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ABSTRACT

Quaternions are commonly used for rotation representation as they avoid the singularities found
in the Euler angles representation and are more compact than using rotation matrices (for storage,
operations, and constraints required). However, it is difficult to use quaternions in linear control
approaches due to the inherent unit length constraint of the representation. Quaternion-based lin-
ear control has been previously used for single rigid body control such as quadrotors and satellite
attitude control. In this paper, we provide an analytical method for linearizing multibody free-
floating robotic systems without gravity using a quaternion-based rotation representation for the
floating base. This linearization is then used for deriving a Linear Quadratic Regulator (LQR)
based controller. The LQR is optimal in the local neighbourhood of the linearization and is glob-
ally asymptotically stable for such systems. The utility of this method is demonstrated using two
examples from different robotic domains: space and underwater robotics.
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1 Introduction

Quaternions are a popular way of rotation representation for robots with free-floating base such as
quadrotors, planes, space robotic systems, underwater systems, and legged robots. This is due to their
advantages over Euler angles (singularity/gimbal-lock free and order independent representation) and
over rotation matrices (more compact representation, fewer floating point operations during rotational
transformations and increased numerical stability). Furthermore, they provide a natural distance metric
for rotations. Due to these reasons, quaternions have found widespread use in trajectory optimization
[1, 2] and control [3-9]. Due to the advantages offered by quaternions, Quaternion-based control has
been investigated for a long time. Some of the investigations into non-linear control using quaternions
for stability analysis using Lyapunov include [8, 9]. Finding Lyapunov functions for the quaternion-
based non-linear systems is challenging and generally driven by intuition [10]. Furthermore, Lyapunov
functions provide guarantees on the stability of the system but they do not deliberate about the optimality
of the system. Optimal control of the robotic systems is a practical goal for many applications. For non-
linear systems, a way to carry out both stability and optimality analysis is by linearizing them about the
required operating point. Linear systems and their analysis has a rich history of both optimality and


mailto:Shubham.Vyas@dfki.de
mailto:Bilal.Wehbe@dfki.de
mailto:Shivesh.Kumar@dfki.de

Figure 1 Figure showing different snapshot of the AUV during a control maneuver. The top-left figure
shows the initial position, top-right and bottom-left figures show the transition, and the bottom-right image
shows the vehicle’s final state.

stability. Multi-body systems with a free-floating base such as a humanoids and space robots also benefit
from the use of linear model and LQR-based control as shown in [7, 11]. However, until now, these
either use numerical differentiation [7] or Euler representation (after conversion to Euler angles) [11]
for synthesizing the LQR controller. Having a linearized model of the dynamics allows the use of rich
literature of linear systems to analyze the system from multiple perspectives regarding optimality and
stability. Control techniques such as pole placement, LQR, and H.. can be used for linear systems to drive
the system to the desired state in an optimal manner. However, directly linearizing quaternion-based
dynamics results in a linear system that is not controllable [12]. This is due to the quaternion unit length
constraint which the linear system has no knowledge about. It therefore tries to control the components
individually while they are, in actuality, constrained. This prevents the use of linear system analysis and
control tools while using quaternions. A method for successfully linearizing the quaternion dynamics
for the attitude control of a rigid body in SO(3) was presented in [3, 13]. It embeds the unit quaternion
constraint to create a reduced model of the quaternion-based dynamics which is controllable. Similar
work can be seen in the quadrotor controls community [4-6, 14, 15]. These results are demonstrated for
the attitude control of a single rigid body in SO(3).

In this paper, we summarize and derive the linearization as given in the literature for control of a sin-
gle rigid body in SO(3) and SE(3) using an LQR. We further extend this method to provide an analytical
method to synthesize an quaternion-based LQR controller for multi-body systems without gravity. The
application use case presented for this is the problem of post-capture detumbling in a robotic space debris
removal mission. Furthermore, we improve the fidelity of the single rigid body linearization for control
of autonomous underwater vehicles (AUV) by including additional hydrodynamic bias terms to the lin-
earization and demonstrate control of the AUV (see Figure 1 for an example). The methods presented
here allows the controller synthesis to be free from numerical errors and representation transformations.
Furthermore, combining the given methods with quaternion-based trajectory optimization methods from



[1, 2] can yield a control pipeline using quaternions independent from other rotation representations
which could induce errors/confusion.

