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Abstract 
 

We present a novel method for mining textual answers 
in German Web pages using semi-structured NL questions 
and Google for initial document retrieval.  We exploit the 
redundancy on the Web by weighting all identified named 
entities (NEs) found in the relevant document set based on 
their occurrences and distributions. The ranked NEs are 
used as our primary anchors for document indexing, 
paragraph selection, and answer identification. The latter 
is dependent on two factors:  the overlap of terms at 
different levels (e.g., tokens and named entities) between 
queries and sentences, and the relevance of identified NEs 
corresponding to the expected answer type. The set of 
answer candidates is further subdivided into ranked 
equivalent classes from which the final answer is selected. 
The system has been evaluated using question-answer 
pairs extracted from a popular German quiz book. 
 

1. Introduction 
 
Recent advances in the area of information extraction (IE) 
have demonstrated successfully that domain-specific 
processing of large free text collections is achievable by 
using shallow NLP components; it has been shown that 
shallow technology can provide sufficient information for 
highly accurate and useful tasks to be carried out. The 
success in IE as well as in the area of Information 
Retrieval (IR) also have led to a very recent development 
of open-domain textual question answering systems 
(abbreviated as TextQA). They combine IR and IE 
technology in order to handle user queries of the sort 
”Where is the Taj Mahal?” by producing answer strings 
extracted from relevant paragraphs of retrieved free NL 
documents, e.g., ”…list of more than 360 cities 
throughout the world includes the Great Reef in Australia, 

the Taj Mahal in India, Chartre’s Cathedral in France, and 
Serengeti National Park in Tanzania.”. The majority of 
TextQA handle a limited sort of NL questions, namely 
fact-based, short-answer questions, where answers are 
usually simple slot-oriented entities (e.g., when, where, 
who, what…). They are evaluated systematically as part of 
the text retrieval conference series (TREC). Evaluation is 
performed by means of a large corpus of textual 
documents from which a set of question-answer pairs is 
mainly pre-selected as reference material. 
Currently, there is also an increased interest to consider the 
Web as an attractive resource for seeking answers for 
simple, fact-based questions in order to explore open-
domain web-based question answering systems 
(abbreviated as WebQA), e.g. [7], [12], and [13].  
Although the basic functionality between TextQA and 
WebQA is similar, there are some differences that make 
the development of WebQA a worthwhile venture. One 
important aspect of the Web is that of data or answer 
redundancy: the more frequently an answer appears, the 
easier it is to find it (cf. [2], [5], [9], [10]). The core 
assumption here is that with the massive amount of data on 
the Web it is more likely that a QA-system can find 
statements that answer the question in an obvious way, 
using simple pattern matching-based NLP methods (cf. [3], 
[5]). For example, if we consider a question like ”Who 
won the Nobel price 2000 in chemistry?” then a WebQA 
would consider all Web pages that contain the content 
words ”won”, ”Nobel price”, ”chemistry” and the time 
expression ”2000” and any person name. The candidate 
answer person name could then be the person name with 
relevant distance to the other terms and the one with the 
highest likelihood. In this case the redundancy of the Web 
is used as a substitute for  



 
Figure 1. WAG’s system architecture 

 

a deeper structural analysis that would probably be more 
successful in case of small data sources and hence less 
redundancy (cf. also [5]). 
Another important aspect of the Web concerns multi-
linguality [16]. The growth of multilingual users and 
content on the Web in recent years is impressive. 
According to the newest data in 2002 provided by Global 
Internet Statistics2, the English-speaking users are 36.5%, 
while the non-English users play now a dominant role 
with 63.5%, in which the European languages contain 
35.5% (German: 6.7%). At the same time, the content 
distribution of non-English Web pages has increased too: 
there are 68.4% English Web pages, among other 
languages, the distribution of German Web pages is at the 
third position with 5.8% following the Japanese pages.  
In this paper we describe WAG, an experimental search 
engine for performing answer extraction from German 
Web pages, allowing semi-structured queries for asking, 
e.g., who, when, where, how many questions. WAG uses 
Google for performing an initial Web search. The N-best 
Web pages found by Google are linguistically processed 
by a shallow NL processor, which among others 
recognizes Named Entities (NE such as person, company, 
location names, time, date expressions) and maps each 
document into a stream of sentences. 
The core idea of WAG is to combine: 
- an NE-directed voting technique by ranking all found 

NE (independently from the fact whether they are 
relevant for the answer using its term and document 
frequency, with 
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- an answer extraction and ranking strategy using 
word/NE overlap between query expression and 
answer candidates as scoring function extending the 
approach of [9]. 

