-wavelet

I. INTRODUCTION

Environmental Sound Classification (ESC) is a challeng-
ing task that implies a correct differentiation between sound
classes that occur in our everyday life (e.g., “sneezing”,
“airplane”, “jackhammer”, “cat”, “idling engine”, “brushing
teeth”, “street music”). Widely used datasets, such as ESC-50
[1] and UrbanSound8K [2], provide a reliable basis to compare
a variety of approaches on the ESC-task, which allowed to
confirm the advantage of using cross-domain techniques [3].

Previously, the general trend in the ESC-community was to
design audio-domain-specific architectures. In the last years,
however, the focus has shifted to the use of common tech-
niques from other domains, such as the visual one. Both
directions are combined usually with either a raw signal or
a pre-computed time-frequency transformation, which is more
common. Learning of a time-frequency transformation in an
end-to-end fashion is a rare exception that, however, is able
to provide an increase of accuracy [4]. Also, the usage of
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a weight initialization obtained on large-scale datasets is in
alignment with the recent tendencies. Such a weight transfer
is performed usually in either cross- or intra-domain manner
only. Thus, the field of ESC lacks studies on the assessment
of effects of a two-stage domain adaptation using large-scale
audio datasets. Besides that, a typical accuracy evaluation of
models is being accomplished in “ideal” conditions. Measuring
of the influence of a perturbed signal on the predictions of best
performing models is not quite usual.

In our work, we propose a new time-frequency transforma-
tion layer that adjusts its parameters to the data and is based
on complex frequency B-spline wavelets (fbsp-wavelets) and
contributes to the out-performance of previous models. Also,
we introduce an additional pre-training step using a large-scale
dataset of audio, namely AudioSet [5], and evaluate its effect
on the classification accuracy for randomly and ImageNet-
initialized models. Finally, we assess the dependency of pre-
diction accuracy of our best performing models on two types
of signal perturbations: additive white Gaussian noise and
reduction of the effective sample rate.

The remainder of this paper is organized as follows. In
Section II we discuss prior methods and approaches to Envi-
ronmental Sound Classification. Then, we describe the model
that includes our proposed time-frequency transformation layer
based on complex frequency B-spline wavelets in Section III,
its training and evaluation in Section IV and the obtained
results in Section V. Finally, we summarize our work and
highlight follow-up research directions in Section VI.

II. RELATED WORK

In this section, we describe previous work done in the field
of Environmental Sound Classification (ESC). We highlight
approaches that were used to solve the ESC-task, in particular:
application of one- and two-dimensional Convolutional Neural
Networks (CNN) and the use of pre-computed and trainable
transformations.

A. Raw Waveform and 1D-CNN

One-dimensional CNNs use a raw audio signal as an input
and provide a more natural way to build an audio-domain-
related model, in comparison to 2D-CNNs. Since data pre-
processing is not needed in such cases, these models provide
an out-of-the box learning of a time-frequency transformation
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[6], [7]. Further enhancement of one-dimensional CNNs was
performed in two directions. One was the operation on differ-
ent time scales [8], while the other implied the use of an input
layer initialization using gammatone filter banks [9], [10] as
a starting point for the training. In this work, we follow a
similar direction in application to a two-dimensional CNN,
introducing the learning of a time-frequency transformation
that is based on the complex fbsp-wavelet filter bank [11].

B. Time-Frequency Representation and 2D-CNN

The use of image-domain-related CNNs in conjunction
with a pre-computed time-frequency representation is a more
common setup to solve audio-related tasks. For the ESC-50
dataset, the baseline was set by a model that is referred to
as Piczak-CNN [12]. The architecture of the Piczak-CNN
followed its custom design and was combined with Mel-
scaled power spectrograms [13] . Later, the follow-up models
were based on the Short-Time Fourier Transform (STFT) [14]
derived data representations (e.g., [15], [16], [17], [18], [19],
[20]) or on sophisticatedly designed filter banks (e.g., [21]).

However, the use of log-power spectrograms without modi-
fications allowed the ESResNet model [3] to achieve state-
of-the-art accuracy using a general-purpose visual CNN, sug-
gesting that the Short-Time Fourier Transform itself provides
a good representation that can serve as an initial state for a
trainable filter bank.

