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Abstract. Identification of enhancers and their strength prediction plays
an important role in gene expression regulation and currently an ac-
tive area of research. However, its identification specifically through ex-
perimental approaches is extremely time consuming and labor-intensive
task. Several machine learning methodologies have been proposed to ac-
curately discriminate enhancers from regulatory elements and to esti-
mate their strength. Existing approaches utilise different statistical mea-
sures for feature encoding which mainly capture residue specific physico-
chemical properties upto certain extent but ignore semantic and posi-
tional information of residues. This paper presents “Enhancer-DSNet”, a
two-layer precisely deep neural network which makes use of a novel k-mer
based sequence representation scheme prepared by fusing associations
between k-mer positions and sequence type. Proposed Enhancer-DSNet
methodology is evaluated on a publicly available benchmark dataset and
independent test set. Experimental results over benchmark independent
test set indicate that proposed Enhancer-DSNet methodology outshines
the performance of most recent predictor by the figure of 2%, 1%, 2%,
and 5% in terms of accuracy, specificity, sensitivity and matthews cor-
relation coefficient for enhancer identification task and by the figure of
15%, 21%, and 39% in terms of accuracy, specificity, and matthews cor-
relation coefficient for strong/weak enhancer prediction task.

Keywords: Enhancer Identification · Strong Enhancer · Weak Enhancers
· Enhancer Classification · Deep Enhancer Predictor · Enhancer Strength
Identification · Enriched K-mers

1 Introduction

Enhancers are functional cis elements which belong to diverse subgroups (e.g
strong enhancer, weak enhancers, poised enhancers, and inactive enhancers),
where each type of enhancer is associated with multifarious biological activities
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[2]. Mainly, in gene expression regulation, enhancers play an indispensable role
for the generation of proteins and RNA [3] and ensure very close relationship
between biological processes [21]. Enhancers impact cell growth, cell differentia-
tion, cell carcinogenesis, virus activity, and tissue specificity through enhancing
genes transcription [21]. Enhancer may be located in separate chromosome or
20 kb far away from genes [4] as compared to promoters which are usually lo-
cated around start transcriptional sites of genes. Building on these locational
differences, identifying enhancers is widely considered far more challenging than
promoters. Discriminating enhancers from regulatory elements, estimating their
location and overall strength are few most promising tasks which can facilitate
deeper comprehension of eukaryotic spatiotemporal gene regulation and evolu-
tion of diseases [4].

Initially, enhancers were discovered through typical experimental approaches
[5], [6]. Former approach used to identify enhancers by utilizing their associa-
tion with transcriptional factor [7], whereas, latter approach leveraged DNase-I
hypersensitivity. While former approach under detected enhancers [8] as all en-
hancers are not occupied by transcription factors, latter approach over detected
as it classified even DNA segments or non-enhancers as enhancers [4], [9]. Al-
though subsequent methodologies of genome wide mapping of histone modifi-
cations [10], [11], [16] decently alleviated high false positive and false negative
rate of initial experimental techniques for the discovery of promoters and en-
hancers. However, these approaches are rigorously expensive, time, and resource
consuming. Due to these shortcomings and with the influx of high throughput
biological data related to enhancers, demand of robust computational method-
ologies capable to differentiate enhancers from regulatory elements and estimate
their strength got significantly rocketed.

Up to this date, several computational methodologies have been proposed
to discriminate enhancers from non-enhancers in genome such as CSI-ANN [13],
RFECS [16], EnhancerFinder [11], EnhancerDBN [18], and BiRen [19]. Proposed
predictors differ in terms of feature encoding and classifier. For example, CS1-
ANN [13] utilized data transformation approach for samples formulation and
Artificial Neural Network (ANN) for classification. Likewise, EnhancerFinder
[11] incorporates evolutionary conservation knowledge into sample formulation
and a combination of several kernel learning approaches for classification. En-
hancerDBN [18] makes use of deep belief network (DBN), RFEC [16] utilizes
random forest classifier [20], whereas BiRen [19] leverages deep learning ap-
proaches to accelerate predictive performance. These approaches only capable
to discriminate enhancers from regulatory elements in genome. Therefore, ro-
bust enhancer determinant and strength prediction approaches are still scarce.
iEnhancer-2L [4] is the very first tool developed to discover enhancer along with
their strength using solely sequence information and it has been extensively
utilized for genome analysis. To further improve the performance at both lay-
ers, more computational methodologies have been developed afterward which
have improved iEnhancer-2L [4] methodology further by using the combination
of statistical measures to better represent physico-chemical properties such as
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EnhancerPred [21], iEnhancer-PsedeKNC [4] iEnhancer-EL [24], Tan et al. En-
hancer [25], and EnhancerPred2.0 [27]. Up to date, only one recently proposed
approach namely “iEnhancer-5Step” [26] makes use of SVM classifier and unsu-
pervisedly prepared neural k-mer embeddings to better capture local patterns
for the task of enhancer determinant and strength prediction.

