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Abstract 14 
Increasing the terrain awareness of planetary exploration rovers is one key technology for future space 15 
robotics to successfully accomplish long-distance and long-duration missions. In contrast to most of 16 
the existing algorithms that use visual or depth data for terrain classification, the approach presented 17 
in this work tackles the problem using proprioceptive sensing, e.g., vibration or force measurements. 18 
The underlying assumption is that these signals, being directly modulated by the terrain properties, 19 
are well descriptive of a given surface. Therefore, terrain signature can be inferred via learning 20 
algorithms that are trained on either the signals directly or a signal-derived feature set. 21 
Following the latter approach, first, a physics-based signal augmentation process is presented that 22 
aims at maximizing the information content. Then, a feature selection algorithm based on a scoring 23 
system and an iterative search is developed to decrease the computational cost while preserving high 24 
classification accuracy. The resulting most informative feature subspace can be used to train a 25 
Support Vector Machine (SVM) classifier. For comparison, the time histories of the selected 26 
proprioceptive signals are used to train a deep Convolutional Neural Network (CNN). 27 
Results obtained from real experiments using the SherpaTT rover confirm that proprioceptive sensing 28 
is effective in predicting terrain type with an accuracy higher than 90% for both algorithms in 29 
generalization tasks. When the two learning approaches are contrasted in extrapolation problems, e.g. 30 
predicting observations acquired at previously unseen velocity or terrain, CNN outperforms the 31 
standard SVM. Furthermore, CNN holds the additional advantage of learning features automatically 32 
from signal spectrograms, reducing the need of a-priori knowledge at the expense of higher 33 
computational efforts. 34 
 35 
Keywords: Planetary exploration robots, vehicle-terrain mechanics, proprioceptive sensing, feature 36 
selection, learning methods, deep learning, terrain classification.  37 

I. Introduction 38 

This work has been developed as part of the research activity for the project ADE (Autonomous 39 
DEcision making in very long traverses) (Ocón et al., 2020), funded by the European Union’s Horizon 40 
2020 research and innovation programme. The main goal of ADE is to develop and test a rover system 41 
capable to achieve autonomous long-range navigation in hostile environments, while guaranteeing 42 
consistent data collection. The mobility range of planetary exploration rovers has been up to date 43 
limited to few hundreds of meters per sol day (ESA, Robotic Exploration of Mars, 2021; JPL, Mars 44 
Exploration Rovers, 2021; Nasa, Mars 2020, 2020). From a purely technical point of view, this 45 
limitation has both hardware and software sources. The former and most important is the finite power 46 
storage of rover locomotion system, that is fixed given a robot design. The latter is reduced skills in 47 
terms of autonomous decision-making, that can be improved by artificial intelligence. Improving 48 
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these capabilities extends the autonomy of the rover across multiple geographical areas and therefore 49 
expands opportunities of data collection. 50 
Directly related to long-range navigation is also the safety issue. The importance of sensing hazards 51 
was highlighted, for example, in April 2005, when the Mars exploration rover Opportunity became 52 
embedded in a dune of loosely packed drift material (Cowen, 2005). The terrain geometry as 53 
reconstructed from a distance via stereovision did not indicate any hazard. However, the high 54 
compressibility of the loose drift material caused the wheels to sink deeply into the surface. The 55 
combination of the drift’s low internal friction and the motion resistance due to sinkage prevented the 56 
rover from producing sufficient thrust to travel up the slope. Opportunity’s progress was delayed for 57 
more than a month while engineers worked to find a way out. A similar embedding event led to the 58 
end of operations for the twin rover Spirit in 2010.  59 
Therefore, future generations of planetary exploration rovers will require key technologies suitable 60 
to overcome these limitations, performing long traverses while guaranteeing fast reaction, mission 61 
reliability and safety, and optimal exploitation of the robot’s resources within reasonable costs. 62 
In this context, the ability to sense and characterize the incoming terrain would represent an enabling 63 
technology towards long-term autonomy and potential hazard avoidance (Nampoothiri et al., 2021). 64 
The objective of this paper is to demonstrate the potential of terrain classification via learning 65 
algorithms that are trained on proprioceptive features. Here, proprioceptive features refer to statistics 66 
that are extracted from the measurement of a physical variable pertaining to the robot-environment 67 
interaction, e.g., wheel velocity, forces, body linear and angular accelerations.  68 
The hypothesis is that, being modulated by the terrain properties, these features are a rich source of 69 
information from which the specific terrain type can be inferred via learning approaches (Brooks & 70 
Iagnemma, 2005; Gonzalez et al., 2019). 71 
 72 
One of the contributions of this research refers to the selection of the most informative subset of 73 
proprioceptive features derived from the sensor suite integrated onboard of planetary exploration 74 
rovers. A range of aspects is addressed that includes feature extraction, feature ranking, multivariate 75 
feature selection and efficient feature space construction. While feature selection has been largely 76 
investigated in other domains e.g., image processing, text processing and gene expression analysis 77 
(Guyon & Elisseeff, 2003), it remains largely under investigated for the terrain classification problem 78 
of planetary exploration rovers, and rough-terrain robots, in general. In contrast to other areas of 79 
applications where datasets with tens or hundreds of thousands of variables are available forming a 80 
statistically significant population, data acquired by a rover driving over natural terrain present many 81 
challenges such as sparseness, presence of unknown and uncontrolled disturbances, dependence on 82 
the specific time and site of the acquisition. 83 
The objectives pursued by feature selection include improvement in the prediction performance, 84 
reduction in training time, computational burden and memory usage of the algorithm and facilitation 85 
of understanding the underlying process that generated the data. 86 
 87 
The other contribution of this research is the adoption of a suitable learning algorithm to infer the 88 
type of terrain from the selected feature set. This algorithm will have to look for patterns in the data 89 
to construct the mapping from the proprioceptive measurements to the corresponding terrain type.   90 
The well-known Support Vector Machine (SVM) is contrasted with a deep convolutional neural 91 
network (CNN). While SVM requires in input hand-crafted features that are selected during a pre-92 
processing stage, CNN uses learned features that are extracted automatically form the signal time 93 
histories. 94 
An important goal of the proposed approach is to improve the performance of terrain classifiers for 95 
two use cases: generalization and extrapolation. Generalization is defined as the performance of an 96 
algorithm on previously unseen observations (test set) that is extracted from the same distribution as 97 
the data in the training set, e.g., the same test run. The error measured on the test set corresponds to 98 
both the on-line performance of the model and the operating conditions included in the training set. 99 



Accepted for publication in the Journal of Field Robotics 

 3

The second use case, extrapolation, is even more challenging since, in general, learning algorithms 100 
are known to perform poorly outside the training data population. We compare the performance of 101 
the two terrain classifiers (SVM and CNN) for both generalization and extrapolation. 102 
 103 
After related research is surveyed in Section II, highlighting the novel aspects of this paper, Section 104 
III presents SherpaTT, the rover used as test bed, and the learning algorithms implemented in this 105 
work. Next, signal augmentation, feature extraction and selection problems are tackled in Section IV. 106 
The results obtained from the terrain classifiers are presented and discussed in Section V. Conclusions 107 
wrap up the paper.  108 

