
A Cross–Language Question/Answering–System

for German and English

Günter Neumann and Bogdan Sacaleanu
LT–Lab, DFKI, Saarbrücken, Germany

{neumann,bogdan}@dfki.de

Abstract

This report describes the work done by the QA group of the Language Technology
Lab at DFKI, for the 2003 edition of the Cross-Language Evaluation Forum (CLEF).
We have participated in the new track “Multiple Language Question Answering (QAat-
CLEF)” that offers tasks to test monolingual and cross-language QA–systems. In
particular we developed an open–domain bilingual QA–System for German source lan-
guage queries and English target document collections. Since it was our very first
participation at such kind of competition, the focus was on system implementation
rather than system tuning.

1 Introduction

The basic functionality of an open–domain cross–language question/answering (QA) system is
simple: given a Natural Language query in one language (say German) find answers for that
query in textual documents written in another language (say English), and eventually express
the found answers in the query language (German).1 In contrast to a standard cross-language IR
system, the NL queries are usually well-formed NL–query clauses (instead of a set of keywords), and
the identified answers should be textual fragments representing the answer (instead of complete
documents containing the answer). Thus, for a question like “Welches Pseudonym nahm Norma
Jean Baker an?” (Which pseudonym did Norma Jean Baker use?) the answer should be “Marilyn
Monroe” rather than an English document containing this name.

At the Language Technology Lab of DFKI we have begun the development of large–scale open–
domain cross–language QA systems, currently with a focus on German and English. In [NX03] we
have described a first prototype of a monolingual Web–based QA–system that processes German
queries and Web pages (using Google for initial web page retrieval). On basis of this initial
prototype we have implemented BiQue a German–English bilingual textual QA–system. BiQue
receives a German language query, parses and translates it into English, and searches for answers
in a large English text collection maintained by the full–text search engine MG [WMB99].

The main motivation for our participation at this year’s CLEF was to foster development of an
initial end–to–end cross–language QA–system enforced by external evaluation. Since, we also plan
to extend the system for English query and German document analysis (and to support mixed
language mode), we have focused on the development of common LT-core components for bilingual
query and answering processing that enable us to easily improve the system in the future. Thus
we also focused on the development of generic APIs (based on XML) and knowledge formalisms
that helps us to systematically improve our system in next development cycles.

We start with an overview of the whole system, highlight some technical aspects, followed by
a more detailed description of the methods we used for query translation and expansion. Finally,
we present the results we have obtained for the task.

1The translation of answers into the query language is currently not part of the QAatCLEF track, hence we will
say nothing about this problem here.

Figure 1: A blueprint of BiQue’s architecture.

2 System overview

The picture in Figure 1 displays the control flow between the major components of BiQue. The
major control flow is basically state–of–the–art and — from a coarse–grained point of view —
not novel. However, we think that we have realized a number of interesting “sub–issues” and an
interesting “translation approach” (with hopefully fruitful future impacts, at least for us ;-) which
is motivation enough to give some more details here.

2.1 Document retrieval

We are using the MG system — a public–domain full–text retrieval engine, cf. [WMB99] — for
the selection of relevant paragraphs. MG is an easy useable software package that can handle
text corpora of several Gigabytes very efficiently. In order to make use of the MG system in the
context of the QAatCLEF track, we actually had to solve two problems:

• How can we keep track of the document identifier?

• How can we use MG for the selection of relevant short text passages?

The first issue is important because for each answer candidate one has to indicate the document
from which the answer was extracted. Secondly, only a small fragment of the documents need
to be processed more deeply in order to identify possible answer candidates. In order to fulfill
both requirements when using MG, we performed a simple preprocessing of the text corpus: we
attached to the front of each paragraph (identified by means of the P SGML tag) of a document
a status line which represents the document identifier and the number of the paragraph in the
document. Each such extended paragraph is then treated as a single document by MG. Thus,
given a set of keywords as input to MG it will return a set of paragraphs where each paragraph

encodes its location within the original text document.2 Here is example of a paragraph returned
by MG for the query “leader, india”:

######## LA110594-0041 10 ######## .

The official Indian position has changed a few times but basically has been that all the stones,
or the most remarkable among them, should stay in India. India’s leaders, however, haven’t
had the cash to purchase them.

MG supports document retrieval by either using a boolean query or a ranked query. We
decided to use the ranked query because MG should only return paragraphs (see above), and
hence a boolean query would be too restrictive already in an early processing phase. Currently,
we use the first 100 paragraphs returned by MG, basically because of performance reasons.