Nevertheless, still a lot of improvement in performance is required as these
approaches produce confined performance especially in distinguishing strong en-
hancers from weak enhancers. To develop an optimal machine learning model
for enhancer identification and strength prediction task, most crucial step is
to encode biomedical sequence into fixed-size low dimensional vectors. In this
context, few sequence encoding approaches including Local Descriptor, Conjoint
Triad (CT), Auto Covariance (AC), and PSE-KNC [24] have been utilized where
residual oriented physico-chemical properties are taken into account. But, the
major downfalls for such manually curated feature vectors are, these approaches
fail to take semantic information of residues into account (such as residues order)
in sequences and also neglect noteworthy information from large number of un-
labelled biomedical sequences that can assist the classifier to better identify class
boundaries. To overcome these shortcomings upto certain extent, Le et al. [26]
have recently employed neural word embeddings prepared in an unsupervised
manner. Although unsupervised k-mer embeddings capture semantic informa-
tion of k-mers, however they still lack to associate inherent k-mer relationships
with sequence type keeping within low-dimensional vector space. To fully reap
the benefits of neural word embeddings for creating an optimal representation of
k-mers present in sequences, we present a novel k-mer based sequence represen-
tation scheme which prepares the sequence embeddings in a supervised manner
where we fuse the alliance of k-mers with sequence type. To evaluate the effective-
ness of presented enriched sequence representation, we present a two-layer clas-
sification methodology (Enhancer-DSNet) based on linear classifier and perform
experimentation over a publicly available benchmark dataset and independent
test set for the task of enhancer determinant and strength prediction task. We
have obtained excellent predictive accuracy, outperformed various combinations
of machine learning algorithms, commonly-used sequence encoding schemes, and
unsupervisedly prepared k-mer embeddings with significant margins.

2 Materials And Methods

This section discusses proposed two-layer classification methodology “Enhancer-
DSNet”, benchmark dataset and independent test set used for experimentation,
and evaluation measures.

3 Proposed Enhancer-DSNet Methodology

With the huge success of pre-trained neural word embeddings over diversified
NLP tasks [23], biomedical researchers have extensively utilized distributed rep-
resentations in different biomedical tasks [28]. These embeddings are usually
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prepared in an unsupervised manner by training a shallow neural network on
gigantic sequence corpora. Pre-trained neural k-mer embeddings are semanti-
cally meaningful low dimensional dense representation of k-mers present in the
sequences. Although neural k-mer embeddings prepared in an unsupervised man-
ner create proximal representation of highly similar k-mer groups in embedding
space and have shown good performance in different biomedical tasks such as
sequences structural similarity estimation [29], and transmembrane prediction
[22]. However, these embeddings still lack to associate class information with
distinct arrangements of nucleotides present in sequences, a phenomena that
can significantly raise the classifier performance [28].

Considering relationships between distinct k-mers largely depend on k-mer
size and sequence type, we have generated k-mer embeddings in a supervised
manner. Unlike trivial neural k-mer embeddings, here, we improve k-mer repre-
sentation by creating associations between k-mers positions and sequence type.