C. Trainable Filter Bank and 2D-CNN

Currently, in the field of Environmental Sound Classifica-
tion, two-dimensional CNNs that involve a trainable time-
frequency transformation represent the smallest subset of
the models. This situation was caused mainly by the lack
of large-scale audio datasets. However, a successful model
was presented that achieved state-of-the-art performance on
the ESC-50 dataset [4]. Since the AudioSet dataset [5] was
released, it becomes possible to train powerful audio-domain-
related neural networks from scratch, including time-frequency
transformations.

Finally, we decided to combine advantages of the pre-
computed STFT and the ability to fit such a transformation
to the data. In details, the proposed transformation layer is
described in Section III-C.

III. MODEL

In this section, we will describe the base ESResNet model
[3] and the way how it processes its input, the ResNeXt
architecture [22] and the proposed trainable time-frequency
transformation based on the complex frequency B-spline
wavelets [11].

A. ESResNet

The ESResNet model was proposed in [3] and combined
commonly used visual domain techniques such as a ResNet-
based [23] backbone, Siamese-like [24] multi-channel pro-
cessing, and depth-wise separable convolutions [25] together
with the computation of log-power spectrograms obtained
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Figure 1: Overview of the ESResNet model. The main branch
(central column) consists of the Convolutional layer (red)
stacked together with the Batch Normalization layer (green),
followed by the residual layers 1 – 4 (blue), the Average
pooling (gray), and the Fully-Connected layer (black). On the
left, the typical structure of a residual layer is presented. Each
residual layer consists of the stack of the bottleneck layers
(orange) that include Conv-BN-operations applied sequentially
and the skip-connection. Rectified Linear Unit (ReLU) serves
as an activation function. On the right, structure of the attention
blocks is presented. The attention block (violet) is stacked in
parallel to the residual layer 1 to 4 or to the average pooling
layer. The attention block includes the Max-pooling opera-
tion (gray) followed by the depth-wise separable convolution
stacked together with batch normalization. The output of the
attention block is given by the logistic function.

using Short-Time Fourier Transform and cross-domain transfer
learning in application to the ESC-task. The chosen method
allowed to achieve state-of-the-art results on the ESC-50 [1]
and UrbanSound8K [2] datasets at the time of publishing. An
overview of the ESResNet’s processing pipeline is given by
Figure 1.

B. ResNeXt

The ResNeXt architecture proposed in [22] is an evolution
of the original ResNet model and includes some techniques
that were shown successful previously. In particular, it intro-
duces a so-called “cardinality” of the residual layers, which
refers to a number of paths in the layer. Given approximately
the same number of parameters, the use of the ResNeXt
architecture as a backbone for the ESResNet model provides a
valuable performance improvement, as described in Section V.



C. Proposed Layer

As mentioned in Section III-A, in the ESResNet model [3],
the Short-Time Fourier Transform was applied to transform
the input audio to the corresponding time-frequency represen-
tation. This operation can be decomposed into two indepen-
dent steps: signal framing and a subsequent Discrete Fourier
Transform (DFT) of each frame. In this work, we propose
an approach to train a such time-frequency transformation
layer that evolves from a sub-optimal state represented by the
inverse DFT to an optimal transform in a data-driven manner.

STFT belongs to the family of Fourier-related transforms
and is used to determine magnitude and phase of basis
sinusoidal frequencies fc at different time points τ in a time-
domain signal x using kernel function K(n).

X(x, τ) =

∞∑
n=−∞

x[n]w[n− τ ]Kfc
DFT (n) (1)

1) Discrete Fourier Transform: Discrete Fourier Transform
is used mainly to analyze the frequency content of discretized
continuous-time signals [26]. The DFT kernel function shown
in Equation 2 defines the corresponding time-frequency trans-
formation.

Kfc
DFT (n) = e−2iπfcn (2)

2) Complex Frequency B-Spline Wavelets (fbsp): The com-
plex frequency B-spline wavelets are compactly defined in
the frequency domain and described in terms of order m,
bandwidth fb and central frequency fc [11].