The layout of this paper is as follows, Section 2 describes the required background mathematical
preliminaries, Section 3 provides the derivation for analytical quaternion based linearization used for
LQR along with additional bias terms. Section 4 demonstrates the applications of the derived linear
model in an LQR controller for space and underwater application scenarios, and finally Section 5 presents
the conclusion and future work.

2 Rotational Representations

Any rotation is a motion of a certain space that preserves at least one point. All rotations about a
fixed point form a group. In rigid body kinematics, they form a matrix Lie group known as the special
orthogonal group SO(n)

SO(n) = {R € GL(n,F) : RRT =1,detR = +1}

where n denotes the dimension of the group, GIL(n,F) is the general linear group defined on the underly-
ing set ' with matrix multiplication as the group operation. An element in SO(n) can be parameterized
by n(n— 1)/2 unique parameters. Out of n> parameters of a general real matrix, the remaining n(n+1)/2
parameters are determined by the condition RR? = I. For example, the matrix representation of 3 di-
mensional rotation SO(3) requires 3 x 3 = 9 parameters out of which 3 are unique. The Lie algebra of
SO(3), denoted as s0(3), may be identified with the 3 x 3 skew-symmetric matrices of the form

0 -
(0] = | s 0 -—o (D
- W 0
with the Lie Bracket structure
[[@1], [@2]] = [01][@2] — [@2][01] (2)

where [@1], [@>] € 50(3). We can identity s0(3) with R? using the Eqn. (1), which maps a vector @ € R?
to a matrix (@] € so0(3). It is straight forward to show that

[[@1], [@2]] = [@1 % @] 3)

where @1, w; € R3. Thus, @ + [®] is a Lie algebra isomorphism between the Lie algebra (R?, x) and
the Lie algebra (s0(3),[-,]). Let R(¢) and R denote the time dependent orientation of the rotating frame
and its rate of change w.r.t. time respectively as seen from a fixed inertial frame. Denote by w the angular
velocity of the rotating frame. Then

RR7'=[w,], R 'R=[w}) 4)

where o;, w, € R? are the space fixed and body fixed vector representations of @ respectively, and
(@] € s0(3) is its 3 x 3 matrix representation [16].

Many alternative compact parameterizations of the 3 dimensional rotation are available in the lit-
erature. These include minimal parameterizations like roll-pitch-yaw angles, Euler angles, Caylay-
Rodriguez parameters etc., but they are known to suffer from singularities. Unit quaternion is a compact
singularity-free way to represent rotations with only 4 parameters. Euler’s rotation theorem states that
any rotation or sequence of rotations of a rigid body or coordinate system about a fixed point is equiv-



alent to a single rotation by a given angle a € [0, 7] about a fixed unit axis @ (called the Euler axis)
that runs through the fixed point. The unit quaternion representation of R = exp ([®] ) is constructed as
follows. Denote ¢ € R* according to

q0
_|a1| | cos(/2) 4
=1, _[d)sin(a/Z) €K )
q4

The unit normalization constraint ||¢|| = 1 follows from its construction. Geometrically, unit quaternions
g can be visualized as points on a unit 3-sphere S> embedded in R*. Using the identity 1 +2cos(a) =
tr(R) (with tr(R) representing trace of the matrix R) and the cosine double angle formula cos2¢ =
2cos? ¢ — 1, the elements of ¢ can be obtained directly from the entries of R as follows:

q0 33 — 123

—l\/l—l—r +roptr L r3—r
q0 3 11 22 33, |41 440 13 31
q2 n1—r2

On the contrary, given a unit quaternion ¢ = [qo,q1,42,93], the corresponding rotation matrix R is ob-
tained as a rotation about the unit axis, in the direction of (g1, ¢2,¢3) by an angle 2cos™!(go) as follows:

R —B -3 2qa—q9) 29092 — q193)
209003+ 0102) B—@ B3 29295 —q190)
20193 —90q2)  2(q0q1 +9293) G- — B+

It is apparent from the above formula that both ¢ € S* and its antipodal point —g € S* produce the same
rotation matrix R. This is known as the double cover property of quaternions. Additionally, quater-
nions are isomorphic to special unitary group SU(2). The mapping between angular velocity and the
quaternion derivatives i.e. quaternion kinematics is given by the following relation [17]:

1
4y = 52A@)q, (6)

This is a differential equation on SU(2). Here, the matrix operator %Q(a)) is given as:

1 110 —f
EQ(a)):E[ ] (7

o0 —|[o]

Quaternions have become increasingly popular in various application areas for e.g. computer graph-
ics, computer vision, robotics, navigation, flight dynamics, orbital mechanics of satellites etc. The main
reasons of this popularity are its compact singularity free representation and computational efficient
quaternion algebra in comparison to working with rotation matrices. Some additional advantages in-
clude spherical interpolation and the existence of a simple distance metric.