II. Related Work 109 

Solving terrain-related challenges such as soil identification is an important research area in 110 
autonomous robots, alongside trajectory planning, localization and obstacle avoidance (Nampoothiri 111 
et al., 2021). The latest developments in terrain classification strategies show that researchers have 112 
been focusing on two main categories: visual (or exteroceptive) and visual-independent (or 113 
proprioceptive) methods. In both approaches, data collected from sensors are used to train machine 114 
or deep learning-based classifiers that enable identification of the traversed terrain. 115 
The sensors used for visual perception include RGB cameras (Tai et al., 2017; Wellhausen et al., 116 
2019), RGB-D cameras (Manduchi et al., 2005), LiDARs (Tai et al., 2017), visual cameras (Otsu et 117 
al., 2016) and monocular cameras (Barnes et al., 2017). Although visual-based approaches are more 118 
common than proprioceptive-based ones, they have limitations as well. The performance of RGB 119 
cameras is limited by difficult environmental conditions (e.g., low, or direct lighting and surface 120 
reflectivity). LiDARs struggle to capture the fine texture of objects and terrains, and they also perform 121 
poorly in compromised environment conditions (e.g., in presence of dust, hail and smog). 122 
Furthermore, vision-based rovers are not able to navigate in unfamiliar surroundings because  123 
observing distant terrain patches does not provide information about the mechanical properties that 124 
directly impact on vehicle mobility. 125 
Therefore, researchers have investigated methods that use proprioceptive sensing for terrain 126 
classification. In this case, the sensors used to perceive the incoming terrain include IMU (Inertial 127 
Measurement Unit), force-torque sensors, microphones, and wheel encoders. As an example, 128 
Hishikawa et al. (Ishikawa et al., 2021) used microphones to support an RGB camera in dark 129 
conditions. Brooks and Iagnemma (Brooks & Iagnemma, 2005) measured vibrations via 130 
accelerometers, analyzed them in the frequency domain and implemented an online classifier that 131 
relies on Principal Component Analysis (PCA) for feature reduction. DuPont et al. (DuPont et al., 132 
2008) presented a method based on frequency response and vibration-based transfer function. Giguire 133 
and Dudek (Giguere & Dudek, 2011) used a tactile probe combined with accelerometers to account 134 
for inertial effects. Dutta and Dasgupta (Dutta & Dasgupta, 2017) pursued a low cost approach using 135 
a multi-sensor platform fitted with GPS, IMU and metal detector. A model-based observer grounded 136 
in the Cubature Kalman filter was also proposed in (Reina et al., 2020) to predict terrain deformability 137 
using vertical acceleration measurements.  138 
The above works based on visual-independent approaches represent a step forward in the direction 139 
of providing a mobile robot with information about the mechanical properties of the terrain. Although 140 
they achieved high confidence levels, little effort was spent on feature selection as a mean to reduce 141 
the computational burden of the model without penalties in performance. Ultimately, the objective of 142 
researchers that work on robot-terrain interaction is to develop an accurate algorithm that runs online 143 
while the robot is moving. This algorithm must comply with the limited resources of an autonomous 144 
vehicle in terms of processing power and memory. A reduction in the number of features used to train 145 
and test a machine learning classifier would lead to a lighter computational burden in terms of feature 146 
extraction time, testing time and memory usage. One of the contributions of this paper is to develop 147 
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a feature selection algorithm demonstrating that these benefits can be achieved without compromising 148 
the accuracy of the model. 149 
A body of research has been devoted to the feature extraction process, as the quality of the feature 150 
space directly affects the accuracy of the associated classifier. The feature extraction strategy depends 151 
on the machine learning approach chosen for terrain classification. Traditionally, for a supervised 152 
machine learning algorithm such as SVM, an extraction stage is required where features are hand-153 
crafted by experts based on their knowledge in the specific application domain. Attempts have been 154 
made in various research fields to find effective features, for example in image-processing-related 155 
applications (Lu & Weng, 2007). However, this approach is not always possible for classifiers and it 156 
is often practically difficult, for instance when the relationship between input measurements and user-157 
defined classes is extremely complex or even completely unknown beforehand. Additionally, features 158 
that are crafted manually may be not optimal. For this reason, finding more systematic ways to get 159 
good features has drawn an increasing research interest (Bengio et al., 2013).  160 
Notable progress has been done recently to find learning techniques that allow models to learn 161 
features automatically from data with minimal manual input. Solutions using Deep Neural Networks 162 
(NNs) have especially attracted much attention. The effectiveness of deep NNs has been 163 
demonstrated in many fields other than image classification, such as audio and natural language 164 
processing or transfer learning. The adoption of Recurrent and Convolutional Neural Network was 165 
discussed in (Vulpi et al., 2021), in the context of terrain classification using an agricultural robot 166 
equipped only with inertial and electrical current sensors. However, although the promising results, 167 
it remains challenging to evaluate the effectiveness of learned features contrasted with expert-168 
designed ones. The complexity of this comparison resides in the difficulty of determining the 169 
descriptive power of hand-crafted features. For this reason, this paper presents a fair comparison 170 
between hand-crafted and learned features through a rigid feature scoring and selection process. 171 
In previous work by the authors (Dimastrogiovanni et al., 2020), a preliminary attempt was presented 172 
to select a subset of optimal proprioceptive features to train an SVM-based ground classifier then 173 
tested over only two terrain types, e.g. rock and sand. 174 
In this work, several novel additions are made. First, a whole new signal engineering stage is 175 
introduced to improve the overall information content. The signal selection strategy is formalized and 176 
reflected in an explanatory block diagram. Improved robustness has been achieved by increasing the 177 
number of training repetition for each candidate feature set. Then, the importance of feature selection 178 
for terrain classification is shown by comparing a machine learning approach (SVM) with a deep 179 
convolutional neural network (CNN) in terms of model complexity, computational burden, and 180 
prediction accuracy over a larger terrain set (3 types of terrain against 2 of the previous work).  181 
Finally, the system is evaluated not only in a standard generalization problem but as well as in two 182 
more challenging extrapolation contexts that are seldom described in the Literature.  183 

III. Materials and Methods 184 

The first part of this section (III.A) briefly presents the experimental planetary rover used for data 185 
gathering, describing the onboard sensor suite and the datasets collected during the field trials for 186 
developing terrain classification models. Then, the learning algorithms for terrain classification are 187 
presented, providing insights into the theoretical background. 188 
 189 

 The rover SherpaTT 190 

The experimental test bed used in the ADE project is the SherpaTT rover (see Figure 1) built by DFKI 191 
(Cordes et al., 2018). SherpaTT is a hybrid four-wheeled-leg rover, where the wheel-on-leg design 192 
constitutes an actively articulated suspension system. Flexible metal wheels provide a passive ground 193 
adaption on a small scale, while the active suspension fits the wheel positions to larger ground 194 
irregularities (Cordes & Babu, 2016).  195 
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Each of the four legs of SherpaTT’s suspension has five DOF: the rotation of the whole leg about the 196 
pan axis with respect to the robot body, the two rotations of the inner and outer leg parallelograms, 197 
the steer and drive angle of the wheel. A unique feature of Sherpa is a 6-axis Force-Torque Sensor 198 
(FTS) mounted on the flange of each wheel-drive actuator, providing direct measurement of the force 199 
system exchanged with the ground. 200 
The rover also features a six degrees of freedom (DOF) manipulation arm. The arm is designed to 201 
withstand a good portion of the rover’s weight to support it during locomotion. However, for the 202 
experiments described in this article, the arm was not involved in locomotion testing.  203 

