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Abstract—Artificial intelligence (AI) based channel state in-
formation (CSI) prediction for frequency division duplexing
(FDD) massive multiple-input multiple-output (MIMO) systems
have attracted growing attention recently. Accurate channel
prediction can effectively improve the quality of CSI and can help
optimize system transmission schemes, such as the throughput
and transmission efficiency. The aim of this paper is to propose
an efficient deep learning algorithm for signal-to-noise ratio
(SNR) prediction in the real world, and a method for measuring
SNR data from a universal software radio peripheral (USRP)-
based software-defined radio platform. The results verify that
the proposed channel measurement method is efficient for getting
real-world channel data, and the deep learning-based algorithm
has a strong ability on the real-world channel prediction.

Index Terms—LTE, 5G, 6G, MIMO, SNR, Channel Prediction,
LSTM, srsLTE, Deep Learning

I. INTRODUCTION

Research for the next-generation (6G) mobile networks
has already begun with the examination and evaluation of
candidate technologies and architectures [1], [2]. Massive
MIMO (mMIMO) has successfully emerged in the 5G com-
munication systems [3]. The campus network with connected
moving automated guided vehicles (AGVs) and the vehicle-to-
everything communication (V2X) are important technologies
in the future of intelligent networking. Composed by moving
user terminals and basic communication units and base stations
(BSs), it is characterized by flexible networking, the coexis-
tence of multiple communication modes, fast node movement,
and predictable trajectory [4]. Adapting wireless transmission
based on the received signal properties is one of the key
paradigms enabling us to achieve communication performance
of near the Shannon limit. Information on the received SNR
for example is the basis of the whole span of transmission rate
adaptation protocols. Meanwhile, the moving user terminal
with high speed leads to the fast time-varying characteristics
of the channel, which seriously makes the influence of the
imperfect of CSI. It has been well recognized that the imper-
fect CSI has an overwhelming impact on the performance of a
wide variety of adaptive transmission systems, spanning from
antenna selection to physical layer security [5].

Recently, deep learning methods have been successfully
applied in the field of wireless communications, and effective
results have been obtained in channel prediction schemes.
Among them, the outdated CSI is processed to forecast the

future CSI, so that the channel predictor can achieve a very
high prediction accuracy in a fast fading channel without any
prior knowledge [6], [7]. Furthermore, the long short-term
memory (LSTM) network is used to predict the SNR in V2X
communication systems [8]. C. Luo [9] proposed an OCEAN
model to predict CSI in a 5G wireless communication system.
It can be concluded that LSTM is an efficient improved
recurrent neural network (RNN), which has a good effect
in solving the long-term dependence problems in general
RNN. It needs to be pointed out, that data from the above
approaches are from simulated fading channel, which follows
the Rayleigh distribution with an average power gain of 0 dB,
where its channel gain h is zero-mean circularly-symmetric
complex Gaussian random variable with the variance of 1,
i.e., h ∼ CN (0, 1).

Performance assessment over wireless transmission tech-
nologies requires strict evaluation and real-world validation
before deployment. While software for over-the-air simulation
has evolved significantly over the years, it still cannot capture
the complex real-world environment completely. Real-world
evaluation over platforms with commercial LTE equipment,
however, is restricted in individual configuration capabilities,
mainly because of commercial considerations. This has re-
sulted in the need for an open-source experimentation platform
with a high degree of flexibility, that the researchers can
commonly use for understanding the complexities associated
with real-world settings while at the same time obtaining
reproducible and verifiable results. An efficient way to perform
SNR data measurement, prediction algorithm validation, and
optimization are thus needed. In this paper, we develop a deep
learning-based channel prediction algorithm, which focuses
on the SNR prediction without the knowledge of channel
estimates generated from the pilot signal. The channel data
for training and testing the algorithms is measured and col-
lected on a real over-the-air USRP-based LTE communication
platform.

The paper is organized as follows. Section II introduces the
overview of communication system setup and the process of
SNR measurement. Section III introduces proposed model in
detail, including the architecture of the learning framework
and the prediction scheme. In further, we present the method
of SNR prediction and the analysis about the prediction results
in Section IV. Finally, conclusions are given in Section V.