3 Quaternion-Based Linearization

In this section, we extend the method given in [3]. The method given in [3] provides an LQR
controller for a single rigid body in SO(3). We first extend this to a single rigid body in SE(3) and then
further extend it to a multi-body system made of rigid links in SE(3) x R”". The equations given in this



section are, in general, frame invariant as long as all the terms are computed with respect to the same
reference frame. We describe the frames in which they are described in for easier implementation of the
example applications in Section 4.

3.1 Mapping Angular Velocities to Quaternion Derivatives

Let us consider a unit quaternion g,,, which represents a rotation ¢ about the given unitary rotation
axis @. The quaternion kinematic equation from Equation 6 can be expanded to its full matrix form as:

qo 0 —o —m; —w3| [qo
gi| ljlor 0 o3 —m| |q
h| 2 — 0 w ®)
q2 Q) w3 1 q2
93 w3 o - 0 ||g3
This equation can be rearranged as:
go g —q1 —q2 —q3| |0
gi| _lLlar q -9 q | |0 ©)
@2 2|2 @3 q —q| |m
q3 3 —q2 q1  qo ] Lo3

For a given unit-quaternion representation of a rotation g, if the rotation & # =+, the scalar part go can
be written as:

qo=\/1—q%—q%—q§ (10)
We can substitute this in Equation 9 to get a one-to-one mapping between the angular velocities and
quaternion derivatives (only the vector part) which can be written as:

qp = %Qw (11)
where:
q0 —493 q2
O=|q¢ q —q (12)
—q2 41 q0

As shown in [13], this one-to-one mapping has a singularity at o« = +=7. However, we use this mapping
for the linearized version of the dynamic system. A linearized version of the non-linear system is only
used for control in the local neighbourhood of the linearization point where the linearization assumptions
are valid. We do not expect such large rotations to be seen during the use of the linear system and thus the
singularities at =7 can safely be ignored for the purpose of this paper. This mapping is used to perform
the linearization and synthesize an optimal linear controller.

3.2 Single Rigid Body Linearization using Quaternions
By utilizing Equation 10, we can write the full state of a single rigid body in SE(3) as follows:
x=[g,,r, 0, (13)

where g, = [q1,4¢2,¢3] is the vector part of the unit quaternion, r € R? is the position vector, @ the angular
velocity, and v = 7 is the linear velocity, all expressed with respect to the inertial frame of reference (also
known as hybrid representation in kinematics [18]). The derivative of the state vector can now be written



as:
X = [z]b7v7(b7v]T (14)

The equation of motion for this rigid body in matrix form without gravity can be written as follows [16]:

M(q)q+C(q,q) =u (15)

Here, M(q) € R%*6 is the generalized mass-inertia matrix of the rigid body, C(g,¢) € RS is the
generalized Coriolis and Centrifugal effort, and u € R® is the generalized forces vector. g, ¢, and  are
the generalized positions, velocities, and accelerations of the system. For a single rigid body, g, M, and
u can be written as:

§=[w,]" (16)
1 0

=0 me ar

u=[t,F] (18)

Here, I35 1s the inertia matrix, E is a 3 x 3 identity matrix, m is the mass of the body, and 73
and F'3, are the torques and Forces applied about the center of mass. The Equation 16 can be evaluated
using the Equation 15, Equation 17, and Equation 18 at a fixed point (§ = 0) to obtain the following
expression:

(19)

Using Equation 19 and Equation 11, the derivative of the state vector from Equation 14 can be
written as follows:

N o1 7
x=|=0w,v. I, 17,—F (20)
2 m
We can now take a first order Taylor approximation of Equation 20 about a fixed point (x*,u*):

d d
)'c%f(x*,u*)%—[a—i:] o *(x—x*)%—[a—ﬂ - 7*(u—u*) (21)

