
A Software Toolkit for Pre-processing Sign Language Video Streams

Fabrizio Nunnari
German Research Center for Artificial Intelligence (DFKI)

Saarland Informatics Campus D3.2
fabrizio.nunnari@dfki.de

Abstract
We present the requirements, design guidelines, and the software architecture of an open-source toolkit dedicated to the
pre-processing of sign language video material. The toolkit is a collection of functions and command-line tools designed to
be integrated with build automation systems. Every pre-processing tool is dedicated to standard pre-processing operations
(e.g., trimming, cropping, resizing) or feature extraction (e.g., identification of areas of interest, landmark detection) and can
be used also as a standalone Python module. The UML diagrams of its architecture are presented together with a few working
examples of its usage. The software is freely available with an open-source license on a public repository.

Keywords: sign language, video pre-processing, open source toolkit, software engineering

1. Introduction and Related Work
In these years, there is a consistent amount of public-
funded research on sign language recognition and
translation. In particular, two EU-funded projects,
SignOn1 (Shterionov et al., 2021) and EASIER2, at-
tempt to provide bi-directional translation from and to
spoken and sign languages of different European lan-
guages.
In addition to its contribution to the EASIER project,
the German Research Center for Artificial Intelligence
(DFKI) works on the nationally funded AVASAG3

(Nunnari et al., 2021a) and SocialWear4 (Nunnari et
al., 2021b) projects. All of those projects share the use
of the latest generation of artificial intelligence tech-
niques, based on neural networks, for video analysis.
In all cases, video material needs to be analysed and
pre-processed before being fed to convolutional neural
networks (CNN) architectures.

In machine learning, data pre-processing is a common
task that ensures some form of data normalization and
possibly some pre-computation of features that facili-
tates the training of the neural architectures.
In the realm of sign language, such video pre-
processing might include identifying body parts
(hands, face, lips, eyes) and cropping the portion of
video frames containing a higher resolution of such
items. Other pre-processing steps might include the
identification of landmarks (i.e., transiting from pixel-
based features to 2D/3D vector information).
However, despite being recognized as a necessary step,
pre-processing is performed again and again among
different projects using highly customized scripts that
are hardly reusable across projects or datasets. This is

1https://signon-project.eu
2https://www.project-easier.eu
3https://avasag.de
4https://affective.dfki.de/

socialwear-bmbf-2020-2024/

due to many factors. One of them is the storage format
of the video material, which is for example available
as images sequence in the PHOENIX corpus (Forster
et al., 2012) and as compressed videos in the Hamburg
DGS corpus (Hanke et al., 2020). Other typical
differences relate to different ways of organizing and
naming the video sources.

For those reasons, the DFKI started a software project
with the goal of collecting in a single open-source
repository all of the algorithms broadly needed to per-
form pre-processing of sign language videos, to max-
imize reusability across projects, but leaving out the
specific details that are hindering its portability.
The project is called Sign Language Video process-
ing Tools5 and it is available as a public open-source
repository on the popular GitHub platform. The soft-
ware package is essentially a collection of command-
line tools, usable also as Python modules, developed
by aggregating several popular open-source libraries
and tools such as ffmpeg6, MediaPipe (Lugaresi et al.,
2019), OpenCV (Bradski and Kaehler, 2000), MTCNN
(Xiang and Zhu, 2017). Figure 1 shows some examples
of the toolkit in action.
The added values of this toolkit, compared to directly
using directly its underlying libraries, are described in
detail in section 2. Section 3 lists the tools implemented
so far. Finally, section 4 summarizes the paper and de-
scribes future work.

2. Framework Goals and Design
The framework has been designed to fulfill the three
following requirements:

1. Usable both as command line tools as well as
Python functions;

5Sign Language Video Processing Tools code repository:
https://github.com/DFKI-SignLanguage/
VideoProcessingTools

6https://ffmpeg.org

https://orcid.org/0000-0002-1596-4043
https://signon-project.eu
https://www.project-easier.eu
https://avasag.de
https://affective.dfki.de/socialwear-bmbf-2020-2024/
https://affective.dfki.de/socialwear-bmbf-2020-2024/
https://github.com/DFKI-SignLanguage/VideoProcessingTools
https://github.com/DFKI-SignLanguage/VideoProcessingTools
https://ffmpeg.org

Figure 1: Examples of the toolkit applied to a test video of the PHOENIX corpus. From left to right: face bounds
detection, cropping, detection, and normalization of facial landmarks. For the latter, the blue dots are the landmarks
detected by MediaPipe, while the red dots are the landmarks after normalization of the head orientation.