Km−fb−fc
fbsp (n) =

√
fb

(
fbn

m

)m
e2iπfcn (3)

One can notice that the DFT-kernel defined in Equation 2
represents an inverted in time limiting case of the fbsp-kernel
(Equation 3). Thus, assigning the fbsp-layer’s parameters
m = 0 and fb = 1, it’s initialization becomes identical to the
inverse DFT, which makes it possible to start the network’s
training from a good enough state.

Finally, the transform performed by the proposed fbsp-layer
is defined by Equation 4.

X(x, τ) =

∞∑
n=−∞

x[n]w[n− τ ]Km−fb−fc
fbsp (n) (4)

3) fbsp-Specific Loss Term: In order to regularize weights
of the fbsp-filter bank and to preserve the overall signal’s
energy, we decided to introduce an additional loss term that is
specific to the fbsp-layer and, for the N-point fbsp-transform,
is described by Equation 5.

Lfbsp = 1

N

N∑
fc=0

(‖Km−fb−fc
fbsp ‖2 − 1)2 (5)

IV. EXPERIMENTAL SETUP

In this section, we describe the datasets that were used,
training of the models, including our approach to transfer
from the visual to the audio domain, and the procedure of
robustness’ evaluation.

A. Datasets

In this work, we used three audio-domain-related datasets:
AudioSet [5], ESC-50 [1] and UrbanSound8K [2]. The Au-
dioSet dataset was used for pre-training of models, whereas the
others served for the performance evaluation and assessment
of model robustness against additive white Gaussian noise and
reduction of an effective sample rate. Also, the ImageNet [27]
dataset was used as a source of weight initialization in the
cross-domain transfer learning.

1) AudioSet: AudioSet was proposed and described in [5].
It is a large-scale sound dataset that provides ∼ 1.8 M sound
clips (each 10 s) organized into 527 classes in a multi-
label manner. The amount of training data allows to use the
AudioSet dataset for the initialization of deep neural networks,
thus, providing a better initial state for fine-tuning on the
ESC-50 and UrbanSound8K datasets.

2) ESC-50: The ESC-50 dataset consists of 2,000 monaural
samples belonging to 50 classes that can be divided into 5
groups, such as animal sounds, natural and water sounds,
non-speech human sounds, interior and exterior sounds [1].
Samples are distributed equally among classes, thus each
category consists of 40 recordings. Each track has length of
5 s, the native sample rate is 44.1kHz. The dataset was divided
into 5 folds by its authors that we used in current work to
perform our evaluation.

3) UrbanSound8K: The US8K dataset consists of 8,732
samples (both mono and stereo) belonging to 10 classes:
“air conditioner”, “car horn”, “children playing”, “dog bark”,
“drilling”, “engine idling”, “gun shot”, “jackhammer”, “siren”,
and “street music” [2]. The classes are not balanced in terms
of overall recording lengths per class. Each track has variable
length up to 4 s, the native sample rate varies from 16 kHz to
48 kHz. The dataset was divided into 10 folds by its authors
that we used in current work to perform our evaluation.

4) ImageNet: The ImageNet dataset was proposed and
described in [27]. It is a large-scale visual dataset that provides
more than 1M images divided into 1000 classes. As the use of
the ImageNet pre-training is beneficial from the performance
point of view (e.g., [3], [18]), we use ImageNet-trained net-
works and evaluate the influence of a such initialized models
w.r.t. the follow-up training.

B. Hyper-Parameters

In the experiments, we performed training on the AudioSet,
ESC-50 and UrbanSound8K datasets from scratch and after
the initialization using ImageNet-weights. The training on the
AudioSet dataset was used as an intermediate step, while the
two later datasets served as a target for the final performance
assessment.



The training on the ESC-50 and UrbanSound8K datasets
was derived from the one used for the ESResNet model [3].
According to it, the model was trained for 300 epochs using
the Adam optimizer [28] with the learning rate varied from
2.5e−4 (training from scratch) to 2.5e−5 (fine-tuning phase),
the exponential decay γ = 0.985 and the weight decay set to
5e−4. Other hyper-parameters such as β1, β2 and ε were set to
the default values. The fbsp-variant of our model demonstrated
a preference to lower learning rate values, which substantiated
the decision to reduce it to 1e − 5 and set γ = 0.99 during
the fine-tuning process.