II. AN OVERVIEW OF SYSTEM SETUP AND SNR
MEASUREMENT

Fig. 1. The hardware setup of SDR-based LTE communication platform

The system setup can be seen in Fig. 1, where there
are two computers for running srsENB with srsEPC, and
srsUE respectively, which are full implementation of software-
defined radio applications of srsRAN [10]. The srsUE is
installed on an Intel NUC with Intel (R) 2.3 GHz i5-5300U.
The srsENB and srsEPC are installed on a computer with Intel
(R) 3.7GHz Xeon(R). Both Linux operation systems should
have low latency kernel installed. The better the efficiency
that CPU processes base band signals, the stabler the SDR
platform will be. Both computers should have USB 3.0 ports
for communication with USRP b210. Referred to the srsRAN
architecture in [10], srsEPC is a lightweight implementation of
a complete LTE core network (EPC). The srsEPC application
runs as a single binary but provides the key EPC components
of home subscriber service (HSS), mobility management entity
(MME), service gateway (S-GW), and packet data network
gateway (P-GW). The USRP receives the signal from the
srsENB through the USB 3.0 interface and broadcasts the
signal to the environment. Another USRP, which is connected
to the computer installed with srsUE can receive the signal
from the transmitter through IP assignment and Identification
which is supported by srsEPC.

Followed by the srsRAN user manuals, the LTE communi-
cation platform can be established step by step, including the
configuration and installation of eNB, USRP, EPC, and UE.
Attentions are paid to avoid false settings from detail so that
we can finally get stable LTE communication. A successful
setup means, we can connect to another device from both sides
of the computers through ping-test, and there is no latency,
error, or sudden stop that occur while the system is running.

In a factory campus networking scenario, AGVs with differ-
ent speeds communicate with the BSs using different bands.
The AGVs need to predict the rapid changes of CSI in real-
time, perform mobile edge computing (MEC), and work with
BSs for the adaptive transmission scheme to improve the
efficiency and throughput of wireless communication systems.
Specifically, we consider the SNR in the communication
channel as a prediction target. Then the AGVs can use
the predicted SNR to switch proper modulation modes to

improve communication quality. The BSs can also adapt the
transmission rate according to the predicted SNR.

For an optimal simulation of AGV communication in
campus networks, we put our platform in a roomy demo
laboratory, where there are also machines, pillars, tables, and
walls with different materials, that can provide different types
of reflections and create randomness as much as possible.

Fig. 2. Overview of SNR Measurement

As shown in Fig. 2, the Fig. 2.(a) is a top view of the
lab. There are two USRP devices, which connect to the srsUE
and the srsENB machine respectively. We keep the srsENB
device static in the corner of the lab. The srsUE device is then
placed on an AGV, as shown in Fig. 2.(b), which runs along
the route as shown by the red dotted line in Fig. 2.(a). So we
have created a relatively dynamic communication scenario. In
srsRAN, on both sides of UE and eNB, a tracer for channel
state information is implemented, we can easily monitor the
data like reference signal received power (RSRP), received
signal strength indicator (RSSI), SNR, bit rate, etc, as the
system is running. Fig. 2.(c) shows the window of running
status and plots of some of the channel states.

As default, the srsRAN monitors the CSI lists every second
in Linux Terminal. For getting more information in the time
series, we need to collect the CSI more frequently. On the
basis of 3GPP LTE standards [11], in the FDD system, each
radio frame is 10 ms long and consists of 10 subframes.
Our srsRAN platform is running on the FDD mode with
5MHz bandwidth. We have changed the frequency of the
uplink CSI lists report on the side of srsENB to every 10ms,
so that we get the CSI value of each uplink frame. There
are two ways to achieve this configuration. We can either
set the metrics_period_secs in the configuration file



or directly in the main.cc file. We have used the iperf
tool for the uplink transmission test. Here we set the uplink
transmission rate to be 5Mbit/sec so that the channel between
the transceiver and receiver is fully loaded. We also set the
time of the iperf test for 1000s in order to collect enough
data, since the srsRAN system stops automatically if there is
no data transmission between the srsENB and srsUE. As an
example, Fig. 3 visualizes a small piece of the collected uplink
SNR data over the communication channel, which consists of
1000 consecutive SNR value. We can find a relatively smooth
changes of the SNR value in the time series along with the
movements of AGV.