 204 
Figure 1. SherpaTT in a sandy trench during the ADE final field tests in spring 2021. 205 

The logging system provides data at a rate of 100 Hz and comprises the following main proprioceptive 206 
blocks: 207 

 Inertial Measurement Unit (IMU) 208 
 Wheel-mounted 6-axis Load Cell (LC). In this study, we adopt solely the LC mounted on the 209 

front left wheel. 210 
 Joint Telemetry (JT). Each of the 20 actuated joints of the suspension system delivers 211 

telemetry such as supply voltage, supply current, temperatures, PWM duty cycle, position 212 
(relative and absolute), and velocity. 213 

The main data set used for this work was generated at the DFKI premises in Bremen, Germany. 214 
SherpaTT was remotely controlled to move for approximately 10 m in a straight line over three types 215 
of terrain: sand, gravel, and paved ground. This represents a varied dataset with a high traction, low 216 
deformability surface (paved ground) at one end, and a surface with low traction and high 217 
deformability (sand) on the other end, with gravel in the middle of the two (Figure 2). For each terrain, 218 
five runs were repeated in forward and reverse drive, except for gravel for which only four runs are 219 
available. Two different drive speeds of the rover were used, namely 0.1 m/s and 0.15 m/s. 220 
A second data set was generated in a sand mine close to Bremen (please refer again to Figure 1, GPS 221 
coordinates (DMS format): 53° 18′ 54.9″ N, 8° 41′ 17.3″ E) during the ADE’s final testing in April 222 
2021. This independent data set is used to predict terrain labels for observations outside the training 223 
data population. In this last environment, the surface traversed was somewhat like the sand case of 224 
the previous settings but the terrain was more compact and wetter. It can be directly observed in 225 
Figure 1 how humid sand got matted to the wheels while traversing, unlike in the previous 226 
environments (Figure 2). 227 
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 228 
Figure 2. Types of surfaces traversed by SherpaTT during the test and development of the system 229 

 230 

 Learning Algorithms 231 

Support Vector Machine 232 

Support Vector Machine is a well-established machine learning solution for soil classification 233 
problems (Bellone et al., 2018; Gonzalez et al., 2019; Reina et al., 2017). This section will present a 234 
summary of the theory behind SVM classification. For a detailed description of SVM algorithm 235 
please refer to (Hastie et al., 2009) and (Vapnik, 2013). An SVM problem is composed of two stages: 236 
training and testing. Given two classes A and B (binary classifier), an input training set S composed 237 
of p samples and n features can be defined as: 238 

 
𝑆 = {(𝒙௜, 𝑦௜) ∶  𝒙௜ ∈ ℝ௡,  𝑦௜ ∈ {−1,1}, 𝑖 = 1,2, … , 𝑝} 

𝑤ℎ𝑒𝑟𝑒 ൜
 𝑦௜ = 1          𝑖𝑓  𝒙௜ ∈ 𝐴
 𝑦௜ = −1       𝑖𝑓  𝒙௜ ∈ 𝐵

 
(1) 

xi are referred as predictors, yi represents the response variable. The purpose of the linear SVM 239 
algorithm is to find a decision function D that allows, in the testing phase, to classify any new sample 240 
x ∈ ℝ௡ according to the sign of D(x). This is done by finding the hyperplane that maximizes its 241 
distance to the support vectors (i.e., the predictors closest to the hyperplane), while minimizing the 242 
loss due to misclassification. The Lagrangian dual of this optimization problem can be formulated as: 243 
 244 

 

max
ఈ

  ෍ 𝛼௜

௣

௜ୀଵ

− ෍ ෍ 𝛼௜𝛼௝𝑦௜𝑦௝𝒙௜
்𝒙௝

௣

௝ୀଵ

௣

௜ୀଵ

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜     ෍ 𝑦௜𝛼௜

௟

௜ୀଵ

= 0       𝑎𝑛𝑑      0 ≤ 𝛼௜ ≤ 𝐶 

(2) 

where 𝛼௜ are Lagrangian multipliers and 𝐶 is a parameter called box constraint. 245 
The dominant approach for multi-class applications is to reduce the single problem into multiple 246 
binary classification problems (Duan & Keerthi, 2005). One of the most common methods for such 247 
reduction is the Error-Correcting Output Codes (ECOC) model (Dietterich & Bakiri, 1994). The most 248 
important parameter for this method is the coding design, a matrix where elements indicate which 249 
classes are trained by each binary learner, reducing the multiclass problem to a series of binary 250 
problems. 251 
In this research, SVM is considered as the benchmark approach that is compared against other 252 
alternatives as a deep Convolutional Neural Network (CNN). 253 
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Convolutional Neural Network 254 

In contrast to SVM that uses handcrafted features manually engineered by data analysts, CNN derives 255 
features automatically from inputs throughout a training process, searching for those that better 256 
characterize each terrain. However, as input, CNN takes an image-like observation, therefore a first 257 
practical issue to solve is how to derive a 3D object from several signals. One possible solution, 258 
proposed in this research, is to resort to Fast Fourier Transform (FFT) to construct magnitude 259 
spectrograms of the signals then appended into a multichannel object forming the input for the net. 260 
So, sensory data can be assembled in 3D shape, namely height, width and depth. The height 261 
corresponds to the frequencies (nF) analyzed by the FFT, the width corresponds to the number of 262 
time windows (nW) adopted in the spectrogram, and the depth is the number of signals (nCh).263 

 264 
Figure 3. Architecture of the convolutional neural network 265 

The architecture of the Convolutional Neural Network is shown in Figure 3, where the neural 266 
dimensions and the learnable variables of each layer are indicated.  267 
The first layer takes as input the multichannel spectrogram, next, the batch-normalization layer 268 
normalizes inside the mini-batch the value kept by each input neuron. Normalization process follows 269 
equation (3) where 𝑥௡ and 𝑦௡ are respectively the input and output values of neuron 𝑛 of this layer, 270 
batch mean 𝜇஻ and standard deviation 𝜎஻ are computed during training, while learnable parameters 271 
offset 𝛾 and bias 𝛽 are searched through optimization across the whole training set. Computational 272 
constant 𝜀 can improve numerical stability when variance 𝜎஻

ଶ is small. 273 

 
𝑦௡ = 𝛾

𝑥௡ − 𝜇஻

ඥ𝜎஻
ଶ + 𝜀

+ 𝛽

∀𝑛 = 1 … (𝑛𝑊 ∙ 𝑛𝐹 ∙ 𝑛𝐶ℎ)

 (3) 

The following 2D convolution layer spans the output across time and frequency domain convoluting 274 
the 𝑛𝑊 × 𝑛𝐹 × 𝑛𝐶ℎ batch-normalized spectrograms into 𝑛𝐹𝑖𝑙𝑡 objects of dimensions 𝑛𝑊 × 𝑛𝐹. A 275 
user-specified number of square filters 𝑛𝐹𝑖𝑙𝑡 with size 𝑓𝑠𝑧 are here used to perform convolution 276 
process briefly described in equation (4)) where 𝑋 is the zero-padded neural grid after batch-277 
normalization and 𝑌 the output of the convolution process. The learnable parameters of this layer are 278 
the kernel of filter 𝑚, the weights of matrix 𝜔௠ , and 𝛽௠  the corresponding bias. 279 

