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Abstract—There is a rising interest in investigating mechanisms
and engineering of integral membrane proteins (MPs) which
make crucial contribution in perceiving and controlling cellular
response against different external signals. MPs need to be
inserted, folded and expressed correctly in lipid bi-layer and
transferred to appropriate cellular location to perform its diverse
range of functions. Channelrhodopsins (ChRs), light gated ion-
channel proteins belonging to microorganisms are imminent for
diverse neurobiology applications where expression as well as
localization to plasma membrane is a pre-condition for function.
Developing robust computational methodologies to accurately
identify ChRs localization is an active area of research. Existing
computational approaches make use of one-hot-vector encoding
or protein embeddings to encode MP sequences that are fed
to Gaussian process regression model. These approaches lack
to accurately predict the localization of MP proteins. The
paper in hand proposes ChRsLoc-Net predictor that makes use
of composition-transition-distribution (CTDC) physico-chemical
properties based sequence encoder along with Hubber regres-
sor. Over benchmark dataset, proposed ChrSLoc-Net approach
outperforms state-of-the-art MP localization predictor with a
significant margin of 9% in terms of mean absolute error.
We anticipate that this study will largely assist biologist to
comprehend diverse biological processes subject to localization
patterns of MPs within plasma membrane.

Index Terms—Channelrhodopsins, Proteins, Plasma Mem-
brane, Machine Learning, Robust Regression, Physico-Chemical
Properties, Localization of Membrane Proteins

I. INTRODUCTION

Acquiring the precise control on neuronal activity in time
and space is the primary goal of experimental and translational
neurobiology. With the influx of biological technologies, many
attempts to monitor and control the activity of neurons in
living tissues have utilized magnetic [1], electrical [9], and
ultrasound stimulation [17] with different degrees of effec-
tiveness. Recent years have witnessed major breakthroughs in
controlling neuronal activity using light (Optogenetics) [10].
Channelrhodopsins (ChRs), a subfamily of retinylidene pro-
teins (rhodopsins) function as light gated ion channels [12] and
have gained huge attention in the field of Optogenetics. ChRs
are expressed in diverse organisms where they act as sensory
photoreceptors within mono-cellular green algae, governing
the response to light like exciting or suppressing the neurons

[4], [13]. Further, ChRs enable light to regulate a wide range
of cellular processes such as electrical excitability, calcium
influx, intracellular acidity and several others [4]. The utility of
ChRs primarily depends on their capability to express as well
as localize properly to plasma membrane within eukaryotic
cells. Rhodopsins especially localized to plasma membrane
have outstanding pharmaceutical, engineering, and optogenetic
applications such as silencing of different neural activities
mainly through light illumination [7]. Considering, changes in
amino acid distribution of protein sequences oftenly abrogate
localization, predictor for ChRs which express and localize
well to plasma membrane is of great value as it can greatly
facilitate deeper comprehension of core functionality and pave
way for protein engineering.

Both sequence and structural elements important for mem-
brane localization have been a point of interest for extensive
investigation [7], [8], [19]. Scientific studies have facilitated
enough understanding of membrane protein sequence related
factors for localization like signal peptide sequence, higher
hydrophobicity in transmembrane domain, and positive charge
on membrane cytoplasm interface [18]. However, still these
rules are not sufficient for protein engineering because there
exist a significant number of protein sequences which pursue
aforementioned rules yet fail to locate within plasma mem-
brane. Membrane protein sequence changes not only impacts
expression but also the localization. Such impact is largely
context dependent, eliminating localization in one particular
sequence context does not affect other, and subtle changes in
amino acid distribution can produce dramatic effects [2], [6],
[7]. Precisely, sequence determinants of expression as well as
localization can not be acquired by very simple rules.