Using the stationary fixed point at origin (with quaternion g;, = [1,0,0,0]7), the state and the gen-
eralized forces can be written as x* = 0121 and u* = Qg respectively. After evaluating the partial
derivatives, the linear system can be written as:

Xx=Ax+Bu (22)



where:
1
03x3 03x3 5E3x3 03x3

A [a_f} _|03x3 O3x3 O3x3 E3x3 23)
CE 3 P 03x3 03x3  0O3x3  0O3x3
03x3 03x3  0O3x3  0O3x3
03x3  O3x3
0 0 0
B [_f} _ |03 D5 (24)
du u=x* ,u=u* Ib3><3 03><3

I
03x3  ;,E3x3

The above equations provide a linear system for the dynamics of the single rigid body in SE(3)
parameterized using quaternions. It can be easily verified that the given linear system is controllable.
Thus, a Linear Quadratic Regulator (LQR) can be used to control this system about its fixed point. The
LQR controller is locally optimal and globally asymptotically stable [3].

3.3 Multi-Body Linearization using Quaternions

The linear system given in the Sub-Section 3.2 can be extended to a free-floating multi-body system
with configuration space SE(3) x R” where n is the number of joints in the system. The state vector for
a multi-body system can be written as:

X = [Elbarb7q;n7wbavbaé]m]T (25)

Here, g, is the vector part of the unit quaternion representing the floating base orientation, r, is the
position vector of the center of mass of the floating base, g, is the vector of generalized joint positions,
)y the angular velocity of the floating base, v, the linear velocity of the floating base, and ¢g,, is the
generalized joint velocity vector, all expressed with respect to the inertial frame of reference (also known
as hybrid representation in kinematics [18]). Similarly, the derivative of the state can be written as:

x= [ébavbaqm7mbvvb7Qm]T (26)

Using a fixed point for linearization (where ¢ = [g;,Vp,q,,] = 0), the equations of motions from Equa-
tion 15 can be written as:

M(q)g=u (27)
@p

g= v | =M 'u (28)
Gm

Using Equation 28, Equation 26, and Equation 11, we can now write the state derivative as:

1 T
i = | 5@, v, G M~ (29)

The generalized forces for the free-floating multi-body system can be written as:

u=[Tp,Fp,Tn)" (30)



where, 7; and F, are the torques and forces acting on the floating base, and 7,, are the generalized forces
acting on the joints. The state of the system about the fixed point can be written as follows:

X = [06><17Qm,l><170(6+n)><1]{12+2n)><1 )

We can then use the Taylor Expansion (from Equation 21) to create a linearized version of the multi-
body equations of motion about the fixed point. After evaluating the partial derivatives, the linear system
matrices are:

033 033 0351 3E3x3 033 03n
A 03x3 03x3 03%n 03x3 E3y3 03%n (32)
On><3 0n><3 0n><n 0n><3 On><3 En><n

O064m)x3 O@6+n)x3 Orn)xn Ow6rnm)x3 O+n)x3 O64n)xn

033 033 03%x
0 0 0
B— 3x3 3x3 3xn (33)
0n><3 0n><3 Onxn
-1
M(6+n) X (6+n)

Similar to Sub-Section 3.2, it can be easily verified that the linear system derived here is controllable.
An LQR controller can provide globally asymptotic stability of such non-linear system (while ignoring
contact) i.e. it can provide stability for any initial position and velocity. Furthermore, near the point
of linearization i.e. the fixed point, as the linear system is a good approximation of the non-linear
dynamics about this point, the same controller acts as an almost optimal controller. Thereby, a single
LQR controller showcases global stability and local optimality. Simultaneously satisfying these two
properties is an unique aspect for a single controller for a fully-actuated multibody system in SE(3) x R”.