The pre-training stage on the AudioSet dataset is a modi-
fication of the original fine-tuning schema, those optimizer is
replaced by Stochastic Gradient Descent (SGD) [29] with Nes-
terov’s momentum [30]. In comparison to the Adam optimizer,
it introduces a smaller number of hyper-parameters, which
eased finding a well working combination of them. For the
AudioSet pre-training, the weight decay was used the same
way as for the fine-tuning phase, as well as the momentum,
which was equal to the β1 parameter of the Adam optimizer.
The huge amount of training samples in the AudioSet dataset
allowed us to reduce the number of training epochs to 5. The
choice of the learning rate was determined by its maximum
value that allowed to perform the training successfully, and the
value varied from 1.6e − 3 (training from scratch) to 4e − 4
(after ImageNet initialization).

For both setups, cross-entropy served as a loss function.

C. Data Augmentation

In order to prevent overfitting and improve the predic-
tion accuracy, we utilized the following data augmenta-
tion techniques (for both the AudioSet pre-training and the
ESC-50 / UrbanSound8K fine-tuning):

1) Time Scaling: This method can be considered as a
combination of time stretching and pitch shift (see [15], [7]).
While the first one changes the duration of an audio file
keeping its spectral characteristic untouched, the later one,
in opposite to time stretching, allows to manipulate spectral
characteristics and preserve the duration of the track. Both
methods rely on computationally expensive operations, which
makes it inefficient to apply them in an on-the-fly manner. The
time scaling was chosen to be applied as an augmentation step
because of its computational cheapness and effectiveness [3].
In this work, the scaling factor was distributed uniformly in
the range [−1.5, 1.5].

2) Time Inversion: Time inversion that was applied in [7]
is an effective data augmentation technique that is related
to random flip of images during the training on the visual
datasets. Probability of the inversion was set to 0.5.

3) Random Crop: For the scaled audio tracks, there was
a requirement to align their lengths in order to process the
input through the model. The use of the random cropping
instead of the center one allowed to increase the diversity
of the data samples even more, thus, acting as an addi-
tional augmentation step. Audio tracks were cropped to the
duration of 10 / 5 / 4 s (AudioSet / ESC-50 / UrbanSound8K,

respectively) if they were longer. Otherwise, no cropping was
performed. During the evaluation phase, the random cropping
was replaced by the center one.

4) Random Padding: The rationale behind random
padding is the same as for the random cropping. Au-
dio tracks were padded to the duration of 10 / 5 / 4 s
(AudioSet / ESC-50 / UrbanSound8K, respectively) if they
were shorter. Otherwise, no padding was performed. During
the evaluation phase, the random padding was replaced by the
center one.

D. Cross- and Intra-Domain Transfer Learning

In order to evaluate the role of the AudioSet weight initial-
ization, we performed a series of experiments that included
the AudioSet dataset as a pre-training step. The ESResNet
model as well as its fbsp-variant was evaluated on the ESC-50
and UrbanSound8K datasets after the training from scratch,
ImageNet initialization, AudioSet pre-training from scratch
or after the ImageNet weight transfer. The ESResNeXt-based
models were evaluated after the ImageNet weight initialization
and the two-stage transfer learning that included the AudioSet
intermediate training after the ImageNet initialization.

Additionally, as we noticed that a completely random ini-
tialization of all network components could result in mode
collapse due to the additional freedom introduced by the early
fbsp-filter bank, in such cases we employed a late unfreeze
strategy: We froze the fbsp-layer’s parameters for the first
three epochs. This results in the later parts of the network
to be trained based on an STFT-like first layer for the first
three epochs (similar to the previous [3]), before then updating
all parameters in later epochs based on more meaningful
gradients.

The transfer of a model to another dataset was done by
replacing its last fully-connected layer (the model’s linear
classifier) by a randomly initialized one, which output shape
suited to the task.