 
The answer extraction process as a whole realizes a kind 
of text zooming method in the sense that we first identify 
the relevant paragraphs, then the relevant sentences, and 
then the relevant NE, i.e., the exact answer. In all of the 
subsequent steps NE’s serve as anchors for the selection 
of the relevant textual window. WAG has fully been 
implemented and evaluated using a set of question-answer 
pairs from a popular German quiz book, [14].  

 
2. System description 
 
Our scientific view on the development of a generic 
question-answering system is that of a heterogeneous 
system architecture. The idea is that depending on the 
complexity of the query information (from simple fact-
based questions, to relational template-based questions, to 
thematic-oriented questions, see also [4]). Shallow or deep 
QA strategies should be selected (or even mixed) which 
might involve different degrees of linguistic processing, 
domain reasoning or interactivity between a user and the 
system.  
In case of using the Web as answering source for simple-
fact based open domain questions, our current system 
design is focused on robustness, data directness, and 
scalability. For that reason we are using a simple query 
formulation process and few shallow NLP components. In 
the future we will scale up the system by integrating more 
advanced NLP components (as described in [11]). 



2.1. Overview 
 
Figure 1 displays the current system architecture of WAG. 
We will now describe briefly the major steps. 
 
Query formulation. We are using a semi-structured 
template-based query formulation process. The internal 
representation of an NL question consists of the set of 
relevant content words, named entities and the expected 
answer type (EAT). Thus for a question like ”Who won 
the Nobel price 2000 in chemistry?” the internal query 
object is as follows: 
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In our current system the mapping from an NL question to 
such an internal query object is actually bypassed. Instead 
of parsing an NL expression, the user fills in a simple 
form that more or less corresponds to the structure of such 
an internal query object, e.g., the user enters the set of 
relevant content words, and selects named entities from a 
pop-up menu and fills in desired values (of course, freely 
selectable and including ”?”). An additional motivation for 
this kind of query formulation is that it also supports 
transparent adaptation of the system to additional or new 
types of named entities or even domain specific 
ontologies, see also [15]. 
 
Document retrieval and shallow processing. All content 
words (all values from V) are passed to the Google search 
engine and the N-best documents (currently, N=50 is 
used) are further processed by our shallow NLP system, 
cf. [11]. In WAG we are only making use of the system’s 
tokenizer, POS-tagger (which also recognizes sentence 
markers) and NE-recognition component. The NE-
recognition component applies a set of regular patterns 
manually specified for handling German NE expressions 
(12 different types including company and person names, 
and locations). The coverage is state-of-the-art, e.g., 
93%/80% precision and recall for company names, 
92%/90% for person names, and 98%/86% for locations. 
 
2.2. Mining and extracting answers  
 
Finding the answer of a simple fact-based query basically 
means finding a single named entity – an instance of the 
expected answer type of the question, e.g., a person name 
for a who-question. We assume that a single sentence will 
contain the answer. However, since the Web pages 
returned by Google and further processed by the NLP 

system will contain many, many NE expressions in a 
single Web page as well as in multiple Web pages, simply 
iterating through all sentences to look for candidate 
answers is not appropriate. 
In order to take advantage of the redundancy of NE 
expressions, we compute a weight for each recognized NE 
term. In later steps, we use this list of weighted NE terms 
as anchor for the retrieval of relevant paragraphs and 
sentences, and for the ranking of candidate answers. 
 
NE ranking. The weight of an NE (and hence its 
relevance) is computed as follows: 
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where 

• DF is a list of documents containing the NE and 
ordered according to Google’s ranking, 

• TF is the frequency of the NE, 
• α  is a smoothing factor, 
• ri is the Google-rank of the ith document in DF  
 

This means that an NE that occurs in more different 
documents will receive higher weight than an NE that 
occurs in fewer documents. Furthermore, NEs that occur 
in documents ranked higher by Google receive a larger 
weight than NEs occurring in lower ranked documents. 
It might be the case that an NE is expressed using 
different forms, for example, ”Heeger”, ”Alan Heeger”, 
”Alan J. Heeger”. We are able to recognize these variants 
and treat them as synonyms before the NE-ranking is 
computed. [7] also clusters such name variations together 
and provide them as alternative answers. 
 
Paragraph filtering. Once the weight for every 
recognized NE is computed, we construct an inverted 
index from the individual NEs to their positions in the 
original Web page. We further subdivide these indexed 
NEs by collecting all NEs of the same type into an 
individual list (e.g., a list of all found person names). 
These NE-lists are used for paragraph selection, which 
works as follows: for each NE from the NE-list which is 
type-compatible with the expected answer type of the 
current question (e.g., person) we determine each of its 
position PNE in the original Web pages and extract an PNE-
centered window S1S2SNES3S4, where SNE is the sentence 
containing the NE, and Si are the adjacent sentences. For 
each triple S1S2SNE, S2SNES3 and SNES3S4, a weight is 
computed based on the number of containing content 
words of the question and the distance of each identified 
content word from PNE. The highest scored triple is 
selected as a candidate paragraph. 