3.4 Additional Bias Terms

Here we demonstrate how to handle additional bias terms in the equations of motion. Post-linearization
additional terms which are linear with respect to either position or velocity can be added to the linear
system matrices to increase the fidelity of the linear system. We demonstrate this with the use-case of
an underwater vehicle. We derive the controller equations for the case of single rigid body underwater
vehicle. In such case two extra components could add bias to the system, namely hydrodynamic damp-
ing and a restoring effect resulting from the buoyant and gravitational forces. We write the equations of
motion of a fully submerged rigid-body with the linear velocity v represented with respect to the body
frame, as it is easier to express the damping terms. The equations of motion are expressed as follows

Mg+C(q)+d(q) +g(q) =u (34)

where d(§) represents the damping term and g(qg) is the restoring effect. To model the hydrodynamic
damping we follow a second order modulus approximation which was proposed in [19] and adopted later
in [20]. This allows us to write the equations of damping as a combination of a linear and non-linear
term as follows

d(q) =Dg = (D;+Du(3))q (35)

Here, D € R is a time-variant damping matrix, D; € R®* is a constant matrix representing the linear
drag terms, and D, (g) € R®*® is a term representing the non-linear drag components described as:

Dy(§) = Dydiag(|o), |[v]) (36)



where D, € R%*6 is a constant matrix representing the non-linear damping coefficients. The restoring
terms are contributed to the effect due to the gravitational pull and the buoyancy forces acting on a fully
submerged body. Assuming a fixed-mass and fixed-volume body, the gravitational and buoyant forces
can be considered constant vectors f; and fp, pointing towards and out of earth’s center, respectively.
We assume here a neutrally buoyant vehicle (f; = — f), which allows us to express the restoring terms
as follows

rp X RTfB

37)
03x3

G(q) = [

where rg = [ry, 1y, r;]7 is the position of the center of buoyancy in the body frame, and R € SO(3) is a
rotation matrix between the body and inertial frame.

Based on this formulation, we update the matrix A in Equation 23 as a time varying matrix expressed
as follows
03x3 03x3 3E3x3 0343
0 0 0 E
A= 3x3 3x3 3>c<u3 3x3 (38)
Giin 03x3 D 03x3

03x3 03x3 O3x3 D'

Here D® and DV are the upper left and lower right matrices of time-varying damping matrix D in (35),
respectively. Gy, is the linearization of the restoring term G about g;, = [1,0,0,0]7 given as:

—r, 0 O
Gin=2b| 0 —r, 0 (39)
re 1y O

where b is the net buoyancy.

4 Example Applications

The applicability of the methods derived in Section 3 are shown here using 2 different application
areas: Space and Underwater Robotics.

4.1 Space Robotics

In this section, we use linear systems created using quaternion-based lineararization from Section 3
to control two different robotic systems in space. The first system is an asymmetric rigid body whose
position-orientation is controlled using the derived LQR controller. The second use-case is the stabiliza-
tion of a robotic system post capture of a tumbling space debris. All simulations were performed using
the Drake software [21].

4.1.1 Control of an Asymmetrical Rigid Body

We use the linear system based LQR to control the asymmetrical rigid body given in the reorientation
trajectory optimization example in [1]. The system is linearized about the origin and various random
initial conditions are generated. The random initial conditions are used to perform a full non-linear
dynamic simulation of the system while being controlled using the LQR controller. For the simulations,
the random initial unit quaternion rotation was generated by taking a random unit vector for the axis,
and the angle o was randomly sampled between —180° and 180°. The position vector was generated by
sampling randomly between —15m and 15 m for each of the axis. The gains used for the simulation were
Q = diag(100, 100, 100,2,2,2,50,50,50,2,2,2) and R = diag(1,1,1,1,1,1). These gains were selected



based on the significance of the errors each of the DoF. The current gains focus on maintaining attitude
and angular velocity but different gains can be used depending on the use case. The results following
100 simulations can be seen in Figure 2. Figure 3 shows a few snapshots of the simulation during one of
the control maneuvers where the satellite CAD model is adapted from [22].
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Figure 2 Quaternion and Position Output using the Derived SE(3) LQR Controller. The time span of the
position plot is smaller as it converges earlier.

Figure3 Different snapshots of the Satellite during a control maneuver. The top-left figure shows the initial
position, top-right and bottom-left show the transition, and the bottom-right image shows the Satellite at
the final state.