 𝑌௪,௙,௠ = ෍ ෍ 𝜔௜,௝,௖௠ ∗ 𝑋௪ା௜,௙ା௝,௖

௙௦௭
ଶൗ

௜,௝ୀି
௙௦௭

ଶൗ

+ 𝛽௠

௡஼௛

௖ୀଵ

∀𝑤 = 1 … 𝑛𝑊, ∀𝑓 = 1 … 𝑛𝐹, ∀𝑚 = 1 … 𝑛𝐹𝑖𝑙𝑡

 (4)) 

The output of the convolution process is passed to the REctified Linear Unit (ReLu) activated neurons 280 
in a grid 𝑛𝑊 × 𝑛𝐹 × 𝑛𝐹𝑖𝑙𝑡, fully connected to 𝑛𝐶𝑙 neurons where 𝑛𝐶𝑙 is the number of terrain classes 281 
considered. Compared to other activation functions such as the sigmoidal function, ReLu helps in 282 
preventing the exponential growth in the neural network computation and the “vanishing gradient” 283 
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problem that is the tendency for the gradient of a neuron to approach zero for high values of the input 284 
(Kingma & Ba, 2015). The two following layers SoftMax and Classification are standard as output 285 
layers for classification networks. The function SoftMax is defined in equation (5) where 𝑥௡ is the n-286 
th input neuron and 𝑦௡ is the corresponding output of this layer. 287 

 𝑦௡ =
𝑒𝑥𝑝(𝑥௡)

∑ 𝑒𝑥𝑝(𝑥௜)
௡஼௟
௜ୀଵ

, ∀𝑛 = 1 … 𝑛𝐶𝑙 (5) 

The output layer of this network is the classification layer that computes the cross-entropy loss for 288 
classification among terrains. 289 

 Parameters of the learning algorithms 290 

In this section, the values assigned to the parameters of the learning algorithms are highlighted. 291 
The parameter set of the SVM-based classifier is indicated in Table 1. It was found empirically to 292 
give the best balance of sensitivity and specificity (Lin et al., 2002). 293 
 294 
Table 1. Parameters of the SVM classifier 295 

PARAMETER VALUE 
C (Box Constraint)  1 
Standardize True 
Coding design one-versus-one 

 296 
As for CNN, during the training stage the learnable parameters are updated at each iteration, whereas 297 
the hyper-parameters are defined by the user to govern the training process. 298 
In one iteration, the network analyses the samples contained in the mini-batch. One epoch consists in 299 
the number of iterations necessary to review the entire training dataset. The training stage stops after 300 
the network has passed through the entire dataset the number of times specified as the maximum 301 
number of epochs. It is usually preferred to stop the training before this number has been reached, 302 
not only because it shortens the time required for training, but also because it prevents overfitting on 303 
the training set. Therefore, a percentage of the training data is kept apart as validation set, and the 304 
network evaluates its loss after the number of iterations specified as validation frequency. The 305 
validation patience is the number of times that this loss can be smaller or equal to the previously 306 
smallest loss before the training stage stops. The initial learning rate drops by a factor (learn drop 307 
factor) after a given number of iterations (learn drop period). Part of the hyperparameters is set 308 
according to the Literature, e.g. the solver and the gradient threshold follows the value suggested in 309 
(Kingma & Ba, 2015). The remaining parameters have been selected empirically through grid-search 310 
and they are reported in Table 2.  311 
Note that for a fair comparison with SVM, the magnitude spectrograms of the signals used as input 312 
to CNN are obtained from a time window ws= 2 s (please refer to Section IV.B). 313 
 314 
Table 2. Hyper-parameters of the CNN classifier 315 

PARAMETER VALUE 
Filter size (𝑓𝑠𝑧) [5, 5] 
Number of filters (nFilt) 9 
Mini-batch size 160 
Maximum number of epochs 150 
Validation percentage 15% 
Validation frequency 20 
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Validation patience 15 
Initial learning rate 0.005 
Learn drop factor 0.2 
Learn drop period 10 

 316 

IV. Signal engineering 317 

A list of measurements available from the SherpaTT’s sensor suite is shown in Table 3, with 318 
corresponding sensorial group and Signal ID. From a first analysis of Table 3, some of the signals 319 
may appear seemingly correlated. However, if we consider, for example, body acceleration and wheel 320 
force, these signals are actually uncorrelated through the flexibility of the suspension system, and 321 
therefore they are both relevant for the proposed analysis. 322 
Signals that are directly derived from measurements are referred to as direct signals. Conversely, 323 
signals engineered with expert knowledge combining direct signals are referred to as indirect, as 324 
explained in the next section.  325 
Figure 4 shows a sample time history of the vertical acceleration (gravity-compensated) and drive 326 
torque experienced by SherpaTT on different terrains. As seen from this figure, signals show a 327 
signature that seems to change according to the specific surface. The goal of this research is to learn 328 
this signature to gain terrain awareness. To this aim, it is necessary to select the most relevant signals 329 
for building an accurate predictor.  330 

 331 
Table 3. List of available proprioceptive signals 332 

SIGNAL SYMBOL SENSORS Signal ID 
Longitudinal Force Fx LC S1 
Vertical Force Fz LC S2 
Drive Torque Td LC S3 
Drive electrical current Cd JT S4 
Drive PWM duty cycle PWMd JT S5 
Longitudinal acceleration ax IMU S6 
Lateral acceleration ay IMU S7 
Vertical acceleration az IMU S8 
Gyro roll rate gyrox IMU S9 
Gyro pitch rate gyroy IMU S10 
Gyro yaw rate gyroz IMU S11 
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 333 
Figure 4. Vertical acceleration and drive torque (wheel front left) measured while SherpaTT 334 

driving straight on different terrains 335 

 Signal augmentation 336 

To improve the information content, an augmentation engine combines multiple direct measurements 337 
based on our understanding of the physical mechanisms underlying the wheel-terrain interaction. 338 
These are few of the many possible signal combinations that can be implemented, and they are chosen 339 
following a trial-and-error approach to provide the best performance over other alternatives. In this 340 
way, nine more indirect signals can be obtained (Table 4). The derivation of these signals is detailed 341 
in this section, and the rationale behind the choice of these entities is also explained. 342 
Two main motivations support the proposed augmentation stage. First, two or more signals that are 343 
useless (not relevant) for themselves can be useful when combined. Then, noise reduction and 344 
consequently better class separation may be achieved by adding variables that are seemingly 345 
redundant (Guyon & Elisseeff, 2003). This explains why we resort to indirect or combined signals 346 
and include redundant measurements of the same physical quantity. 347 
The first indirect signal is the power loss due to the wheel traction on given terrain. It can be derived 348 
from a “mechanical” or “electrical” analysis. The mechanical power can be estimated as follows: 349 

 𝑃ெ =  𝑇ௗ ∙ 𝜔 (6) 
where 𝜔 is the rotational speed of the wheel. Conversely, the electrical power consumption can be 350 
obtained as: 351 

 𝑃ா = 𝜂 ∙  𝑉ௗ ∙ 𝑃𝑊𝑀ௗ ∙ 𝐶ௗ (7) 
where Vd is the drive voltage, Cd is the wheel drive current, PWMd is the duty cycle of the wheel drive 352 
Pulse Width Modulation, and 𝜂 is the efficiency of the electric motor, assumed to be constant and 353 
approximately equal to 0.85. 354 
Due to the rolling resistance, the direction of the resultant vertical force Fz might not pass through the 355 
centre of the wheel, with an offset in the direction of the movement (Figure 5). This is especially true 356 
for soft terrain where the impact of rolling resistance is larger. 357 
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 358 
Figure 5. Definition of vertical force offset (dx) 359 