Fig. 3. An exemplified plot of SNR data with timestep of every 10ms

III. DEEP LEARNING-BASED CHANNEL PREDICTOR

Up-to-date knowledge of channel properties can greatly
enhance wireless communication by allowing sophisticated
rate adaptation and resource allocation. Often, the adaptation
is performed at the transmitter based on the measured CSI pig-
gybacked from the receiver. In a dynamic environment, such
as those in vehicular communication, the CSI may already be
outdated by the time it reaches the sender. Therefore, in this
section, we look deep into the opportunities for predicting CSI
in a dynamic network setting with moving devices.

Our predictor is based on CNN and LSTM, since CNN
has excellent capability on feature extraction, and LSTM has
remarkable ability on time sequences to extract the channel
information hidden in the received channel data. Fig. 4 shows
the architecture of this learning framework, which consists of
a 1D CNN network, an LSTM network, and a dense layer for
output. Based on the knowledge of state of the art results of
the papers discussed in section II, we only take one layer for
each of CNN, LSTM, and a dense output layer for simplicity
and efficiency of the hole deep learning architecture, since a
single LSTM layer is sufficient for simulated time series data
forecasting [7].

The 1D CNN network works for giving an architecture
to learn smoothing parameters. The first two layers of a
convolutional neural network are generally a convolutional
layer and a pooling layer: both perform smoothing. Because
they are part of the same function that outputs predictions, by

Fig. 4. The learning framework of the predictor

optimizing the neural network loss, one optimizes smoothing
parameters directly to perform well on a prediction task. The
later layers then use the smoothed raw data and handle the
main part of the time series forecasting problem.

The LSTM network is used for state vector prediction.
Compared to traditional RNN networks, LSTM is able to
overcome the vanishing gradient problem. The LSTM network
consists of several LSTM units, each of which has an input
gate, a forget get, an output gate, and a memory cell. Input
gate i controls the level of cell state update. Forget gate f
controls the level of cell state reset. Output gate o controls
the level of cell state added to hidden state. Each component
has the input weights W, the recurrent weights R, and the
bias b, and calculated as follows:

it = σg(Wixt +Riht−1 + bi),

ft = σg(Wfxt +Rfht−1 + bf ),

gt = σc(Wgxt +Rght−1 + bg),

ot = σg(Woxt +Roht−1 + bo),

(1)

where σg denotes the state activation function which is the
hyperbolic tangent function and σc is the gate activation
function which is the sigmoid function. Therefore, the cell
state ct and the hidden state ht at the time t is given by

ct = ft � ct−1 + it � gt

ht = ot � σc(ct)
(2)

where � denotes the Hadamard product which takes two same-
dimensional matrices and generates another matrix where each
element i, j is the product of elements i, j of the original two
matrices.

In the rest of this paper, we employ this prediction model for
channel prediction and evaluate its performance on different
steps of prediction with a different number of historical data.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

As described in section II, we have taken SNR data col-
lection through operating the srsRAN for 1000s. We collected
the SNR data from every frame (10ms), so we have around



100000 samples of SNR data. We take 14000 consecutive
samples from the dataset for training and testing the channel
predictor. In Fig. 5 we show the variation of 14000 SNR
samples obtained in a real-world moving AGV communication
scenario. We use the 12000 samples of the data for training
and the remaining 2000 samples for testing.

Fig. 5. SNR variation of frames in time series in the moving AGV
communication scenario

The main parameters of the predictor are shown in Table I,
where we have taken 32 filters each with 5 Kernels for CNN
and 64 units for LSTM as an initial parameter configuration.
Starting from an initial state with random values, the weights
and biases are iteratively updated by Adam optimizer [12]. The
learning rate of 0.001 is derived from callbacks of the learning
rate scheduler during training. We use the mean absolute error
(MAE) to calculate the error between the predicted value and
true value, which is defined as

MAE =

∑n
i=1 |yi − xi|

n
(3)

where n is the total number of SNR samples used for evalu-
ation, yi denotes the predicted results at time step i, and xi
stands for its actual value.