Considering the need of computer-aided program that can
precisely predict the localization of proteins by using only
sequence information, Yang et al. [21] developed a com-
putational approach that utilized one-hot-vector encoding to
transform protein sequences into statistical representation.
Encoded sequences were passed to Gaussian process regressor.
Following the success of pre-trained protein embeddings, Yang
et al. [21] also utilized heterogeneous protein sequence data
to train Word2vec model in an unsupervised manner. Using
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Word2vec based transfer learning, statistical representation
of protein sequences was generated and passed to Gaus-
sian process regression which predicted localization of MPs.
Critical analysis of state-of-the-art MPs localization predic-
tor indicates that existing sequence encoding approaches do
not capture rich characteristics and relationships of protein
residues while generating statistical vectors. While one-hot
encoding lacks to capture position and correlation of amino
acids, pre-trained embedding usually perform better when gen-
erated using task specific training data. However, state-of-the-
art predictor makes use of pre-trained embeddings generated
using heterogeneous protein sequences where MPs localization
data is quite limited, which is why Gaussian process regressor
failed to generalize well.

Considering the room for improvement, we focus on build-
ing a robust regression model solely using sequence informa-
tion of ChRs and training data acquired from ChR related
sources under standardized conditions. We utilize residue
physio-chemical properties to precisely capture the distribution
patterns of amino acids and Hubber regressor (ChRsLoc-Net)
to predict the localization of Channelrhodopsins within plasma
membrane. Empirical evaluation on benchmark membrane
protein localization dataset indicates that proposed ChRsLoc-
Net raises the previous best performance by a significant figure
of 9% in terms of mean absolute error.

II. MATERIALS AND METHODS

The workflow of proposed computational predictor
ChrSLoc-Net is illustrated in Figure 1, core modules of
which including feature extraction and regression are briefly
described in following sub-sections.

Fig. 1. Workflow of Proposed ChrSLoc-Net based on CTDC Encoding and
Hubber Regressor for the Accurate Prediction Channelrhodopsins Protein-
swithin Plasma Membrane

A. Membrane Protein Sequence Statistical Representation
Learning

In order to represent diverse patterns of amino acid composi-
tion having particular physicochemical or structural properties
in protein sequences, we have utilized 13 different physico-
chemical properties to compute these characteristics [3], [5],
[20]. These properties are normalised van der Waals volume,
hydrophobicity, polarisability, polarity, charge, solvent acces-
sibility, and secondary structures. Protein sequence encoding is
learned in 3 different steps: 1) Transforming membrane protein
sequence into a sequence of physicochemical or structural
properties of residues, 2) Segregating 20 amino acids into

3 groups for 7 distinct physicochemical properties on the
basis of major cluster indices generated by Tomii et al. [16],
3) Computing CTDC of residues. Composition is computed
by taking the fraction among the number of certain amino
acids and total length N of amino acids in membrane protein
sequence.

Composition(e) =
ne
N

(1)

Where ne denotes the sum of number of e, certain amino
acid, in the sequence. The value of e could be from 1-to-
3, representing the type of amino acid. Considering 2 amino
acids are a and b, transition (T) can be computed by taking the
fraction between number of ab and ba with membrane protein
sequence length N − 1.

Transition(ab+ ba) =
nab + nba
N − 1

(2)

Distribution deals with the position of certain amino acid
in the total length of protein sequence which indicates chain
length over which first 25%, 50%, and 100% amino acids
of specific amino acid are resided. Using 13 physicochemical
properties and segregation of amino acids in 3 groups, CTDC
generates (13*3) 39-dimensional sequence vectors.

B. Machine Learning Regression: Huber Regression

Considering the possibility of outliers in the dataset, Huber
regression penalize uncommon instances by assigning them
less wights as compared to other instances of dataset. To
handle the outliers in a robust manner, Huber regression
utilizes a different loss function rather than standard least
square error function. More specifically, in case of too large
values which indicates the possibility of being outliers, Huber
transform its loss function to linear loss function in order to
reduce their impact on the model. Dynamics of huber loss can
be mathematically expressed as:

HuberLoss =

{
1
2a

2 if |a| < δ
δ(|a| − 1

2δ) otherwise

}
(3)

Here δ indicates how large data needs to be in order to
activate linear loss criteria. Huber loss is very much identical
to trivial least square error penalty function for small residues,
however on large datasets, its penalty raises linearly instead
of quadratically, which indicates its trait to be more forgiving
for outliers. In this manner, their involvement in global cost
function gets reduced, which is why hyperplane remains very
close to the majority of points despite the presence of outliers.