E. Evaluation of Robustness

In order to evaluate robustness of trained models to per-
turbations in the input signal, we conducted experiments that
included the addition of noise to the signal and reduction of
information in it.

1) Robustness Against Additive White Gaussian Noise:
To assess the model’s robustness to additive noise, white
Gaussian noise at desired Signal-to-Noise Ratios (SNR) was
generated and mixed-up to the audio tracks before performing
the forward pass through the model.

2) Robustness Against Reduction of an Effective Sample
Rate: The ability of model to deal with the reduced effective
sample rate was tested using low-pass filtering at different
cutoff frequencies.

Signal filtering implies attenuation of unwanted frequency
components in the signal while preserving amplitude and
phase of desired ones without changes. A low-pass filter passes
frequency components that are lower than a chosen cutoff
frequency. The frequency components that lie in a higher band



Table I: Evaluation Results of the ESResNe(X)t Model on
STFT- and fbsp-Spectrograms on the AudioSet dataset. We
can see that fbsp improves over STFT on Audioset.

Model
Input ImageNet Mean Average
Type Initialized Precision

ESResNet

STFT
0.1892

X 0.2514

fbsp
0.2394

X 0.2616

ESResNeXt
STFT X 0.2514

fbsp X 0.2817

are being suppressed, and, thus, the unwanted part of the input
signal is being weakened. The exact properties of a digital filter
depend on its design and include but are not limited to: cutoff
frequency (defines filter’s passband), passband ripple, slope,
width of transition band, stopband, etc.

In this work, we decided to use a 5th order Butterworth low-
pass filter, as it provides maximally flat passband response [31]
and a quick roll-off around its cutoff frequency. The filter was
applied before feeding audio samples to the model.

V. RESULTS

A. Pre-Training on AudioSet

In Table I, we present mean Average Precision (mAP) ob-
tained by the variants of our proposed model on the evaluation
subset of the AudioSet. The results include scores of the
ESResNet model after the training from scratch as well as
after the ImageNet initialization for both STFT- and fbsp-
based transformations. Additionally, the effect of the backbone
replacement from ResNet-50 to ResNeXt-50 is evaluated for
the two best performing setups, namely STFT- and fbsp-based
models in conjunction with the ImageNet weight transfer. One
can observe that the initialization using ImageNet weights is
beneficial for the evaluated ESResNet model, as it provides
an steady increase of mAP.

The STFT-based model demonstrated a low sensitivity to the
replacement of the backbone from ResNet-50 to ResNeXt-50,
as the corresponding mAP value does not change (0.2514). At
the same time, the fbsp-layer provided a valuable increase of
the mAP from 0.2616 to 0.2871.

Apart from this, we also computed the frequency responses
of the trained on AudioSet fbsp-layers and compared them to
the frequency response of an STFT-filter bank. The frequency
response of a filter describes the dependency of the output
gain on the frequencies of an input signal. The DFT-matrix of
the STFT-filter bank and its frequency response is shown in
Figure 2a. In the top marginal we can observe that the gain
is almost flat for the entire frequency band, up to the Nyquist
frequency.

In contrast, the frequency responses of the trained fbsp-
filter banks (Figure 2b – Figure 2d) consist of distinguishable
peaks and valleys in the frequency domain. This fact may
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Figure 2: Frequency response of filter banks. Frequency re-
sponse shows how the magnitude of each output filter (vertical
axis) depends on the frequency of an input signal (horizontal
axis). A log-scaled plot on top of the corresponding heat
map provides an overview of the maximum gain over the
frequencies. We notice that the fbsp-layers dampen the high
frequencies.

indicate that the input signal is redundant w.r.t. sample rate, i.e.
the networks learned some sort of signal’s decimation. Also,
the trained fbsp-filter banks obtain stopbands in the higher
frequency band, which suggests that the filter banks are able
to suppress high-frequency components of an input signal’s
noise.

B. Model Comparison

In this section, we will discuss the influence of the backbone
and the chosen time-frequency transformation on the model’s
accuracy.