Fig. 1: Supervisedly Prepared Neural K-mer Embeddings

To generate sequence embeddings, k-mer embeddings are concatenated through
summation. In this manner, we are accurately capturing semantic information
and local patterns present in sequences. Also, we are computing sequences sim-
ilarity correctly within low dimensional space revealing functional relationship,
while making sure that computation relies on set of features pertinent to hand
on problem. Architecture of proposed two-layer Enhancer-DSNet approach is
illustrated in Figure 2. Where firstly, overlapped k-mers of each sequence is gen-
erated by sliding a window across the sequence with stride size of 1. Afterward,
overlapped k-mers of sequences are passed to embedding layer, where 100 di-
mensional vectors are generated for each overlapped k-mers. All k-mer vectors
are then aggregated to generate 100 dimensional vector for the whole sequence.
In order to avoid over fitting the model, a dropout layer with dropout rate of
0.5% is utilized. After dropout layer, softmax classifier is used to incorporate la-
bel information into the sequence vectors by updating model parameters. In this
manner, we ensure that, on independent test set, model is able to extract mean-
ingful patterns through which classifier will better discriminate the sequences at
both layers.
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Fig. 2: Architecture of Proposed Two-Layer Classification Methodology
“Enhancer-DSNet”

4 Benchmark Dataset

To evaluate the integrity of proposed Enhancer-DSNet approach, experimenta-
tion is performed on a publicly available benchmark dataset and independent
test set [4]. These resources have been utilized in previous studies to evaluate
enhancer determinant and strength prediction approaches [21, 4, 27, 24, 25]. En-
hancer and non-Enhancer discrimination benchmark dataset has 2968 samples,
out of which 1484 samples are enhancers and 1484 samples are non-enhancers.
Out of 1484 enhancer samples, 742 samples are strong enhancers and remain-
ing 742 samples are weak enhancers. While enhancer/non-enhance dataset is
used to discriminate enhancers from non-enhancers, strong/weak enhancer sub-
set formulated using enhancer samples is further used to estimate the strength of
enhancers. Besides benchmark dataset, an independent test set is also publicly
available which contain 400 samples, out of which 200 samples are enhancers and
remaining 200 samples are non-enhancers. From 200 enhancer samples, 100 sam-
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ples are strong enhancers and remaining 100 samples are weak enhancers. Just
like benchmark dataset, enhancer/non-enhancer independent test set is used to
for enhancer/non-enhancer prediction task, whereas strong/weak enhancer sub-
set formulated using enhancer samples of independent test is used to estimate
the strength of enhancers. Detailed formulation of benchmark and independent
test set have been clearly elaborated in Liu et al. [24] work, hence there in no
need to repeat here.

5 Evaluation Metrics

Following evaluation criteria of previous studies related to the classification of en-
hancer and other regulatory elements, and estimating the strength of enhancers
[21, 4, 27, 24, 25], here we have used 4 different evaluation measures (sensitivity,
specificity, accuracy, and matthews correlation coefficient) to perform a fair per-
formance comparison of proposed approach with state-of-the-art approaches. As
these measures are briefly described in previous studies [21, 4] so here we just give
a short description. To provide intuitive understanding for readers, evaluation
metrics along with mathematical expressions are briefly described below:

f(x) =


Accuracy (ACC) = 1 − (O+

− + (O−
+)/(O+ + O-) 0≤ Acc ≤ 1

Specificity (SP) = 1 − (O−
+/O

-) 0≤ SP ≤ 1

Sensitivity (SN) = 1 −−(O+
−/O

+) 0≤ SN ≤ 1

MCC =1−(O+
−/O++O−

+/O-)/
√

(1+O−
+−O+

−/O+)(1+O+
−−O−

+/O- −1≤ MCC ≤ 1

(1)

Here, O+ infers total positive class observations investigated, O- represents
total negative class observations investigated. While, number of positive class
observations predicted correctly and are negative class observations predicted
correctly. Whereas, represent positive class observation incorrectly predicted as
negative and are negative class observations mis-classified as positive.

6 Experimental Setup And Results

This section illustrates experimental details and briefly describes Results of pro-
posed Enhancer-DSNet approach.