C. Membrane Protein Localization Dataset

Membrane Protein (Channelrhodopsin) localization dataset
[2] was developed by designing two separate recombina-
tion libraries of ten-block using three parent ChRs(CheRiff,
CsChrimsonR, and C1C2 ). Every chimeric ChR variant
present in recombination libraries comprised of sequence
blocks taken from parental ChRs. This dataset consists of
248 sequences. Genes of 248 sequences were constructed as
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well as expressed inside embryonic kidney cells. Membrane
localization of 284 sequences was estimated by Bedbrook et
al. [2].

III. EXPERIMENTAL SETUP AND RESULTS

We implement CTDC encoder using Python language and
Hubber regressor is employed from Scikit-Learn library. Using
standard train-test split of benchmark dataset provided by Yang
et al. [21], experimentation is performed with CTDC encoding
based hubber regressor as well as 3 other most widely used
regression algorithms (RF, SVR, XGBosst). For RF, initial
estimator range is defined 100-300, sub-sampling rate of 0.2-
0.8, lambda 1e-1 to 1e-8 for XGBoost, and SVR is evaluated
using linear, RBF, and polynomial kernel using degree of 2-5.
For Hubber regressor, initial epsilon range is defined as 1.10 to
1.40, alpha of 0.0001 to 0.0005, and maximum iteration of 50
to 300. Considering the success of grid search for automated
parameters search, optimal values of different hyperparameters
are found using Grid search. Following evaluation measures
used by Yang et al. [21], a fair performance comparison of
proposed and existing methodology is performed in terms of
mean absolute error (MAE) and Kendall rank correlation co-
efficient (Tau). Further, to showcase proposed CTDC-Hubber
regressor is not biased towards certain evaluation measure, we
also report the performance in terms of 2 other most widely
used evaluation measures namely mean squared error (MSE)
and R-squared score.

A. Performance Comparison of ChrSLoc-Net with Baseline
and Existing Regressors

In order to prove the specialty of physico-chemical property
based encoding and Hubber loss which integrates the advan-
tages of different loss functions (MAE, MSE) yet avoiding
their disadvantages and better handle outliers, we compare the
performance of proposed Huber-CTDC with 3 other regressors
including Random Forest, Support Vector Regressor (SVR)
and XGBoost regressor (XGB).

Regressors Evaluation Measures
MAE MSE Tau R square

Baseline
RF 0.8274 1.2312 0.2870 0.5530

XGB 1.4854 3.5734 0.2272 -1.069
SVR 1.0558 1.6921 0.4583 0.0201

Existing Approaches
OneHot GPR 0.76 – 0.59 –

OneHot Struct GPR 0.76 – 0.60 –
AAIndex GPR 0.76 – 0.55 –
ProFET GPR 1.03 – 0.32 –

Word2vec GPR 0.73 – 0.60 –
Proposed Approach

ChrSLoc-Net 0.6398 0.7365 0.6136 0.5735
TABLE I

PERFORMANCE FIGURES PRODUCED BY 4 DIFFERENT REGRESSORS FOR
MEMBRANE PROTEIN SUB-CELLULAR LOCALIZATION PREDICTION

Table I describes the performance of RF, SVR, XGB, and
ChrSLoc-Net in terms of 4 different evaluation measures
including MAE, MSE, Tau, and R-square. Analyzing the per-
formance of different approaches reveals that among 3 baseline

regressors, overall RF achieves better performance followed
by SVR, where XGB produces the worst performance across
all evaluation metrics. Among all 4 approaches, the proposed
ChrSLoc-Net produced the most promising performance, out-
performing RF by the figure of 19%, 49%, 32%, and 2% in
terms of MAE, MSE, Tau, and R-squared score.