2. Support video streams both as encoded videos and
as image sequences;

3. The parameters of the command-line tools are de-
signed to be concatenated with build automation
tools.

In the following, we describe how those requirements
have been addressed.

As for Requirement 1, all of the video process-
ing tools are organized as stand-alone Python mod-
ules. Figure 2 shows a UML diagram of the top-
level slvideotools package, which contains a sub-
package for each of the available tools. Packages and
sub-packages are implemented as Python sub-modules.
Every sub-module acts as wrapper for a specific func-
tionality. Each wrapping sub-module contains a top-
level code acting as the main execution point, parsing
the command line arguments, and invoking the corre-
sponding video processing function; the latter has the
same name as the containing sub-module.
For example, the crop video tool is implemented in
the slvideotools.crop video sub-package and
can be invoked as CLI command:
python -m slvideotools.crop_video\

--inframes myface.mp4\
--inbounds face_bounds.json\
--outframes cropped_frames/

At the same time, the function crop video(...) is
available within pure Python code and can be imported
and reused:
from slvideotools.crop_video import crop_video
from slvideotools.datagen import\

create_frame_producer, create_frame_consumer

with create_frame_producer(
dir_or_video="myface.mp4") as prod,\

create_frame_consumer(
dir_or_video="cropped_frames") as cons:

with open("face_bounds.json", "r") as bounds_fp:

bounds = json.load(bounds_fp)

crop_video(frames_producer=prod,
bounds_tuple=bounds,
frames_consumer=cons)

The next paragraph describes what are frame producers
and consumers.
Requirement 2 Sign language video material is often
stored as a video stream. However, in some cases, to
more easily feed single frames to a convolutional clas-
sifier, or to avoid video compression artifacts, videos
are stored as a sequence of single images, usually col-
lected inside a folder. To seamlessly support frame se-
quencing from both videos and image folders, the class
structure depicted in Figure 3 was adopted. The pro-
duction and the consumption of frames are managed
through two abstract classes: FrameProducer and
FrameConsumer. Their subclasses are responsible
for implementing a method to read frames from a video
or a directory, and to store frames in a video or direc-
tory. To further facilitate code flexibility, two factory
methods (Gamma et al., 1994) create the correct Pro-
ducer/Consumer subclass by checking if the source or
the destination is a video file or a directory. Finally,
the Producer/Consumer top classes support the con-
text management interface7, allowing for for automatic
resource disposal through the with ... as ...
statement.
As a result, the typical recipe to process frames from/to
video containers or directories is illustrated in the fol-
lowing code snippet.
from slvideotools.datagen import\

create_frame_producer, create_frame_consumer

with create_frame_producer(
dir_or_video="my/frames/") as prod,\

create_frame_consumer(
dir_or_video="my_final_video.mp4") as cons:

7https://docs.python.org/3/reference/
datamodel.html#context-managers

https://docs.python.org/3/reference/datamodel.html#context-managers
https://docs.python.org/3/reference/datamodel.html#context-managers

slvideotools::trim_video

+trim_video(input_path: str, output_path: str, start_frame: int, end_frame: int)
+main()

slvideotools::extract_face_data

+extract_face_data(
 in: FrameProducer,
 composite_frames_out: VideoFrameConsumer,
 normalize_landmarks: bool):
 Tuple[ndarray, ndarray, ndarray, ndarray]
+main()

slvideotools::extract_face_bounds

+extract_face_bounds(in: FrameProducer, method: str: head_focus: bool): Tuple[int, int, int, int]
+main()

slvideotools::draw_bbox

+draw_bbox(in: FrameProducer, bbox: list, out: FrameConsumer)
+main()

slvideotools::crop_video

+crop_video(in: FrameProducer, bounds_tuple: list, out: FrameConsumer)
+main()

slvideotools
+crop_video
+draw_bbox

+extract_face_bounds
+extract_face_data

+trim_video
+datagen

Figure 2: The UML diagram of the data video processing tools package.

datagen

+create_frame_producer(dir_or_video: str): FrameProducer
+create_frame_consumer(dir_or_video: str): FrameConsumer