The major reason for computing a candidate paragraph 
first instead of directly returning SNE is that of increased 
robustness: it might be that the sentence Si which contains 
the highest overlap with the question does not contain an 
instance of the expected answer type, but a generic phrase 
(e.g., in case of referential expressions), then we are still 
able to consider Si for the answer extraction process (see 
next section). In a similar way, we are able to handle 
named entities which have not been recognized by our 
NE-finder, but which co-occur with NE. 
 
Sentence equi-class ranking.  Note that we consider each 
occurrence of NE in the selected document set. 
Redundancy comes into play here, because it might be that 
different paragraphs from different documents which 
contain NE, differ only in view wordings because they 
contain the same or very similar sentences. We now 
describe, how we can collapse similar sentences into a 
single equivalence class. These classes are then used as 
ranked answer candidates. 
The scoring function EC used in our approach for building 
and ranking sentence-based equivalence classes is an 
extension of the one described in [9]. EC is defined as 
follows: 
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We consider both the number of overlapped tokens 
(olToken), and the number of overlapped named entities 
(olNE).3 Additionally, we consider the weight of each NE 
that is compatible with the expected answer type (EATi). 
Thus, a sentence has higher relevance than another one, if 
it shares more common words and named entities with the 
question, and if it contains instances of the expected 
answer type with high weights. For n instances of the 
expected answer type occurring in the sentence (which 
means that the sentence has ambiguous answers), we use 
their average weight. The EATi’s are chosen as exact 
answers ranked according to their weights. For example, 
for the question  
 

(3) Welches Pseudonym nahm Norma Jean Baker an?  
      Which pseudonym did Norma Jean Baker use? 
 

WAG returns a list of equivalence classes of sentences 
(abr. eclass), and ranked answer type named entities. (4) 
shows one equivalence class for question (3). It contains 

                                                 
3 Note that this cannot include NE that have the same type 
as the expected answer type (EAT) because EAT actually 
serves as a typed variable in the question. 

only one answer candidate, where two ranked person 
names (“Marilyn Monroe” and “Norma Jean Mortenson”) 
can be potential exact answers. The person name with 
higher weight is “Marilyn Monroe”, which is selected as 
the best exact answer in this case. 
 
(4) 
<eclass rank=’7.254032855348923’> 

<sentence url=’http://www.beatlesfan.de/alle.htm’> 
 Marilyn Monroe war der Kuenstlername von Norma 
Jean Mortenson, auch bekannt als Norma Jean Baker 
Marilyn Monroe was the stage name of Norma Jean 
Mortenson, also known as Norma Jean Baker 
<exact-answer  type =’PERSON’> 

<name rank=’0.6029282321968642’> 
Marilyn Monroe 
</name> 
<name rank=’0.024088195477597402’> 
Norma Jean Mortenson 
</name> 

</exact-answer>  
</sentence> 

</eclass> 
 

3. Evaluation 
 
We have performed an initial evaluation of WAG by 
comparing it to Google. Our German question-answer 
pairs have been extracted from a popular quiz book 
written by [14]. Currently, we have considered questions 
of two answer types: person and location, although our 
system can deal with other answer types too (e.g., date 
time, organization, number, address and currency).  For 
each type, we have chosen manually the first 20 person-
related questions and the first 19 location-related 
questions. 
Here are some example question-answer pairs from the 
corpus: 
• Welches Pseudonym nahm Norma Jean Baker an? 

(person) 
Which pseudonym did Norma Jean Baker use? 

• Wer wurde 1949 erster Ministerpräsident Israels? 
(person) 
Who became Israel’s first prime minister in 1949? 

• In welcher ehemaligen Sowjetrepublik befand sich 
das Kernkraftwerk Tschernobyl? (location) 
In which former soviet state was the nuclear power 
plant Chernobyl? 

• In welcher europäischen Stadt nennt man die  Altstadt 
Alfama? (location) 
In which European city is there an old city part called 
Alfama? 

 



In our evaluation scenario, we choose the top 50 
documents found by Google. For each processed question 
WAG returns the following information: 
• the number of documents found by Google; 
• the top five Google snippets; we treat them as 

answers extracted by Google. 
• the top five sentence-based equivalence classes; 
• each equivalence class contains the list of weighted 

named entities that are found instances of the 
expected answer type; 

• the time point when Google was called for that 
question; this is important because this can also help 
us to track changes in the answer results caused by 
dynamically changed Web content (when trying to 
answer the same question later). 