2.2 Shallow syntactic processing

NL queries and documents are linguistically analyzed using ShProT, a shallow processing tool
that consists of several integrated components: SPPC for tokenization and analysis of compound
words (cf. [NP02]), TnT for part–of–speech tagging (cf. [Bra00]), Mmorph for morphological
analysis (cf. [DG94]) and Chunkie for phrase recognition (cf. [SB98]). TnT and Chunkie are
statistical based components which derive the linguistic entities, rules and generalizations from
annotated corpora. The language models are based on the Penn treebank (for English) and the
Negra treebank (for German). ShProT receives as input an ascii text and returns a stream of
sentences each consisting of a sequence of tagged phrases and tagged wordforms. The tagged
phrases actually define the type of the phrase (either NP or PP) and consists of a sequence
of tagged wordforms. A tagged wordform contains the POS, and the lemma as determined by
Mmorph. For unknown words (which also includes proper names) TnT tries to guess the POS.
In case of a proper name, these are tagged with generic tags like NNP (for singular proper noun).
Figure 2 shows the XML—representation of the shallow analysis of an example sentence.

2.3 Named Entity Recognition

Our Named Entity Recognition (NER) method is based on the unsupervised learning approach
of [CS99]. A decision list of NER–rules (also represented in XML) is applied on the XML–output
of ShProT and performs an additional annotation of relevant NPs with corresponding NE–type
information (currently, we consider the NE–types person, organization, location, time, and
date). Currently, only NPs that contain at least one word recognized by ShProT as a proper noun
or time/date expression will be considered as candidates for NE–typing.3 All these NE candidate
phrases are then further processed by the decision list matcher. Each element of the decision list
is a simple if–then rule. If a NP–candidate fulfills some spelling or contextual conditions (these
are based on generic syntactic criteria of adjacent phrases like “capitol of XXX”) then it receives
the NE–type as indicated by the rule (e.g., in the example case XXX is typed as location).

Our current NER–learner is still under development. Usually the decision list is automatically
learned. However, for the QAatCLEF track we have not been able to perform a complete training
phase because preprocessing of the QA–corpus turned out to be too expensive (it will be one
future research issue to explore more efficient learning methods). For that reason a number of
rules of the decision list were specified manually. In order to compensate possible (and actual)
recall problems we combined the decision list with external Gazetters.

2By way: since the status line is part of a paragraph it can also be specified as part of the query. Hence, we
also can use the status line information for reconstructing the whole document as well as for performing corpus
navigation using MG.

3Note that this means that we perform NER after shallow parsing. Hence the accuracy of the NER depends
on the accuracy of shallow parsing. In some sense the approach can also be viewed as a top–down classification
approach, since NER–module actually performs a sub–typing of those generic NE types already recognized by the
shallow processor.

<SENTENCE id="S4">

<CHUNK id="H26" cat="NP">

<W id="W99" PoS="DT" tclass="25" mclass="24" stems="[a]">

<WORDFORM string="An" />

<READINGS>

<R id="R0" subtype="art_indef" category="Det" />

</READINGS>

</W>

<W id="W100" PoS="NNP" tclass="22" mclass="-1" stems="[]">

<WORDFORM string="FBI" />

<READINGS />

</W>

<W id="W101" PoS="NN" tclass="24" mclass="29" stems="[informant]">

<WORDFORM string="informant" />

<READINGS>

<R id="R0" subtype="char" category="Abbr" />

</READINGS>

</W>

</CHUNK>

<W id="W102" PoS="VBN" tclass="24" mclass="205" stems="[claim]">

<WORDFORM string="claimed" />

<READINGS>

<R id="R0" subtype="main" tense="past" verbclass="intrans" category="Verb" vform="psp" />

</READINGS>

</W>

<W id="W103" PoS="IN" tclass="24" mclass="-1" stems="[that]">

<WORDFORM string="that" />

<READINGS />

</W>

<W id="W104" PoS="NNS" tclass="25" mclass="-1" stems="[]">

<WORDFORM string="Wilkins" />

<READINGS />

</W>

<W id="W105" PoS="VBD" tclass="24" mclass="-1" stems="[be]">

<WORDFORM string="was" />

<READINGS />

</W>

<CHUNK id="H27" cat="NP">

<W id="W106" PoS="DT" tclass="24" mclass="399" stems="[the]">

<WORDFORM string="the" />

<READINGS>

<R id="R0" wh="no" subtype="gen" number="plural" category="Det" />

</READINGS>

</W>

<W id="W107" PoS="NN" tclass="24" mclass="1" stems="[trig, German]">

<WORDFORM string="triggerman" />

<READINGS>

<R id="R0" gender="neutrum" number="singular" category="Noun" />

</READINGS>

</W>

</CHUNK>

<W id="W108" PoS="$." tclass="1" mclass="-1" stems="[$PUNCTUATION]">

<WORDFORM string="." />

<READINGS />

</W>

</SENTENCE>

Figure 2: The XML–representation of the shallow syntactic analysis for the sentence An FBI
informant claimed that Wilkins was the triggerman .