::ImageDirFrameConsumer
-dest_dir: str
-frame_name: str
-img_ext: str
-img_counter: int
+__init__(dest_dir: str, base_frame_name: str, img_ext: str)__
+consume(frame: ndarray)
+close()

::VideoFrameConsumer
-target_video_path: str
-ffmpeg_video_out_process
+__init__(video_out: str)__
+consume(frame: ndarray)
+close()

datagen:FrameConsumer

+consume(frame: ndarray)
+close()
+enter()
+exit()

::ImageDirFrameProducer
-dir_path: str
-dir_files: List[str]
+__init__(source_dir: str)
+frames(): np.ndarray
+close()

::VideoFrameProducer
-ffmpeg_read_process: process
-video_w: int
-video_h: int
+__init__(video_in: str)
+frames(): np.ndarray
+close()

datagen:FrameProducer

+frames(): ndarray
+close()
+enter(): None
+exit(): None

Figure 3: The UML diagram of the data generation subpackage.

for in_frame in prod.frames():
Process your frame
out_frame = ...

Feed the frame to output video
cons.consume(frame=out_frame)

Finally, for Requirement 3, the command line tools
must be usable from wrapping build automation sys-
tems like the popular GNU Make8 or equivalent more

8https://www.gnu.org/software/make/

advanced systems like Luigi9.
Video datasets can grow consistently, and running
video preprocessing over many video samples can be
time and resource-consuming. Hence, when preparing
a new dataset, it is important to avoid the repetition of
a video processing step (e.g., feature extraction) when
not required, e.g., when only a few new samples are
added or a few samples are updated (e.g., re-takes).
To fulfill this requirement two simple guidelines were

9https://github.com/spotify/luigi

https://www.gnu.org/software/make/
https://github.com/spotify/luigi

followed. First, the command line interfaces have been
designed to take explicit filenames as input and out-
put, avoiding any automatic generation of filenames
or any custom convention about naming. For exam-
ple, automatic filename composition, like appending
a timestamp to a base file naming, is avoided. Au-
tomatic filename generation can be handy to run sev-
eral tests while avoiding overriding previous results,
but hinders reproducibility and increases the complex-
ity in the maintenance of data folders (also, potentially
leading to uncontrolled space occupation). Hence, file
names must be unambiguously provided and naming
conventions are left to project-specific needs. Second,
every script is designed to manage single files (or single
folders containing video frames). Iteration over files or
directories, which normally requires dealing with pecu-
liar naming conventions, is left to external automation
tools.
For example, the following Makefile scans a direc-
tory for videos with extension .mp4 and for each video
generates a corresponding .bounds JSON file with
information on the bounding box containing the face
of the speaker in the video.
Directory containing the .mp4 files
DIR=videos
Lists all of the MP4 videos
invideofiles := $(wildcard $(DIR)/*.mp4)
Compose the names of output .bound files.
boundfiles := $(subst .mp4,.bounds,$(invideofiles))

all: $(boundfiles)
@echo "Extracted face bounds."

$(boundfiles): $(DIR)/%.bounds: $(DIR)/%.mp4
@echo "Finding bounds for video $< ..."
python -m slvideotools.extract_face_bounds \

--invideo $< \
--outbounds $@

@echo "Saved to $@."

Every time the make command is invoked, each
.bounds file will be created or updated if the corre-
sponding source video is renewed.
The use of automated dependency checking systems
is of extreme advantage when dealing with evolving
datasets where single animation clips might be added or
updated as the dataset is populated. Using dependency
systems ensures that only the minimal set of video pro-
cessing operations is performed to keep the dataset in a
consistent state.

3. Implemented Tools
At the moment of writing, the following command-line
tools and functions are fully implemented.

extract face bounds This tool analyzes a video clip
and identifies frame-by-frame a bounding rectangle
containing the face of a speaker. The bounding box
(upper-left x and y corner, width, height) of the full
video is then computed so that the face is always visi-
ble during the whole video. For sign language analysis
this approach helps in dealing with frames where the
hands cover the face. In those situations, face detec-
tion tools fail. By gracefully skipping frames without

a visible face, the global bounds containing the face
for the whole video can still be inferred from the other
video frames, where the face is detected. Two detection
methods are currently supported: using the MediaPipe
library (Lugaresi et al., 2019), which is faster, or the
MTCNN (Zhang et al., 2016), which is more robust
for faces at variable distances from the camera. The
bounding information is saved into a simple JSON ar-
ray file.