Therefore, we can define the vertical force offset dx from the equilibrium of moments around the 360 
centre of the wheel, neglecting the contribution of rotational inertia: 361 

 𝑑𝑥 =  
𝑇ௗ − 𝐹௫ ∙ 𝑅

𝐹௭
 (8) 

where R is the loaded wheel radius defined as: 362 

 𝑅 =  𝑅ே −
𝐹௭

𝑘௓
 (9) 

being 𝑅ே (=200 mm) the nominal wheel radius, and 𝑘௓ the vertical stiffness of the SherpaTT wheel 363 
that was experimentally estimated as 69 N/mm. 364 
The friction coefficient is an important entity related with the traction ability over the traversed 365 
surface. In this work, it is estimated in three different ways: 366 

 

𝜇ଵ =
𝐹௫

𝐹௭
 

𝜇ଶ =
𝑇ௗ

𝐹௭ ∙ 𝑅
 

𝜇ଷ =
𝐶ௗ𝑘்

𝐹௭ ∙ 𝑅
 

(10) 

where kT (17.4 Nm/A in our case) is the scale factor taking into account the torque constant of the 367 
electric motor and the transmission ratio of the motor reducer. 368 
Speed deviation is the difference between the angular speed of each wheel ω and the average angular 369 
speed of the four wheels 𝜔ഥ. In this work, speed deviation was estimated in two ways: 370 

 
𝑆𝐷 =  |ω − ωഥ| 

𝑆𝐷௡௢௥௠௔௟௜௦௘ௗ =
ω − ωഥ

ωഥ
 

(11) 

Wheel sinkage is another critical parameter related to rough terrain mobility that can be approximated 371 
as suggested in (Guo et al., 2020): 372 

 𝑧 = 𝑅 ∙ ൬1 − cos ൬2 ∙
𝑑𝑥

𝑅
൰൰ (12) 

 373 
Table 4. List of indirect signals 374 

Signal SYMBOL SENSORS Signal ID 
Mechanical Power PM LC, JT S12 
Electrical Power PE MC S13 
Vertical force offset dx LC S14 
Friction coefficient 1 𝜇ଵ LC S15 
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Friction coefficient 2 𝜇ଶ LC S16 
Friction coefficient 3 𝜇ଷ LC, JT S17 
Speed deviation SD JT S18 
Normalised speed deviation SDn JT S19 
Sinkage z LC S20 

 375 
One important aspect is the general data consistency. As an example, Figure 6 shows the drive torque 376 
delivered by the left wheel drive motor, measured by three different sensors. Direct torque 377 
measurement from the wheel-mounted LC is denoted by a solid grey line, whereas indirect estimation 378 
via the associated electric current drawn by the motor is marked by a black solid line. Finally, an 379 
alternative indirect measurement via the LC-derived longitudinal force is also plotted using a dashed 380 
black line. As seen in this figure, all three measurements show a good agreement. Similar results were 381 
observed on different surfaces. 382 

 383 
Figure 6. Torque applied by the left front wheel of SherpaTT as obtained from: direct measurement 384 
of the load cell (solid grey line), indirect measurement via the electric current drawn by the motor 385 
(solid black line), or alternatively via the longitudinal force provided by the load cell (dashed black 386 
line). 387 

 Feature extraction 388 

First, each sensory signal is divided in time windows, and then, for each window features are extracted 389 
as the four main statistical moments. The size of the window, ws is a design parameter. It is set as ws= 390 
2 s corresponding to a traversed terrain patch of about 20 cm (comparable with the wheel radius) at 391 
an average travel speed of 0.1 m/s. In previous works by the authors (Vulpi et al., 2021), it was found 392 
that this value of window size represents a good trade-off between informative content and spatial 393 
resolution. 394 
The four statistical moments are mean E, variance , skewness Sk and kurtosis Ku and are defined as 395 
follows: 396 

 

𝐸௜ =
1

𝑁
෍ 𝑥௡

ே

௡ୀଵ

  

𝜎௜
ଶ =

1

𝑁
෍(𝑥௡ − 𝐸௜)ଶ

ே

௡ୀଵ

 

(13) 
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𝑆𝑘௜ =
1

𝑁

∑ (𝑥௡ − 𝐸௜)
ଷே

௡ୀଵ

ቆට𝜎௜
ଶቇ

ଷ  

𝐾𝑢௜ =
1

𝑁

∑ (𝑥௡ − 𝐸௜)ସே
௡ୀଵ

ቆට𝜎௜
ଶቇ

ସ  

where xn is the value of the signal at the nth time step and N is the total number of time-steps for the 397 
ith window.  398 
The extraction of the statistical features brings the size of the SVM-feature space to 80 (20 signals 399 
multiplied by their 4 statistical moments). The generic feature will be indicated as SiMj, where i 400 
(i=1,…,20) represents the signal ID, whereas j represents the statistical moment (j=1, …,4). 401 
 402 

 Feature selection 403 

Retaining only the features with the highest information content reduces the computational cost while 404 
preserving the accuracy of the model. The selection process can be performed via feature scoring 405 
using appropriate validity indices. Then, an iterative search algorithm can be followed to select a 406 
reduced best feature space. 407 

Validity indexing 408 

A validity index can be assigned to each feature. This index represents a measure of the information 409 
content of the feature. In this work, two validity indices are considered: the Pearson Coefficient (PC) 410 
(Hastie et al., 2009), and the WB index (Zhao & Fränti, 2014). 411 
The PC index can be computed through linear regression of a feature against the 3 classes of terrain, 412 
e.g., sand, gravel, and paved ground. The higher the PC, the larger the information content of the 413 
feature. Although this index can be successfully used for 2-class classification problems 414 
(Dimastrogiovanni et al., 2020), it might be difficult  to implement it for multi-class cases like the 415 
one presented in this work, because the number assigned to each type of terrain is arbitrary. To 416 
overcome this issue, first, the PC index is computed for each terrain pair (e.g., sand-gravel, gravel-417 
paved ground, and sand-paved ground), and then averaged. For example, the PC index of the feature 418 
SiMj against the classes 1 and 2 (sand and gravel) can be calculated as (Guyon & Elisseeff, 2003): 419 

 𝑃𝐶ௌ௜ெ௝ଶ
ଵ =

𝑐𝑜𝑣൫ 𝐹ௌ௜ெ௝ଶ
ଵ  , 𝑦ଶ

ଵ ൯

ට𝑣𝑎𝑟൫ 𝐹ௌ௜ெ௝ଶ
ଵ ൯𝑣𝑎𝑟( 𝑦ଶ

ଵ )

 (14) 

where 𝐹ௌ௜ெ௝ଶ
ଵ  is a vector containing all values of the feature SiMj for terrains 1 and 2, whereas 𝑦ଶ

ଵ  420 
contains class values (1 or 2) for each element of  𝐹ௌ௜ெ௝ଶ

ଵ . Similarly, 𝑃𝐶ௌ௜ெ௝ଷ
ଶ  (PC index of feature 421 

SiMj against the classes gravel and paved ground) and 𝑃𝐶ௌ௜ெ௝ଷ
ଵ  (PC index of feature SiMj against the 422 

classes sand and paved ground) follow the same principle. 423 
The overall PC index for feature SiMj can be now computed as follows: 424 