To generate sequence embeddings of benchmark dataset in a supervised man-
ner, and to perform experimentation over over benchmark dataset and indepen-
dent test set, we have used Pytorch API. To generate supervised sequence vec-
tors, we have trained the newly developed skip-gram model for 30 epochs with
0.008 learning rate and adam optimizer. Experimentation for both enhancer
identification and strength prediction tasks is performed using 7-mer enriched
sequence vectors.
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6.1 Results

Here, we briefly describe and compare the performance of proposed Enhancer-
DSNet methodology with state-of-the-art Enhancer determinant and strength
prediction approaches using cross validation and benchmark independent test
set.

Cross-validation In order to better evaluate the performance of a classifier by
eliminating biasness towards the split of dataset, most widely used re-sampling
approach is called cross-validation. In k-fold cross validation, one can split a
dataset into k number of groups, for example, 5-fold cross validation will segre-
gate entire dataset into 5 groups where each group will be splitted into train,
and test sets to to train and test the model. In this manner, each group of lim-
ited data samples take part in training and testing processes. Another similar
unbiased performance estimator is jackknife test where training is performed
over entire dataset except one observation of a dataset which is iteratively used
to test the model. In comparison to cross-validation, jackknife test is quite ex-
pensive to compute especially for large datasets and it has also high variance
as datasets used to estimate classifier performance are quite similar. Hence, k-
fold cross validation is widely considered a better estimator of bias and variance
as it is a well compromise among computational requirements and impartiality.
Existing enhancer and non-enhancer discriminator and enhancer strength pre-
dictor approaches (EnhancerPred [21], iEnhancer-PsedeKNC [4] iEnhancer-EL
[24], EnhancerPred2.0 [27]) utilized jackknife test to evaluate the performance of
their models on a benchmark dataset. However, most recent Tan et al. predictor
[25] performance is evaluated using 5 fold cross validation. Following Tan et al.
[25] work, in our experimentation, we have also used 5-fold cross validation on
a benchmark dataset. So here, using 5-fold cross validation, we perform per-
formance comparison of Enhancer-DSNet with most recent Tan et al. predictor
[25].

Figures 3a 3b illustrate the performance of Enhancer-DSNet across 5-folds
on a benchmark dataset of enhancer/non-enhancer and strong/weak enhancer
prediction task. To sum up, performance of Enhancer-DSNet remains consistent
across 5-folds when evaluated in terms of 4 distinct evaluation metrics.

Table 1 reports the average of performance figures produced by 5-fold cross
validation at layer 1 and 2 in terms of accuracy, specificity, sensitivity and
matthews correlation coefficient (mcc). As is indicated by the Table 1, for enhancer/non-
enhancer prediction task (layer-1), proposed Enhancer-DSNet outshines Tan
et al. Enhancer [25] by the figure of 3% in terms of sensitivit, 2% in terms
of accuracy and 2% in terms of matthews correlation coefficient. However, for
strong/weak enhancer prediction task (layer-2), proposed Enhancer-DSNet out-
sperforms Tan et al. Enhancer [25] with a huge margin across 4 different evalu-
ation metrics. Enhancer-DSNet significantly superior performance overshadows
most recent Tan et al. Enhancer [25] performance by the figure of 17% in terms
of sensitivity, 29% in terms of specificity, 4% in terms of accuracy, and 6% in
terms of mcc.
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(a) Enhancer/Non-Enhancer Prediction (b) Strong/Weak Enhancer Prediction

Fig. 3: Performance of Enhancer-DSNet Produced Over 5-Folds For Layer 1 and
2 In Terms Of Accuracy, Specificity, Sensitivity, and MCC

Classifiers Sensitivity Specificity Accuracy MCC

1st Layer (Enhancer/Non-Enhancer)

Enhancer-DSNet 0.76 0.76 0.76 0.52

Tan et al. Enhancer [25] 0.73 0.76 0.74 0.50

2nd Layer (Strong Enhancer/Weak Enhancer)

Enhancer-DSNet 0.63 0.67 0.63 0.26

Tan et al. Enhancer [25] 0.80 0.38 0.59 0.20

Table 1: Performance Comparison of Enhancer-DSNet With Most Recent Tan
et al. Enhancer [25] Using 5-Fold Cross Validation For Enhancer/Non-Enhancer
and Strong/Weak Enhancer Prediction Task