draw bbox This tool takes as input a video and
bounding box information and produces a new video
with the bounding information as an overlay. This is
useful for debugging the face detection procedure.

crop video takes as input a video and bounding box
files and outputs a cropped video. This is useful for
cropping the face, hands, lips, or any other information
which requires zooming on a body part for normaliz-
ing image size, increasing resolution, removing noisy
information, and thus improving further analysis.

extract face data is a complex tool able to extract
four kind of information. First, it uses Mediapipe to
extract the set of 468 landmarks describing the move-
ment of the face of a subject. Second, it outputs the
position of the tip of the nose, which can be used as
reference to identify the position of the face in a video
frame. Third, it infers the rotation of the head; this is
done with vector operations involving the landmarks at
the border of the forehead, which are not involved by
facial muscle activation (Figure 4 shows the process).
Fourth, it calculates a scaling factor, estimating the dis-
tance of the face from the camera, useful to normalize
the face size before using it in further facial expression
recognition algorithms, such as the classification of fa-
cial expressions (Savchenko, 2021).

trim video is useful to trim out initial and ending
frames of a video, for example to insulate stroke
and hold phases of a motion while removing the
preparation and release phases. This script is the only
one not using the Producer/Consumer mechanism, but
takes as parameters the input and output video file
paths, and relies of the ffmpeg core functionality to
trim a video while avoiding uncompressing and recom-
pressing the stream (which might hinder video quality).

Command Elapsed frames/sec
extract face bounds (MTCNN) 44s 5,5

extract face bounds (MediaPipe) <1s >242
draw bbox 6s 40,33
crop video 2s 121

extract face data 9s 28,89
trim video < 1s > 242

Table 1: Results of the speed test measuring the execu-
tion time on a 242-frame sample video.

To measure performances, we monitored the time
needed for the execution of all the implemented com-

Figure 4: Computing the head rotation from the Mediapipe 3D facial landmarks. To calculate the rotation of the
head, we need to define a new orthogonal system with axes X , Y , and Z, which must be already approximately
aligned with the absolute reference axes x,y,z when the subject is looking straight forward. The new system
must be computed using landmarks that do not move with the facial muscles. The new X axis is computed by
considering two landmarks on the forehead. A new A axis is computed considering the midpoints of two horizontal
segments joining the sides of the face. Because of noisy information and approximations, A is rarely perfectly
orthogonal to X; hence, the new Y is computed from A by subtracting its projection on X . Finally, the new Z is
the cross-product between X and Y . The new XY Z reference system is then compared with the global xyz axes
to produce a 3x3 rigid rotation matrix.

mands on a sample sign language video. The sample
video is the longest found in the PHOENIX 2014-T
corpus: 242 frames, resolution 210 X 260 pixels. The
reference hardware is a MacBookPro (model 2019)
with Intel i9 CPU. Table 1 reports the results. It can
be noticed that the slowest process is the extraction of
the face bounds with MTCNN, while the same process
executed with MediaPipe lasts less than one second. It
is worth specifying that the test machine doesn’t sup-
port GPU acceleration, meaning that MTCNN might
perform significantly better on other hardware.

4. Conclusions
We presented the requirements and architecture design
of an open-source software toolkit dedicated to the pre-
processing of sign language videos. The goal of such a
toolkit is to centralize, into a single repository, pieces of
code that are often copied and scattered around many
projects requiring pre-processing for developing sign
language recognition systems. The software architec-
ture of the toolkit has been designed with extensibility
in mind.
The toolkit offers already the scripts needed to pro-
cess face information and will be extended to integrate
ad-hoc analysis of other body parts (head, upper body,

hands) and features (eye blinks, eye gaze, etc.). Other
tools will be likely dedicated to color normalization.
We are updating this toolkit with the code that we de-
veloping for three different projects dedicated to sign
language analysis and translation. Our goal is to help
the research community in speeding up video mate-
rial pre-processing, without re-implementing it from
scratch, and involve other researchers in sharing other
pre-processing techniques in a common open reposi-
tory.