2.4 Internal query and document representation

Internally, queries and documents are uniformly represented as weighted sets of structured (pos-
sibly linked) objects in order to facilitate a robust and efficient comparison between queries and
answer candidates. More formally, we call the set B := {O1, . . . , On;α} a Bag–of–Objects or
short BoO consisting of n objects Oi and weight α. Each object Oi is a tuple of the form
〈WF, Stem,PoS, NE,αi〉, i.e., a structured object consisting of a word form, a lemma, part–of–
speech, named entity and weight αi (note that for all elements but WF and αi the actual value
can be empty).

The weight of a BoO is determined during the matching phase of the query with a candidate
answer sentence. The actual approach we are exploiting for comparing and merging two different
BoOs is a variant of the word overlap method described in [LMRB01]. A word overlap (which is
also a BoO in our case) is the subset of objects a query and an answer candidate have in common,
i.e., the word overlap of two sentences s1 and s2 is Ovs1,s2 := Bs1 ∩ Bs2 , where Bi is the BoO
of si. The weight β of a word overlap Ov is determined as the sum over the weights αi of the
overlapping words.4 After Ovs1,s2 has been computed, the Bi obtain β as their weight, i.e., BoO
with same word overlap have equal weight (however, this weight will later be updated using the
expected answer type, see below).

We also define the overlap set Osq of a query q as the set of all BoOs of all candidate answer
sentences which have the same word overlap with q, i.e., Osq := {Bs1 , . . . , Bsn}, with: Ovq,si =
Ovq,sj

for i 6= j. This means that the overlap sets define equivalence classes over the set of possible
answer candidates wrt. the set of objects each answer has in common with the query, i.e., query
and sentences with same word overlap (and hence, with equal weight, but see 2.6).

2.5 Query processing

The main tasks of the query processor are the

1. parsing of a German (or English) NL query, and the

2. translation and expansion of the German query object to an English one.

A query object is a tuple 〈EAT, BoO,Keys, L〉 consisting of the expected answer type EAT,
the BoO representation of the question, the set of relevant keywords used as query for the full–text
retrieval engine MG (see 2.1), and the language identifier. We will now describe very briefly the
different steps, and will only say a bit more on parsing in the subsection that follows.

The main goal of parsing a NL query in the context of open–domain QA is the identification
of the question focus and the expected type (or concept) of the potential answer phrase (Expected
Answer Type (EAT), cf. [HMP+00]). The question focus is a phrase or word in the question that
can help to disambiguate it and — together with the question stem (e.g., who, how much, where)
— can help to deduce the EAT.

After the parser has determined the EAT for the current question, a BoO representation is
constructed on basis of all content words of the question. (In principle, it is also possible to link the
elements of the BoO based on the derivation tree computed during parsing (which corresponds
roughly to a dependency tree, see next paragraph). However, we have not been able to finish
implementation of this further step in due time which would have helped us to define more clever
strategies for the identification of exact answers, see below 2.6.) So we currently have to live with
a quite flat internal representation of the query. The set of relevant keywords is determined very
simply from the BoO by collecting all stems of the content words (or word forms if no such stem
could have been computed).

Finally, query translation and expansion takes place in order to perform retrieval of English
paragraphs and to allow for computation of overlap sets on basis of word overlap between the query
and answer candidates. A description of details of this third step during the analysis of a question
is postponed until section 3. The only thing worth to mention here, is that the German query

4The weight of an individual object is currently specified a priori and is based on the word’s part–of–speech.

BoO is basically translated to an English one (by keeping the EAT determined for the German
query). Translation is basically realized by means of “merging” results from EuroWordNet with
the results of externally available translation services which we are using as a means for performing
word sense disambiguation. Query expansion is performed simultaneously with query translation.

Query parsing Before going on in describing how answer processing is performed on basis of
the translated query object, we describe some details of our parsing methods.