Performance over Benchmark Independent Test Set Table 2 reports
the performance of proposed Enhancer-DSNet and existing predictors produced
over independent test set for enhancer/non-enhancer and independent subset for
strong/weak enhancer prediction tasks in terms of accuracy, specificity, sensitiv-
ity, and matthews correlation coefficient. According to the Table 2, at layer-1,
among all existing predictors excluding most recent Tan et al. Enhancer [25],
and -iEnhancer-EL [24] mark better performance across most evaluation metrics.
Here, proposed Enhancer-DSNet outperforms most recent Tan et al. Enhancer
[25] by the figure of 2%, 1%, 2%, and 5% in terms of sensitivity, specificity,
accuracy, and mcc and second best performing -iEnhancer-EL [24] by the fig-
ure of 7%, 3%, and 6% in terms of sensitivity, accuracy, and mcc. Whereas, at
layer-2, once again proposed Enhancer-DSNet outshines most recent Tan et al.
Enhancer [25] by the promising figure of 21% in terms of specificity, 15% in
terms of accuracy, and 39% in terms of mcc, and second best performing predic-
tor -iEnhancer-EL [24] by the figure of 29% in term of sensitivity, 22% in terms
of accuracy, and 48% in terms of mcc.
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Classifiers Sensitivity Specificity Accuracy MCC

1st Layer (Enhancer/Non-Enhancer)

Enhancer-DSNet 0.78 0.77 0.78 0.56

Tan et al. Enhancer [25] 0.76 0.76 0.76 0.51

iEnhancer-EL [24] 0.71 0.79 0.75 0.50

iEnhancer-2L[4] 0.71 0.75 0.73 0.46

EnhancerPred [21] 0.74 0.75 0.74 0.48

2nd Layer (Strong Enhancer/Weak Enhancer)

Enhancer-DSNet 0.83 0.67 0.83 0.70

Tan et al. Enhancer [25] 0.83 0.46 68.49 0.31

iEnhancer-EL [24] 0.54 0.68 0.61 0.22

iEnhancer-2L[4] 0.47 0.74 0.61 0.22

EnhancerPred [21] 0.45 0.65 0.55 0.10

Table 2: Performance Comparison of Enhancer-DSNet With Existing
Enhancer/Non-Enhancer and Strong/Weak Enhancer Predictors Over Indepen-
dent Test Set

Results Reproduce Ability Issue It is important to mention that recent
enhancer determinant and strength prediction approach namely “i-Enhancer-
5Step” is given by Lee et al [26]. Authors have utilized unsupervisedly prepared
sequence embeddings by treating each nucleotide as word and entire sequence as
sentence. Then, these embeddings are passed to SVM classifier. To re-produce
reported results [26], we have performed rigorous experimentation using all men-
tioned parameters [26], but the performance figures we attained are reasonably
low than the reported ones [26]. Also authors of most recent predictor namely
iEnhancer-EL [24] did not compare their performance figures with Lee et al.
i-Enhancer-5Step [26]. Building on this, we consider the results reported in Lee
et al. [26] work are fraudulent. Therefore, similar to iEnhancer-EL [24], we also
do not compare the performance of proposed Enhancer-DSNet with Lee et al.
i-Enhancer-5Step [26].

7 Conclusion

In the marathon of improving the performance of Enhancer identification and
their strength prediction, researchers have predominantly employed physico-
chemical properties based, bag-of-words based and unsupervisedly prepared k-
mer embeddings with different classifiers. Considering these approaches fail to
utilize association of inherent sequence relationships with sequence type, we have
fused such association by generating sequence embeddings in a supervised fash-
ion which are later fed to a two-layer classification methodology Enhancer-DSNet
based on linear classifier. Over a benchmark dataset, proposed Enhancer-DSNet
approach outperforms most recent predictor by the figure of 2%, 3%, 2% in terms
of accuracy, sensitivity and mcc for enhancer identification task and by the fig-
ure of 29%, 4%, 6% in terms of accuracy, specificity, and mcc for strong/weak
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enhancer prediction task. This studly findings has opened new doors of further
research where biomedical researchers can utilize supervisedly prepared sequence
embeddings to enhance the performance of multifarious biomedical tasks.
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