4.1.2 Post-Capture Stabilization of Tumbling Space Debris

For post-capture detumble scenario, we consider the case of a chaser spacecraft with a 3 degree of
freedom robot arm capturing a tumbling target satellite. Assuming perfect velocity-position synchro-
nisation between the end-effector of the chaser and the grasping point on the target spacecraft, we can
assume an ideal capture scenario without any contact forces. Thus, the state before and after the capture
are the same. In this way, we can obtain the initial state of the system post-capture by utilizing resolved
motion rate control using the Generalized Jacobian Matrix [23] to follow the grasping point trajectory

10



perfectly using the end-effector. For the simulation, consider the target tumbling at a rate of 5°s~!.
The chaser spacecraft has a mass of 100kg (evenly distributed about a cube of side 2m), the links have
masses 10kg, 8kg, and 4kg and lengths 0.9m, 0.7m, and 0.3 m. The target spacecraft has a mass of 50kg
(evenly distributed about a cube of side 0.6m). We then apply LQR using the linear system derived in
Sub-Section 3.3 to control this system so as to achieve a detumbled state with zero velocity. As the focus
was on detumbling, high-gains were used in the Q matrix for the velocity components, with special focus
on the base rotation rates: Q, = diag(100,200,100, 10, 10,10, 10, 10,10). All the position gains were set
as 0.0001 as the final position is not prioritized for the detumbling scenario. The actuation gain matrix
R was set as an identity matrix. The results obtained from using the LQR controller for post-capture
detumbling of space debris can be seen in Figure 4.

0.004 1 —_— Wy 0.0025 1
D w,
= Y —  0.00001
E — wz \'
~— 0.003 1 g
> ~ _ -
z > —0.0025
8 S
2 0.002 2 —0.0050 1
< >
(T —
3 8 —0.00751
£ 0.001 - Vs
M 2 —0.0100 1 -
© a Uy
m 2
0.000 —0.0125 - _—
0 100 200 300 0 100 200 300
Time (s) Time (s)
(a) Base Angular Velocities (b) Base Linear Velocities

_ 0.151 -«

£ 0104 —_— ws

2

G 0.051

s

3]

> 0.001

o

3

:%" —0.05 1

£ —0.101

3

—0.15 +— T T T
0 100 200 300
Time (s)

(c) Joint Velocities

Figure 4 Resultant Velocities while using the Derived SE(3) x R” LQR Controller for Detumbling

4.2 Autonomous Underwater Vehicles

In this section, we demonstrate the proposed Quaternion-based linearization to control an underwa-
ter robotics system. As a study subject, we use a simulated model of the AUV DeepLeng [24]. The
vehicle can be modeled as a single fully submerged rigid-body.

We test the proposed controller on a simulated vehicle in Gazebo using a plugin GazeboUnderwa-
ter! [25] to simulate the effect of water on an underwater system. We use random initial poses generated
in a similar manner to the space robotics application in section 3.2. We run 20 simulations for 60 seconds
each using the following gains Q = diag(10,10,10,5,5,5,1,1,1,1,1,1)1e? and R = diag(2,2,2,2,2,2).
The gains focus on maintaining the zero position and orientation. Results showing the vehicle’s orienta-

'https://github.com/rock-gazebo/simulation-gazebo_underwater
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tion and position are depicted in figures 5a and 5b, respectively. Figure 1 shows a few snapshots of the
simulation during one of the control maneuvers.

Quaternion Vector Components of AUV Position of AUV
2 p
0.2 — 3 11
= £
700 — —— - 0
—11
_02 4
—24
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Time (s) Time (s)
(a) Quaternions (b) Positions

Figure 5 Quaternions and position output of the simulated AUV using the Derived SE(3) LQR Controller

5 Conclusion and Future Work

In this paper, we have provided an analytical method for quaternion-based linearization of the equa-
tions of motion of free-floating single and multi-body systems. The linear system derived in this paper
is fully controllable thus allowing the use of the rich literature of control and analysis methods of lin-
ear systems. The utility of this linearization method was demonstrated by utilizing LQR to control the
linearized systems in space and underwater robotics domains. Additional bias terms were added to the
linear model for underwater robotic systems to increase the fidelity of the linear system. The quaternion-
based linear control method shown here allows for a complete control pipeline using quaternions: from
trajectory optimization to trajectory stabilization and control. Trajectory stabilization requires a time-
varying linearization using the method presented here and will constitute as our next step. Along with
this, future work includes adding various actuator models for AUVs in the linearization process and ex-
ploring the effects of partial state feedback. These will ensure a quaternion-based pipeline for trajectory
generation to trajectory execution on real-systems.
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