1) Backbone – ResNet vs. ResNeXt: The influence of the
backbone on the model performance was evaluated for two
training setups, both of them included the initialization using
ImageNet weights (Table II). For the first one, the models
were fine-tuned on the target datasets without intermediate
training steps. The second one included also an AudioSet
pre-training. The use of the ResNeXt instead of the ResNet
model as a backbone provided a steady improvement of the
prediction accuracy for both setups using STFT for the audio
transformation.



Table II: Evaluation Results of the ESResNe(X)t Model on
STFT- and fbsp-Spectrograms, accuracy (%). We can see
that (i) fbsp in general improves over STFT, (ii) pre-training
on both ImageNet and AudioSet improves results, and (iii)
ESResNeXt improves over ESResNet.

Model
Input ImageNet AudioSet

ESC-50 US8K
Type Initialized Pre-Trained

[3]

STFT

83.15 82.76
[3] X 91.50 85.42

ESResNet

X 92.45 87.74
X X 93.35 88.03

fbsp

86.25 83.20
X 91.25 85.92

X 92.40 88.47
X X 93.80 88.38

ESResNeXt

STFT
X 91.60 86.02
X X 95.00 89.02

fbsp
X 91.30 85.47
X X 95.20 89.14

Addition of the intermediate AudioSet training also pro-
vided a monotonic increase of the performance. At the same
time, when not further pre-training the fbsp-layer with audio
data, we can see a minor deterioration of the result for US8K
going from ESResNet to ESResNeXt. However, given such
audio-data, we see a strong performance boost of the same
setup.

ResNeXt-based variants of the model also demonstrated
higher sensitivity to the reduction of the effective sample rate,
as will be detailed in Section V-C.

2) Time-Frequency Transformation – STFT vs. fbsp-
wavelets: The evaluation results of the proposed fbsp-layer
in comparison to the STFT demonstrate that it in general
improves results (Table II). Pre-training on AudioSet as an
intermediate stage is desirable for the fbsp-based models if
transfer learning is performed. Absence of a such smooth
transition between domains restricts the model performance on
the target datasets. Thus, the best performing setup includes
our proposed fbsp-layer and an intermediate pre-training on
AudioSet after the ImageNet initialization.

3) Model – ESResNe(X)t-fbsp vs. Others: The proposed
ESResNeXt-fbsp model achieves an outstanding accuracy
on both datasets ESC-50 (95.20 %) and UrbanSound8K
(89.14 %). In comparison to other approaches, it does not
require the use of meta-learning [17] or ensembling [18] tech-
niques in order to perform the best. Moreover, the proposed
model provides the highest single-model accuracy among the
models that were fine-tuned on both target datasets (Table III).
Unlike many other models, our proposed fbsp-layer provides
also insights on the desired by models representation of an
input signal.
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Figure 3: Dependency of model performance on the addition
of white Gaussian noise. We can see that fbsp-based models
are more robust against such a noise.
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Figure 4: Dependency of model performance on the effective
sample rate of the input signal. We can see that fbsp-based
models are more robust against lower frequency cutoffs.



Table III: Evaluation Results, accuracy (%)

Model Source Representation
ImageNet AudioSet

ESC-50 US8K
Initialized Pre-Trained

O
th

er
s

Human (2015) [1] – – – 81.30 –

Raw waveform and 1D-CNN
EnvNet (2017) [6] raw 74.10 71.10
EnvNet v2 (2017) [7] raw 84.70 78.30
Multiresolution 1D-CNN (2018) [8] raw 75.10 –

Time-frequency representation and 2D-CNN
Piczak-CNN (2015) [12] Mel-spec 64.50 73.70
SB-CNN (2017) [15] Mel-spec – 79.00
Piczak-CNN (2017) [21] (PE)FBE 84.15 –
VGG-like CNN + mix-up (2018) [19] Mel-, GT-spec 83.90 83.70
VGG-like CNN + Bi-GRU + attention (2019) [20] GT-spec 86.50 –
CNN10 (2020) [16] Mel-spec X 90.00 86.10
WEANET N0 (2020) [17] Mel-spec X 92.60 –
WEANET N4 (2020) [17] Mel-spec X 94.10 –
DenseNet-201 (2020) [18] Mel-spec 72.50 76.32
DenseNet-201 (2020) [18] Mel-spec X 91.16 85.14
DenseNet-201× 5, ensemble (2020) [18] Mel-spec X 92.89 87.42