TABLE I
TRAINING PARAMETERS

Parameter Value
Training environment python 3.9.7 tensorflow-gpu 2.6.0

Learning rate 0.001
CNN filters & kernel 32 & 5

LSTM units 64
Optimizer adam

Loss mae

As a baseline, we have taken 10-time steps of SNR observa-
tions to predict 1-time step SNR ahead. The same parameters
are taken as above with a maximum epoch of 50 and 200 steps
of fitting per epoch, we can achieve an MAE of 0.2661dB
on the 2000 samples of testing data. Fig. 6 shows that the
predictor can converge within 10 epochs during training. Fig.
7 depicts the true and predicted SNR of 500 samples of
test data. It can be seen from this figure that the predicted

SNR is almost the same as the true value, which shows that
the proposed model is very effective for predicting dynamic
changing channels.

Fig. 6. The MAE loss curve of the prediction model for single time step
prediction

Fig. 7. Plot of SNR prediction results of 500 samples from test data

To further verify the performance of the channel prediction
method, we have extended the prediction to multi-steps ahead
prediction by using a different number of historical observa-
tions. Fig. 8 shows the results of MAE calculated between
the predicted SNR and true SNR from different multi-steps
predictions with different number of historical SNR values.
Considering the algorithm parameters are set the same as
shown in Table I, we can observe from this figure that the
MAEs are around 0.28dB for the 1-time step ahead prediction,
0.6dB for the 3-time steps ahead prediction, 1dB for the 5-time
steps ahead prediction, and 1.7dB for the 10-time steps ahead
prediction. With the increasing number of utilized historical
observations, the MAEs decrease, but only a bit. This figure
has shown a great performance of our proposed model on
the dataset collected on our proposed method, that a high
accuracy with the resultant MAE of 1.7dB for 10 time steps
(100ms) ahead prediction. We have also tried to change the



hidden units and layers of the algorithms, as shown in Fig. 9,
we have taken the 5-time steps prediction from 10-time steps
observations as a example, where we change the number of
units in LSTM layer. We can find a slight improvement of the
accuracy by increasing the LSTM units. But those are actually
no big improvements, even though two layers of LSTM is
used. Therefore, the number of hidden units has a minimal
effect on the prediction performance when the training data are
large enough. As a result, choosing a small number of hidden
units and historical observations is possible and should be used
for channel prediction to reduce the computation complexity
needed for neural network training. Besides, the predictor with
1-dimension CNN as an input layer can decrease the MAE
about 0.02dB. If we compare the MAE of the predictor using
one layer CNN with 32 filters and one layer LSTM with
32 units, and another predictor using two layers of LSTM,
both with 32 units. The former gets the MAE of 1.0309dB,
while the latter achieves the MAE of 1.0388dB, which has
verified that the LSTM predictor with CNN layer for data
prepossessing outperforms the pure LSTM predictor.

Fig. 8. MAE calculated between the SNR prediction results and the actual
value from different multi-steps prediction with different number of utilized
observations

Fig. 9. MAE results of using different units in LSTM layer for the case of
predicting 5 time steps SNR ahead by using 10 historical measurements

V. CONCLUSION

In this paper, we have developed an USRP-based SDR com-
munication platform for collecting dynamic changing SNR
data. We have then investigated the performance of the deep
learning-based channel prediction algorithm. We can get any
real communication channel state information as we want
through an open-source RAN platform to provide datasets
for strict evaluations. The channel predictor is verified, that
without any prior knowledge of the channel, it can achieve
a high prediction accuracy. This predictor can be applied to
a wide variety of wireless techniques that need to improve
performance on throughput, quality of service, etc.

Future work includes improving the performance of channel
prediction by adding additional information to the neural
networks, for example, location and information on the sur-
rounding environment, which is collected by on-board sensors
or cameras. Performance evaluation on more complex channel
structures, such as mMIMO, 5G new radio will also be done
accordingly.
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