 𝑃𝐶ௌ௜ெ௝ =
𝑃𝐶ௌ௜ெ௝ଶ

ଵ + 𝑃𝐶ௌ௜ெ௝ଷ
ଶ + 𝑃𝐶ௌ௜ெ௝ଷ

ଵ

3
 (15) 

In addition, the WB index can be computed for feature SiMj: 425 

 𝑊𝐵ௌ௜ெ௝ = 𝑚 ∙
𝑆𝑆𝑊ௌ௜ெ௝

𝑆𝑆𝐵ௌ௜ெ௝
 (16) 

where SSW is the sum of square within classes and SSB is the sum of squares between classes, 426 
computed as follows: 427 

 𝑆𝑆𝑊ௌ௜ெ௝ = ෍ ෍ (𝑥௦ − 𝜇௞)ଶ
௡ೖ

௦ୀଵ

௡஼௟

௞ୀଵ
 (17) 
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𝑆𝑆𝐵ௌ௜ெ௝ = ෍ 𝑛௞(𝜇௞ − 𝜇)ଶ
௡஼௟

௞ୀଵ
 

where xs is the sth sample of feature SiMj, k is the class k centroid value, µ is the overall dataset 428 
centroid value, nk is the number of samples in class k and nCl (=3) is the number of classes. A low 429 
value of 𝑊𝐵ௌ௜ெ௝ indicates that classes form compact and distant clusters relatively to feature SiMj. 430 
Therefore, the score assigned to each feature will be WB-1: the higher the WB-1, the better the feature 431 
for classification purposes. 432 
The rationale behind using two validity indices is that the WB and PC have two different statistical 433 
meanings: the former describes the compactness of classes, the latter shows the correlation between 434 
a given feature and the type of terrain. One may think that a feature with a low value of PC index will 435 
also have a relatively low value of WB-1 index. However, this is not always true, and exceptions do 436 
occur. For example, Figure 7 shows the distribution of PC and WB indices for the 25 features with 437 
the highest scores. S6M2 is the feature with the third highest value of PC index, but it is only the 21st 438 
feature in terms of WB-1. Similarly, S16M2 is the feature with the second highest value of WB-1 439 
index, but it is only the 14th in terms of PC. This shows that the two indices rank the features in 440 
different ways, therefore they complement each other very well. 441 

 442 

Figure 7. PC and WB indices distribution for the most relevant features 443 

Selection algorithm 444 

The proposed selection approach is based on the iterative search scheme presented in the block 445 
diagram of  Figure 8. The input to the algorithm is the full set of nfeat (=80) features. These features 446 
are then ranked using the output of one of the two validity indices (PC or WB) as a score. The best 447 
feature set is initialized with the first nmin -1 (=2) features of the ranking. At this point, the objective 448 
is to iterate on all the remaining features to find those which provide better classification performance. 449 
In each iteration, identified with the index i that varies from nmin to nfeat, the ith feature in the ranking 450 
is added provisionally to the best feature set. Then, an SVM-based classifier is trained and evaluated 451 
in terms of F1 score via 5-fold cross validation. The k-fold cross validation process partitions data 452 
into k randomly chosen subsets (or folds) of roughly equal size. Therefore, to improve the robustness 453 
of the feature selection algorithm, the training phase is repeated ntrain (=10) times and the final F1 454 
score is computed as the average of the scores obtained at each training phase. If the final F1 score is 455 
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sufficiently higher than the best F1 score obtained so far, the ith feature is kept in the best feature set, 456 
and the best F1 score is updated. Otherwise, the ith feature is discarded from the best set and not 457 
considered for training purposes. 458 
In order to facilitate the reading of the block diagram in Figure 8, the meaning and the numerical 459 
values of the parameters involved in the selection process are collected in Table 5.  460 

Table 5. List of parameters involved in the feature selection approach 461 

Parameter Description Value  
nmin Minimum number of features  3 
F1min Minimum F1 score  60% 
th Accepted improvement (threshold) in the F1 score 5% 
ntrain Number of trainings for each new best feature set 5 
nfeat Number of features in the initial full feature set 80 

 462 

 463 
Figure 8. Block diagram of the proposed feature selection algorithm 464 



Accepted for publication in the Journal of Field Robotics 

 16

The selection process discussed in Figure 8 can be repeated for each one of the two validity indices. 465 
Eventually, two best reduced feature spaces will be obtained: one associated with the PC and the 466 
other with the WB index. To further improve the robustness of the selection algorithm, the union of 467 
these two sets is chosen as the best for SVM training purposes. The 18 selected features are listed in 468 
Table 6. It is worth noting that three features extracted from indirect signals are included as well, 469 
thus, proving the utility of the signal augmentation phase. 470 
A 3D plot of the three most relevant features in terms of WB index is shown in Figure 9 to help the 471 
reader to easily visualize the result of the whole selection process. As shown in this figure, the sand 472 
data form a quite compact cluster, with relatively low values of all three features. Conversely, gravel 473 
and paved ground data show higher values of S7M2 (variance of ay) than sand and differentiate 474 
prevalently for values of S17M2 (variance of 𝜇ଷ). 475 
Table 6. Best feature set 476 

Signal Statistical moment Direct or 
Indirect 

Feature ID WB-1/WB-1
MAX PC 

𝜇ଷ Variance Indirect S17M2 1.00 0.345 
ay Variance Direct S7M2 0.691 0.449 
Td Variance Direct S3M2 0.685 0.308 
gyroz Variance Direct S11M2 0.561 0.450 
gyrox Kurtosis Direct S9M4 0.549 0.317 
Fx Mean Direct S1M1 0.428 0.366 
az Variance Direct S8M2 0.371 0.350 
gyrox Skewness Direct S9M3 0.364 0.307 
gyrox Variance Direct S9M2 0.348 0.356 
𝜇ଵ Mean Indirect S15M1 0.342 0.275 
z Kurtosis Indirect S20M4 0.327 0.177 
ax Variance Direct S6M2 0.192 0.385 
Fz Variance Direct S2M2 0.192 0.267 
gyroy Variance Direct S10M2 0.164 0.295 
Fx Variance Direct  S1M2 0.143 0.253 
ay Kurtosis Direct S7M4 0.048 0.115 
PWMd Mean Direct S5M1 0.013 0.062 
gyroz Mean Direct S11M1 0.011 0.064 

 477 
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 478 
Figure 9. 3D plot of the first three features with the highest score of WB-1 479 

V. Results and discussion 480 

In this section, the results of the generalization problem are shown on the main dataset. Next, results 481 
for two extrapolation cases are presented. 482 

 Generalization  483 

In the generalization problem, only the main data set is used (e.g., experiments on paved ground, 484 
gravel, and sand). The algorithms are tested via 5-fold cross validation. The data set comprises of 485 
1204 samples, where a sample corresponds to a 2-second time window. Of these 1204 samples, 443 486 
are collected on paved ground, 338 on gravel and 423 on sand. 487 
One of the objectives of this paper is to demonstrate how a proper feature selection algorithm can 488 
reduce the computational and memory cost of the model, while maintaining a similar accuracy in 489 
prediction. Table 7 shows comparison between the two machine learning algorithms in terms of 490 
accuracy and computational burden. Moreover, SVM is tested with three different feature sets: 491 