In our current system, we have specified manually a German and a English query grammar
in form of lexicalized tree substitution grammars (LTSG). A query LTSG consists of set of syn-
tax/semantics oriented tree patterns which express mutual constraints for the identification of a
question focus and an EAT. Here is an example of such an elementary tree:

<tree id="6a" label="F-Wo" eat="LOCATION" freq="" prob="">

<node label="PWAV">

<node label="wo" type="TERM" anchor="YES"/>

</node>

<node label="VVFIN">

<node label="schliessen" type="TERM" anchor="YES"/>

</node>

<node label="NE" nclass="PERSON" type="SUBST"/>

<node label="NP" type="SUBST"/>

<node label="PTKVZ">

<node label="ab" type="TERM"/>

</node>

</tree>

which would be applicable for a question like Wo schloss Hillary Clinton das College ab?
(Where did Hillary Clinton graduate college?). A query grammar is applied on top of the shallow
chunk analysis computed by first applying ShProT on the NL question. Note that nodes of type
term are lexical anchors and nodes of type subst have to be expanded by substituting the node
with a consistent (complete) phrase. Parsing of a query LTSG is performed along the line of the
method described in [Neu03].5

In some sense, the elementary trees of a LTSG define clause–level patterns using lexical in-
formation about the question type and focus to constraint their applicability. Linguistically, an
elementary tree of a LTSG also describes a head–modifier relationship between the lexical anchors
and the modifiers (basically the substitution nodes). Hence a derivation of a query analysis can
also be used to uncover the dependency structure.6 The current grammars (together with the
possible supported EAT) have been defined on the basis of a manually translation of the QA–Trec
8 and 9 question corpus. Actually, it turned out that the current grammars have been defined a
bit too Trec–8/9 specific concerning supported subcategorization. Hence, future work will focus
on improving generalization without loosing the benefits of lexicalized tree structures.

2.6 Answer processing

Paragraph selection The keywords of the translated query object are used to build a query
expression for the MG system. Currently, we use the whole set of keywords (including the expanded
terms) to form one MG–query. The ranked query mode of MG is then used to retrieve the N best
paragraphs (see also 2.1). In the ranked query mode, MG actually ranks all documents according
to some similarity measure applied on each document which specifies how close the document
matches with the query. Thus seen, MG returns the N most relevant documents with respect to
the query.

5One of the reasons why we have chosen an LTSG approach is our future goal, to automatically extract a
linguistically expressive but specific query subgrammar form a large–scale general HPSG–source grammar following
the approach described in that paper.

6Following the approach of [HMP+00], it would then be possible to construct a quasi logical form from the
dependency relation in order to support theorem proving for answer validation.

Candidate answer selection All retrieved paragraphs are analysed by ShProT (see 2.2) which
maps a paragraph into a sequence of sentence objects. A sentence object consists of the shallow
syntactic XML–structure, the sentence BoO (constructed from it) and additional bookkeeping
information (e.g., pointer to document identifier).

All sentence objects of every paragraph are collected into one container from which the overlap
sets are constructed along the line described in 2.4. This means that a word overlap Ovq,si

is
computed by merging the BoO of the query q with the BoO of every sentence object si, which is
then used to construct and rank the overlap sets. In a next step, all sentence objects from the top
five equivalence classes are collected into one list of answer candidate sentences. For each such
sentence object it is then check, whether it contains one element which is type–compatible with
the expected answer type EAT of the query object. If so, the weight of the sentence is increased.
Note that this means that a sentence whose corresponding word overlap weight is smaller than
that of another sentence (which means that it is less similar wrt. to the query) might now receive
a higher rank.

In a final step, each sentence is searched for an NP phrase which can serve as the exact answer
of the question. The method that we have exploited so far, actually constructs a ranked list of all
NPs (extracted from every sentences) that do not contain any element from the sentence’s word
overlap. Ranking is performed by taking into account the type of the NP (e.g., EAT–compatible,
containing other NEs), and the number and distance of elements from the sentence’s word overlap
wrt. the NP. By doing so we determine exact answer and 50bytes answer strings. Note that
the underlying assumption made by our current method is that the strings of NPs serve as exact
answers. Generally, this view is surely too restricted (and might only apply for certain kind of
questions), and hence will be improved in the future.

3 Query translation and expansion

In this section we are going to describe in more detail how question translation and expansion is
performed.

Background Traditional approaches for cross–language information management systems can
be classified as follows:

1. systems that translate the queries into the target language, or

2. the document collection into the source language, or both,

3. queries and documents into an intermediate representation (inter–lingua).