Fig. 2. Decision Surfaces of 4 Different Regressors for Membrane Protein
Sub-cellular Localization Prediction

To further analyze the performance of 4 different ap-
proaches, decision surfaces of all 4 approaches are shown in
scatter plots (Figure 2). As is evident from the Figure 2, among
all 3 baseline approaches, RF produces better decision bound-
ary, however among all 4 approaches, proposed ChrSLoc-Net
decision surface is far better than other approaches. This is
because, it has the most number of points on the decision
boundary or close to the decision boundary.

In order to prove the integrity of proposed ChrSLoc-Net
methodology, we compare the performance of ChrSLoc-Net
with existing integral membrane protein sub-cellular localiza-
tion predictors.

For a fair performance comparison, Table I illustrates the
performance of ChrSLoc-Net (Huber-CTDC) and existing
predictive methodologies in terms of mean absolute error
(MAE) and Kendall rank correlation coefficient (Tau). As is
indicated by the Table I, Gaussian process regression (GPR)
achieves almost similar MAE value of 0.76 with one-hot
sequence encoding, one-hot sequence-structured based encod-
ing, and AAIndex descriptor. This performance improves by
the figure of 3% on the induction of word2vec pre-trained
embeddings. Among all existing approaches, GPR marks
the worst performance using ProFET encoding approach.
Whereas, proposed physico-chemical property based predictor
Huber-CTDC marks best performance by a significant figure
of 9% in terms of MAE. In terms of Tau, existing computa-
tional predictor GPR once again achieves better performance
with word2vec embeddings followed by one-hot sequence-
structure based and one-hot sequence based encoding. Similar
to MAE, ProFET marks the lowest Tau score of 32%. Proposed
Huber-CTDC approach outperform existing membrane protein
sub-cellular localization predictor by comparable margin in
terms of Tau.
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IV. DISCUSSION

To effectively capture the biological characteristics of
residues, researchers have pre-dominantly utilized physico-
chemical property based descriptors due to their simplicity
and capability to preserve important sequence information
[11], [22]. Physico-chemical properties based encodings are
showing great promise in diverse Proteomics applications such
as determining post-translational modifications of proteins
[14], ubiquitylation sites of plant-specific proteins [15], etc.
Unlike traditional encoding schemes, physico-chemical prop-
erties based descriptors represent precise and similar inherent
relations of all residues in a compact feature space. This is due
to the fact that physical and chemical properties are well de-
scribed and highly correlated in terms of diverse core compo-
nents such as size, hydrophobicity, extent of degenerate triplet
codons, priority in a beta strand, and occurrence frequency
of residues in beta strand [14]. For the membrane protein
localization prediction, empirical evaluation has indicated that
39-dimensional sequence vectors of a physico-chemical prop-
erties based encoding descriptor CTDC managed to precisely
conserve biophysical characteristics, similarities and differ-
ences of residues while diminishing superfluous details. Unlike
traditional least squares penalty, hubber penalty increases in
linear manner rather than quadratic manner, therefore, the
idea of using a robust machine learning regressor (Hubber
Regressor) whose loss function is not heavily impacted by the
outlier largely assisted the proposed methodology ChrSLoc-
Net to achieve promising predictive performance.

V. CONCLUSION

This research introduces CTDC encoder that makes use
of physico-chemical properties of amino acids to encode
Channelrhodopsins protein into fixed length statistical vectors.
Utilizing CTDC encoded vectors, we explore the potential of
4 different regressors namely Random forest, XGboost, SVR
and Hubber for localization prediction of membrane proteins.
A comprehensive experimentation over membrane proteins
benchmark dataset reveals that, overall, CTDC encoder gen-
erates better statistical vectors by incorporating positional
and semantic information. Using CTDC encoding, hubber
regressor manages to outperform state-of-the-art membrane
protein location prediction performance by 9% in terms of
mean absolute error. Although performance values of other
three regressors by using CTDC encoding is less then Hubber
regressor, but their values are marginally comparable with
state-of-the-art performance values. We believe that proposed
methodology will help biologists to understand different bio-
logical processes of membrane protein by precisely predicting
their location inside the membrane.
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