 Direct feature set (44 features) 492 
 Full feature set (80 features) 493 
 Best feature set (18 features) 494 

while CNN is tested with three different signal sets: 495 
 Direct signal set (11 signals) 496 
 Full signal set (20 signals) 497 
 Best signal set (13 signals) 498 

The signals used for training CNN correspond to those used to compute SVM features. In fact, the 499 
44 direct features are the 4 statistical moments of the 11 direct signals and the full 80-feature set is 500 
composed by the 4 statistical moments of the full 20-signal set. Furthermore, the training set for CNN 501 
includes the signals used to derive the features in the best feature set. Namely, the 13 best signals are: 502 
friction coefficients 1 and 3, longitudinal, lateral and vertical accelerations, drive torque, yaw, pitch 503 
and roll rates, longitudinal and vertical forces, sinkage, drive PWM. 504 
The accuracy of the SVM model trained with the direct and full feature sets is 89.8% and 90.8%, 505 
respectively. With the full feature set, more samples are correctly classified by SVM, but memory 506 
usage has increased by 82%, training time by 32%, testing time by 71% and feature extraction time 507 
by 50%. This proves the effectiveness of the signal augmentation in terms of accuracy and shows the 508 
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drawbacks in terms of computational burden. The purpose of feature selection is to reduce the 509 
computational cost, without losing classification accuracy. The results presented for SVM trained 510 
with the best feature set, prove that the feature selection algorithm proposed in this work is effective. 511 
In fact, the accuracy reaches 90.9% and when compared to the SVM trained on the full feature set, 512 
while the model memory usage is reduced by 77%, training time by 6%, testing time by 29%, feature 513 
extraction time by 33%. 514 
The effectiveness of both input signal augmentation and feature selection is also confirmed by the 515 
results presented for CNN. This deep learning algorithm gains in terms of accuracy from signal 516 
augmentation reaching 96.4%. Using the full signal set still results for CNN in the same drawbacks 517 
presented for SVM: model memory usage increased by 18%, training time by 36%, feature extraction 518 
time by 77%. In contrast with SVM, testing time for CNN with full signal set is reduced by 22%. 519 
Training CNN with the best signals resulting from feature selection leads to an accuracy of 96.2% 520 
and when compared to the full-signal CNN, the model memory usage is reduced by 14%, training 521 
time by 27%, testing time by 4%, feature extraction time by 41%. 522 
Feature extraction times presented in the last row of Table 7 are suitable for online application for 523 
both SVM and CNN, even if construction of multichannel spectrograms from best signals for CNN 524 
takes about 2.1 ms more than construction of best features for SVM. It should also be noted that 525 
feature extraction time for both SVM and CNN can be further improved by optimizing the current 526 
MatLab code using vectorization or processing the data directly with a C++ code. Note that at the 527 
time of writing of the paper, the algorithms and the dataset are under revision in a private Github 528 
repository that will be made available to the interested readers upon paper publication. 529 
Confusion matrixes for both SVM and CNN are shown in Figure 10 only for best feature and best 530 
signal sets. Sensitivity results for each class are contained in the diagonal elements of each confusion 531 
matrix. The performance of both models in terms of precision, recall and F1 score are shown in Table 532 
8. Both models perform good in generalization of data, with CNN being slower but significantly more 533 
accurate. This increase in classification accuracy is not the main advantage for CNN classification 534 
model with respect to SVM. Where the two models show the greatest difference in classification 535 
performance is indeed extrapolation, as shown in the next section. 536 
 537 
Table 7. Performance comparison between terrain classifiers trained on different feature sets: direct, 538 
full, best feature set 539 

 SVM CNN 
Feature and signal sets Direct Full Best Direct Full Best 

Accuracy [%] 89.8 90.8 90.9 95.6 96.4 96.2 
Model memory usage [kB] 547.6 996.9 228.0 44.9 53.2 45.8 

Training time [ms] 118.9 157.7 148.0 1.07 e4 1.46 e4 1.06 e4 
Testing time [ms] 17.4 29.8 21.2 153.0 119.4 114.7 

Feature extraction time [ms] 0.6 0.9 0.6 2.6 4.6 2.7 
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 540 

 541 
Figure 10. Generalization Results for best features SVM and best signals CNN 542 

Table 8. Accuracy, Precision, Recall and F1 score for SVM and CNN in generalization 543 

 SVM CNN 
Class Gravel Paved 

Ground 
Sand Gravel Paved 

Ground 
Sand 

Precision 
[%] 

89.1 82.4 100 80.3 82.2 100 

Recall  
[%] 

81.0 90.1 99.8 92.3 95.7 100 

F1 score  
[%] 

84.9 86.1 99.9 85.9 88.4 100 

 544 

 Extrapolation 545 

In the extrapolation problem, the operating conditions of training and testing sets are different, 546 
therefore these sets do not come from the same population. In this work two extrapolation cases are 547 
presented. The first one deals with varying rover speed, whereas the second one assesses the 548 
performance of the algorithms on a terrain unseen in the training phase. 549 

Testing on a new vehicle velocity  550 

During the experiments with SherpaTT, the rover was controlled at two different speeds: 0.1 m/s and 551 
0.15 m/s. Of the 14 runs, 7 were conducted at low speed (0.1 m/s) and 7 at high speed (0.15 m/s). 552 
Data collected at low-speed form the low-speed distribution, whereas data collected at high-speed 553 
belong to the high-speed distribution. In the extrapolation problem presented here, low-speed data 554 
are used as training set, while high-speed data are used as testing set. Both sets belong to the main 555 
dataset (paved ground, gravel, and sand). 556 
Proprioceptive sensorial data are very useful for terrain classification but also show a strong 557 
dependency from traversing speed (Bai et al., 2019). Most terrain classification algorithms analyse 558 
and classify proprioceptive data acquired at constant traversing velocity on different terrains. Studies 559 
have been also conducted to show dependency of terrain classification performances from rover’s 560 
traversing speed, searching for the velocity that maximizes classification performance. For being able 561 
to classify the traversed terrain at any travelling speed a rover should be equipped with a model trained 562 
on a vast variety of possible traversing speeds or could only use speed independent features that are 563 
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difficult to construct and may not be well suited for terrain classification. Another way of achieving 564 
the goal of sensing and classifying the terrain at any travelling speed is using a model that shows 565 
good results when tested on data acquired at a traversing velocity different from the one used for 566 
training. Figure 11 contains the confusion matrixes for both SVM and CNN when trained on low-567 
speed data and tested on high-speed ones. As can be seen, despite both models showed good results 568 
in generalization only CNN is also capable of extrapolating the information of the traversed terrain 569 
from data acquired at a different speed. The two models were still trained and tested using only best 570 
feature set for SVM and corresponding signal set for CNN. While CNN keeps classification accuracy 571 
as high as 89.5%, SVM becomes unreliable achieving only 55.7% of correctly classified data samples. 572 
The performances of both models in terms of precision, recall and F1 score are shown in Table 9. 573 
It should also be pointed out that high-speed data used as testing constitute 50% of available data, 574 
representing therefore testing set larger than the one usually used (20-30%). The robustness of CNN’s 575 
classification performance on a large testing set composed by data acquired at a different speed 576 
suggests that this model is well suited for terrain classification purposes. Moreover, the features 577 
automatically learned from signal spectrograms appear to be more reliable than statistic ones and 578 
represent a better choice to be able to classify the traversed terrain at various travelling velocities. 579 
Similar results are obtained when trained on high-speed data and tested on low-speed data, and they 580 
are omitted for brevity sake. 581 