Two types of translation services are well known within this context which are based on

• lexical resources (e.g., dictionaries, aligned wordnets), or

• machine translation (e.g., example–based translation).

Each translation method has to deal with the following issues: word sense disambiguation
(WSD) and coverage. WSD accounts for translating the appropriate meaning of a word, as sug-
gested by its context, while coverage guarantees that source language words have a chance to be
translated, to the extent to which it is intended (e.g., not all named entities should be translated).
In retrieving the documents related to a formulated query, it is often useful to take into consid-
eration words related to the query words. This query expansion method can be achieved either
through syntactic or semantic variations. A query of the form “presidential election” could be
extended with “election of the president”, “the president was elected”, “presidential vote”, “pres-
idency vote””, etc. An issue in query expansion is the word sense disambiguation, too. As query
words may be ambiguous, only the intended meanings of them should be targets of the expansion
task.

Method The system BiQue as used in this competition translates the German language ques-
tion to the English language of the document collection by means of machine translation tech-
niques. The system accounts for the above-mentioned coverage issue by using three different
translation services: FreeTranslation, Altavista and Logos. The results of translating the original
German question are used in generation of bag-of-object (BoO) collections of English open-class
words, which are further on target of the query expansion module. Expansion is being achieved
only through semantic variations using WordNet-like resources, whereby a pseudo word-sense-
disambiguation task using the German original question and its English translations is being
applied. Following we will describe the functioning of the question translation and expansion
module by means of the example question:

Wo wurde das Militärflugzeug Strike Eagles 1990 eingesetzt?

Question Translation Three different translation services have been considered for this pur-
pose:

• FreeTranslation (via http://www.freetranslation.com/) yields:
“Where did the military airplane become would strike used Eagles 1990?”

• Altavista (via http://babel.altavista.com/) yields:
“Where was the military aircraft Strike Eagle used 1990?”

• Logos (off–line) yields:
“Where was the soldier airplane Strike Eagles installed in 1990?”

Initial experiments using only one translation service unveiled the limitation imposed by the
coverage problem: inadequate or no translations (e.g., some name of countries that were different
in German and English). Extending the translation module with two further services, the results
improved and pointed out the advantage of indirectly using it for question expansion as well, as
different translations can generate synonym words. Moreover, the original German question and its
English translations were used for question expansion too, as building blocks for our pseudo-WSD
module.

Given the above-listed translations, a BoO collection of open-class normalized words has been
created, with the following content (for convenience we abbreviate the object elements by means
of their lexemes):

{soldier, airplane, strike, eagle, install, 1990, military, become, strike,
use, aircraft, Eagle}

This BoO is obtained as follows: from each English version of the question a corresponding BoO
is constructed by applying ShProT and the English question grammar. The resulting different
BoO’s are then merged into one BoO which represents the translated query object (re–using the
expected answer type EAT as computed for the German question analysis).

Question Expansion For the expansion task we have used the German and English word-
nets aligned within the EuroWordNet lexical resource. Our goal was to extend the English BoO
collection with synonyms for the words that are present in the wordnet.

Considering the ambiguity of words, a WSD module was required as part of the expansion
task. For this purpose we have used both the original question and its translations, leveraging the
reduction in ambiguity gained through translation. Our devised pseudo-WSD algorithm works as
following:

1. look up every word from the translated BoO collection (see example above) in the lexical
resource;

2. if the word is not ambiguous (which is, for example, the case for airplane, aircraft) then
extend the BoO collection with its synonyms, e.g.,
airplane =⇒ 〈aeroplane, plane〉
aircraft =⇒ 〈 〉 (i.e., in case of aircraft there are no synonyms);

3. if the word is ambiguous (e.g., use) then

(a) for every possible reading of it, get its aligned German correspondent reading (if it
exists) and look up that reading in the German original question (i.e., in the BoO
representation of the original German question “Wo wurde das Militärflugzeug Strike
Eagles 1990 eingesetzt?”), e.g.,
Reading-697925:
EN: 〈handle, use, wield〉, DE: 〈handhaben, hantieren〉
Reading-1453934:
EN: 〈behave toward, use〉, DE: not aligned
Reading-661760:
EN: 〈be a user of, use, use regularly〉, DE: not aligned
Reading-658041:
EN: 〈expend, use〉, DE: 〈aufwenden〉
Reading-658243:
EN: 〈apply, employ, make use of, put to use, use, utilise, utilize〉,
DE: 〈anbringen, anwenden, bedienen, benutzen, einsetzen, . . . 〉