Acknowledgements
The author would like to thank Yasser Hamidullah for
his contribution to some parts of the code, and Cristina
España-Bonet and Eleftherios Avramidis for their col-
laboration on the several sign language projects and for
the review of this manuscript.
This work has been partially funded by BMBF (Ger-
man Federal Ministry of Education and Research)
within project AVASAG (Avatar-basierter Sprachassis-
tent zur automatisierten Gebärdenübersetzung, grant
number: 16SV8491) and project SOCIALWEAR (So-
cially Interactive Smart Fashion, DFKI Kst 22132), and
by the EU Horizon 2020 programme within the EAS-
IER project (Grant agreement ID: 101016982).

5. Bibliographical References
Bradski, G. and Kaehler, A. (2000). Opencv. Dr.

Dobb’s journal of software tools, 3:2.
Forster, J., Schmidt, C., Hoyoux, T., Koller, O.,

Zelle, U., Piater, J., and Ney, H. (2012). RWTH-
PHOENIX-Weather: A Large Vocabulary Sign Lan-
guage Recognition and Translation Corpus. In Lan-
guage Resources and Evaluation, pages 3785–3789,
Istanbul, Turkey, May.

Gamma, E., Helm, R., Johnson, R., and Vlissides,
J. (1994). Design patterns: elements of reusable
object-oriented software. Addison-Wesley.

Hanke, T., Schulder, M., Konrad, R., and Jahn, E.
(2020). Extending the public DGS corpus in size and
depth. In Proceedings of the LREC2020 9th Work-
shop on the Representation and Processing of Sign
Languages: Sign Language Resources in the Service
of the Language Community, Technological Chal-
lenges and Application Perspectives, pages 75–82.

Lugaresi, C., Tang, J., Nash, H., McClanahan, C.,
Uboweja, E., Hays, M., Zhang, F., Chang, C.-
L., Yong, M. G., Lee, J., Chang, W.-T., Hua, W.,
Georg, M., and Grundmann, M. (2019). MediaPipe:
A Framework for Building Perception Pipelines.
arXiv:1906.08172 [cs], June. arXiv: 1906.08172.

Nunnari, F., Bauerdiek, J., Bernhard, L., España-Bonet,
C., Jäger, C., Unger, A., Waldow, K., Wecker, S.,
André, E., Busemann, S., Dold, C., Fuhrmann, A.,
Gebhard, P., Hamidullah, Y., Hauck, M., Kossel, Y.,
Misiak, M., Wallach, D., and Stricker, A. (2021a).
AVASAG: A German Sign Language Translation
System for Public Services. In 1st International
Workshop on Automatic Translation for Signed and

Spoken Languages (AT4SSL). Association for Ma-
chine Translation in the Americas, August.

Nunnari, F., España-Bonet, C., and Avramidis, E.
(2021b). A Data Augmentation Approach for Sign-
Language-To-Text Translation In-The-Wild. In
Dagmar Gromann, et al., editors, 3rd Conference on
Language, Data and Knowledge (LDK 2021), vol-
ume 93 of Open Access Series in Informatics (OA-
SIcs), pages 36:1–36:8, Dagstuhl, Germany. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik. ISSN:
2190-6807.

Savchenko, A. V. (2021). Facial expression and at-
tributes recognition based on multi-task learning of
lightweight neural networks. In 2021 IEEE 19th In-
ternational Symposium on Intelligent Systems and
Informatics (SISY), pages 119–124. IEEE.

Shterionov, D., Vandeghinste, V., Saggion, H., Blat,
J., Coster, M. D., Dambre, J., Heuvel, H. V. d.,
Murtagh, I., Leeson, L., and Schuurman, I. (2021).
The SignON project: a Sign Language Transla-
tion Framework. In Proceedings of the 31st Meet-
ing of Computational Linguistics in The Netherlands
(CLIN 31), July. event-place: Ghent.

Xiang, J. and Zhu, G. (2017). Joint face detection and
facial expression recognition with mtcnn. In 2017
4th international conference on information science
and control engineering (ICISCE), pages 424–427.
IEEE.

Zhang, K., Zhang, Z., Li, Z., and Qiao, Y. (2016). Joint
Face Detection and Alignment Using Multitask Cas-
caded Convolutional Networks. IEEE Signal Pro-
cessing Letters, 23(10):1499–1503, October.

	Introduction and Related Work
	Framework Goals and Design
	Implemented Tools
	Conclusions
	Bibliographical References