 582 
Figure 11. Extrapolation results for best features SVM and corresponding signals CNN 583 

Table 9. Precision, Recall and F1 score for SVM and CNN in extrapolation using varying velocity 584 

 SVM CNN 
Class Gravel Paved 

Ground 
Sand Gravel Paved 

Ground 
Sand 

Precision 
[%] 

54.8 46.8 100 80.3 82.2 100 

Recall  
[%] 

40.3 83.9 47.5 82.1 81.0 99.5 

F1 score  
[%] 

46.4 60.1 64.4 81.2 81.6 99.7 

 585 

Testing on an independent dataset 586 

The second extrapolation use case aims to evaluate the system response when labeling observations 587 
collected on a terrain different from those used in training (independent dataset). To this aim, the 588 
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ground classifier previously trained on the main data set (formed by paved ground, gravel, and sand) 589 
is further validated on a representative dataset gathered from a second field test campaign run in a 590 
planetary analogue terrain in a sand mine near Bremen (see Figure 12). 591 
For this extrapolation challenge, we have tried to generalize the classification problem at hand by 592 
referring to terrain difficulty labels rather than specific terrain classes, as explained in Table 10. 593 
Adopting the proposed terrain difficulty scale, paved ground and sand can be seen as the opposite 594 
extremes. Firm ground offers better traction and less compressibility, therefore a low difficulty label 595 
can be assigned to it. Conversely, soft ground poses more challenges, and it is scored as a highly 596 
difficult surface. Then, the difficulty degree associated with an unknown observation can be 597 
considered as inversely proportional to the distance from the class sand. One should note that such a 598 
generalization effort can be useful or necessary for the practical implementation of planetary 599 
exploration terrain classifiers that can be only trained on Earth using representative analogue surfaces, 600 
and then applied to unknown planetary surfaces via extrapolation. 601 
 602 
The sand mine independent dataset consists of 302 samples, where, again, a sample corresponds to a 603 
2-second window. It should be also underlined that, although ground-truth data is not available for 604 
this extrapolation problem, the terrain in the sand mine can be expected as a surface with medium-605 
high difficulty, like the sand type of the main dataset (Figure 2) but somewhat more compact and 606 
humid. As an indicative measure, sample tracks left by the wheels on the sand mine terrain are shown 607 
in Figure 12(b). 608 
 609 

  610 
(a)                                                                           (b) 611 

Figure 12. (a) Sherpa TT during the sand mine testing; (b) a close up of the tracks left by the wheels 612 

 613 
Table 10. Category of difficulty assigned to each terrain type of the training set. 614 

Terrain type Equivalent Category 
of Terrain difficulty 

Sand High 
Gravel Medium 
Paved Ground Low 

 615 
The classification results obtained from SVM and CNN are collected in Table 11 showing predicted 616 
labels of terrain difficulty. Out of the 302 samples, the SVM-based algorithm classifies 71.2% as high 617 
difficult terrain, 17.2% as medium and 11.6% as low. CNN performs similarly, classifying 69.9% of 618 
the new terrain samples as highly difficult, 24.2% as medium and 5.9% as low. A relatively low 619 
percentage of the test samples (about 12 % for SVM and 6% for CNN) is classified as hard soil.  620 
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Table 11. Terrain difficulty predictions as obtained from SVM and CNN in the sand mine test 621 

Terrain Difficulty labels SVM CNN 
High 215 211 
Medium 52 73 
Low 35 18 

 622 
For an easier visualization, the results obtained from the CNN-based classifier are presented in Figure 623 
13 during a sample straight run using a semantic labelling where the successive terrain patches 624 
traversed by the rover are marked according to a color map that reflects the terrain difficulty scale of 625 
Table 10 (see also to the inset of Figure 13b). We recall that three discrete levels of terrain difficulty 626 
are considered: low, medium, and high. 627 
Figure 13a shows the 3D stereo-generated map of the environment with overlaid a CAD model of 628 
SherpaTT and the path followed by the rover denoted with a dashed white line, whereas in Figure 629 
13b the corresponding terrain labeling is reported with terrain patches marked respectively in red, 630 
yellow, and green, for high, medium, and low difficulty. In this test that was performed on fairly 631 
homogeneous terrain, the system mostly classifies the sand mine surface as of medium-high difficulty 632 
with two erroneous predictions (low difficulty) between 2 and 3 m. 633 
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 634 
(a) 635 

 636 
(b) 637 

Figure 13. Semantic labeling using discrete terrain difficulty categories: (a) 3D stereo-generated 638 
map of the environment with overlaid the path (dashed white line) followed by the rover, (b) 639 
corresponding terrain difficulty visualization. Terrain patches are marked respectively in red, yellow, 640 
and green, for high, medium, and low difficulty. 641 

VI. Conclusions 642 

This work presented an approach to soil classification that relies on proprioceptive sensing only, e.g. 643 
accelerations, forces, torques, and electrical currents. The algorithms developed are validated on data 644 
collected during tests performed with the hybrid wheeled-legged rover SherpaTT. The physics-based 645 
signal augmentation process presented in this paper uses 11 proprioceptive measurements to produce 646 
a large set of 80 features for SVM and 20 signals for CNN. This improved the information content as 647 
proved by the high classification accuracy obtained in generalization (90.8% for SVM and 96.4 % 648 
for CNN). The proposed feature selection algorithm allows SVM to retain a high classification 649 
accuracy with only a portion of the full set (18 features), with successful reductions in memory usage 650 
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(-77%) and required time for training (-6%), testing (-29%) and feature extraction (-33%). The same 651 
benefits also apply for CNN when using a reduced set of 13 signals related to the 18 best SVM 652 
features, improving memory usage (-14%), training time (-27%), testing time (-4%) and feature 653 
extraction time (-41%). The comparison between SVM and CNN shows good capabilities of both 654 
models in generalization, with accuracy higher than 90%. More challenging extrapolation problems 655 
have been tackled as well to evaluate the impact of varying operating conditions and site of the 656 
acquisition. In these tests, CNN outperformed the SVM counterpart. When tested on a new vehicle 657 
velocity, CNN reached an accuracy of 89.5%, against 55.7% held by SVM. When tested on a new 658 
terrain, CNN recognized its deformability class more frequently than SVM, correctly classifying 6% 659 
more of the available samples. Based on these results, the proposed CNN qualifies as a good 660 
algorithm for soil classification even in the presence of disturbances and unknown conditions. 661 
This work proved that is possible to use only proprioceptive features to infer the signature of a 662 
particular surface via learning algorithms. Moreover, the presented promising results suggest the 663 
possibility to extend rover travelling distance thanks to on-board integration of the developed learning 664 
algorithms. 665 
Future developments of this research refer to: i) continuous training of the system by incorporating 666 
instances of “new terrain” classes during normal operations, therefore making the system adaptive, 667 
ii) augmenting the classifier with new special classes; for example, instances of excessive wheel 668 
slippage (close to 100%) can be used to train a hazard class to inform the rover of impending 669 
immobilization conditions, iii) combining the proposed framework using proprioceptive signals with 670 
exteroceptive signals. The latter would enable the vehicle to predict hazards or trapping conditions 671 
before driving through the ground, e.g., based on non-contact information coming from vision 672 
sensors. 673 

Software repository 674 

The codes and data used for this research will be made publicly available at a Github repository. 675 
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