(b) if an aligned reading is found (e.g., Reading-658243) retain it and add the English
synonyms of it to the BoO collection, i.e., expand it with:
〈apply, employ, make use of, put to use, use, utilise, utilize〉

Following the question expansion task, the BoO collection has been enriched with new words
that are synonyms of the un–ambiguous English words and by synonyms of those ambiguous
words, whose meaning(s) have been found in the original German question. Thus our expanded
example looks as follows:

{soldier, airplane, strike, eagle, install, 1990, military, become, strike,
use, aircraft, Eagle, aeroplane, plane, apply, employ, make use of, put
to use, use, utilise, utilize}

4 Results and conclusion

We have participated for the first time in a QA track, and hence had to build BiQue from scratch,
so the focus was on system implementation, rather than on system tuning (and actually we had
no time to test different settings of critical system parameters, like the weighting values). We
submitted only one run for the 50byte run, and obtained as result for the strict statistics 14.5%
correct answers, and 15% for the lenient statistics.7 This is surely a result that should and can be
improved.8 Besides evaluation of the performance of the system wrt. different parametrization,
important next steps for system improvement are, among others, the unsupervised online learning
of more fine–grained NE rules, Machine Learning of query grammars, methods for determining
the utility of answer candidates, development of ontology based answer validation methods, and
more controlled query expansion by using fine–grained ontologies (following [HGH+00]).

7We had also planned to submit a second run by first preprocessing the whole corpus with ShProT, but it turned
out that this was too time consuming. The major motivation was, that we wanted to perform a stemming of the
complete corpus by using ShProT instead of the build in stemmer of MG which turned out to cause too much
trouble in some cases.

8For example we were not able to process questions containing quoted terms, because we simply have not foreseen
such questions. However, 20% of the test set contained such kind of questions.

Acknowledgement

The work presented in this paper has been funded by the BMBF project Quetal, FKZ 01 IW C02.
Many thanks to Holger Neis and Hubert Schlarb for their implementation support.

References

[Bra00] Thorsten Brants. Tnt – a statistical part-of-speech tagger. In Proceedings of the 6th
Applied NLP Conference, ANLP-2000, Seattle, WA., 2000.

[CS99] Michael Collins and Yoram Singer. Unsupervised models for named entity classifica-
tion. In In Proceedings of the Joint SIGDAT Conference on Empirical Methods in
Natural Language Processing and Very Large Corpora., Association for Computational
Linguistics, 1999.

[DG94] Petitpierre D. and Russell G. Mmorph - the multext morphology program. Technical
report, ISSCO, University of Geneva, 1994.

[HGH+00] Eduard Hovy, Laurie Gerber, Ulf Hermjakob, Michael Junk, and Chin-Yew Lin. Ques-
tion answering in Webclopedia. In Proceedings of the Ninth Text REtrieval Conference
(TREC-9), 2000.

[HMP+00] Sanda Harabagiu, Dan Moldovan, Marius Paşca, Rada Mihalcea, Mihai Surdeanu,
Răzvan Bunescu, Roxana Gı̂rju, Vasile Rus, and Paul Morărescu. FALCON: Boosting
knowledge for answer engines. In Proceedings of the Ninth Text REtrieval Conference
(TREC-9), 2000.

[LMRB01] Marc Light, Gideon S. Mann, Ellen Rilo, and Eric Breck. Analysis for elucidating
current question answering technology. Natural Language Engineering, 7(4), 2001.

[Neu03] Günter Neumann. Data-driven approaches to head-driven phrase structure grammar.
In Rens Bod, Remko Scha, and Khalil Sima’an, editors, DATA-ORIENTED PARS-
ING. CSLI Publications, University of Chicago Press, 2003.

[NP02] Günter Neumann and Jakub Piskorski. Shallow text processing core engine. Compu-
tational Intelligence, 18(3):451–476, 2002.

[NX03] Günter Neumann and Feiyu Xu. Mining Answers in German Web Pages. In Proceedings
of The International Conference on Web Intelligence (WI 2003), Halifax, Canada,
October 2003.

[SB98] Wojciech Skut and Thorsten Brants. A maximum entropy partial parser for unre-
stricted text. In 6th Workshop on Very Large Corpora, Montreal, Canada, August
1998.

[WMB99] Ian H. Witten, Alistair Moffat, and Timothy C. Bell. Managing Gigabytes: Com-
pressing and Indexing Documents and Images. Morgan Kaufmann Publishers, San
Francisco, CA, 1999.