Trainable filter bank and 2D-CNN
Piczak-CNN + ConvRBM (2017) [4] FBE 86.50 –

O
ur

s

Time-frequency representation and 2D-CNN
ESResNet STFT-spec X X 93.35 88.03
ESResNeXt STFT-spec X X 95.00 89.02
Learnable filterbank and 2D-CNN
ESResNet-fbsp fbsp-spec X X 93.80 88.38
ESResNeXt-fbsp fbsp-spec X X 95.20 89.14

Abbreviations: FBE: FilterBank Energies [4]; spec: spectrogram; GT: GammaTone [9]; (PE)FBE: (Phase-Encoded) FBE [21];
STFT: Short-Time Fourier Transform; fbsp: (complex) Frequency B-SPline (wavelets).

C. Model Robustness

Apart from the model comparison, we also evaluated the
robustness against two types of signal perturbations: additive
white Gaussian noise and reduction of an effective sample rate.

1) Additive White Gaussian Noise: The evaluation of model
performance on the ESC-50 and UrbanSound8K datasets given
different values of SNR shows clearly (Figure 3) that the
use of the fbsp-layer improves the model’s robustness to the
presence of additive white Gaussian noise. As indicated in
Figure 2b – Figure 2d, the higher frequency band is being
suppressed by trained fbsp-layers, in comparison to the DFT-
filter bank. This allows to reduce the amount of the added
noise partially, thus, improving the signal-to-noise ratio for the
obtained spectrograms. As shown in Figure 3, fbsp-equipped
models provide higher classification accuracy given decreasing
SNR on both datasets, ESC-50 and UrbanSound8K.

2) Reduction of an Effective Sample Rate: In order to
quantify the influence of the effective sample rate reduction on
the model accuracy, several experiments were performed. The
obtained results support the point that fbsp-equipped models
are able to extract the information that is relevant for classifica-
tion more effectively. In particular, the significant performance
drop at the cutoff frequency 4 kHz occurred in the case of
the STFT-based models on both datasets (Figure 4) indicates

that the use of the fbsp-equipped models is beneficial for the
applications that imply the use of low-bandwidth channels.
Also, the ResNet backbone demonstrated less sensitivity to
lower frequency cutoffs, in comparison to ResNeXt (Figure 4).

VI. CONCLUSION

In this paper, we proposed a new fbsp-layer that is based
on complex frequency B-spline wavelets and tailored towards
effective and robust time-frequency representation.

Based on the fbsp-layer, and a common ResNeXt, our
ESResNeXt-fbsp model achieves new state-of-the-art results
on two datasets: ESC-50 (95.20 %) and UrbanSound8K
(89.14 %). To ease reproducibility, detailed code and settings
of our approach are published1.

We also evaluated the influence of the additional pre-
training on the AudioSet dataset, which is beneficial for the
model performance, as well as the improvement obtained
by the change of the model’s backbone from ResNet-50 to
ResNeXt-50.

Further, we found that the proposed fbsp-layer allows to
obtain ESC models that are more robust against additive
white Gaussian noise and a possible reduction of the sample

1https://github.com/AndreyGuzhov/ESResNeXt-fbsp

https://github.com/AndreyGuzhov/ESResNeXt-fbsp


rate, in comparison to models that were trained using STFT-
based spectrograms as an input. Additionally, the frequency
responses of the trained fbsp-filter banks provide insights
into the importance of specific frequencies for the audio
classification, making it possible to understand the models’
predictions and behavior better.

In the future, we would like to further investigate the
influence of the internal cardinality of the fbsp-layer, as an
increased number of internal parameters could potentially fur-
ther improve model performance. Also, changing the current
split of input spectrograms according to RGB-channels to
a full-frame representation could influence positively on the
prediction accuracy, so we would like to quantify its effect.
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