 

Given these parameters, we have manually evaluated the 
results. We consider two metrics: recall and mean 
reciprocal rank (MRR). Recall is the percentage of the 
questions answered correctly by WAG compared to all 
questions of the test corpus, cf. [7].4 We consider two 
cases: the recall of the first relevant answer (top1) and the 
recall of the first three relevant answers (top3). The value 
of MRR is the mean of the reciprocal values of the rank of 
all correct answers among the top N:  

N
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In our current experiments (see next section), we have 
chosen  N=5. 
 

3.1 Evaluation of person questions 
 
Figure 3.1.1 shows the distribution of the number of 
documents retrieved by Google using the person 
questions. For each of the 20 questions, we choose the top 
50 documents. For 3 questions, Google cannot find any 
documents. The average number of retrieved documents is 
28. In Table 3.1.1, Table 3.1.2 and Table 3.1.3, the 
average performance of Google snippets, WAG exact 
answers and WAG sentences is listed. In general, WAG 
has both a better recall and a better MRR value than 
Google, regarding both exact answers and sentences. 

                                                 
4 Note that the test corpus consists of the questions 
manually tagged with their correct answers. Thus if it 
contains N questions, then a recall of 0.5 means that WAG 
can answer half of them correctly, i.e., we do not consider 
« wrong answers ». 
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Figure 3.1.1 documents found by Google  

(person questions) 
 

Google snippet MRR 
(N=5) 

Recall 
top1 

Recall 
top3 

all questions 0.103 0.3 0.35 
excluding zero 
document 
cases 

0.122 0.35 0.41 

Table 3.1.1 the average performance of the Google 
snippets (person questions) 

 
WAG 
exact answer 

MRR 
(N=5) 

Recall 
top1 

Recall 
top3 

all questions 0.212 0.45 0.55 
excluding zero 
document 
cases 

0,236 0.53 0.64 

Table 3.1.2 the average performance of WAG exact 
answers (person questions) 

 
WAG 
Sentence 

MRR 
(N=5) 

Recall 
top1 

Recall 
top3 

all questions 0,216 0.5 0.55 
excluding zero 
document 
cases 

0,254 0.59 0.64 

Table 3.1.3 the average performance of WAG sentence 
(person questions) 

 
3.2 Evaluation location questions 
 
We have also evaluated 19 location questions. Google has 
found documents for all these questions. The distribution 
of the retrieved documents is shown in Figure 3.2.1. The 
average number of retrieved documents is 39. Table 3.2.1, 
Table 3.2.2 and Table 3.2.3 show that WAG has generally 
better performance than Google except for one case, 
namely the recall of top3.  
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Figure 3.2.1 documents found by Google (location 

questions) 
 

Google snippet MRR 
(N=5) 

Recall 
Top1 

Recall 
top3 

all questions 0,092 0.21 0.52 
Table 3.2.1 the average performance of the Google 

snippets  (location questions) 
 

WAG 
exact answer 

MRR 
(N=5) 

Recall 
top1 

Recall 
top3 

all questions 0,135 0.31 0.42 
Table 3.2.2 the average performance of WAG exact 

answers (location questions) 
 

WAG 
sentence 

MRR 
(N=5) 

Recall 
top1 

Recall 
top3 

all questions 0,126 0.26 0.37 
Table 3.2.3 the average performance of WAG sentences 

(location questions) 
 
3.3 Summarization of the whole experiments 
 
The following table summarizes the performance of WAG 
given the total 39 questions: 
 

Metric exact answer Sentence 
MRR (N=5) 0.174 0.171 
Recall top1 0.38 0.38 
Recall top3 0.48 0.46 

Table 3.3.1 average values of all 39 questions 
 

4. Discussion and related work 
 
To best of our knowledge, WAG is the first publication of 
an open-domain “German Speaking” WebQA. 
AnswerBus developed by [13] also allows German input 
queries. However the queries have to be translated (using 

the translator provided through Babelfish5) into English 
because answer extraction is only performed for English 
Web pages. 
Our experiments have approved the experiences reported 
in [2], [5], [7], [9] and [10], that the redundancy plays an 
important role for WebQA. The NE-ranking measure that 
we have developed is similar to that described in [5], 
which weights candidate answer terms by the integration 
of corpus frequency into the scoring function. The main 
differences are 1) that they count the passage frequency 
instead of the document frequency and 2) that they do not 
take into account the relevance of the document or 
passage given through the document or passage retrieval. 
All published WebQA systems that are known to us are 
“English Speaking” systems (e.g., START, [6]; Ionaut, 
[1]; MULDER, [7]; AnswerBus, [13]; NSIR, [12]). A 
direct comparison of the corresponding reported results 
with our result is difficult, because our evaluation data set 
contains only German Web pages and German questions. 
Furthermore, currently we are using a small corpus (39 
questions), where these other systems mostly used a 
corpus from TREC-8 of around 200 questions. However, 
we feel that our system has yielded encouraging results 
(cf. Table 3.3.1). [13] has compared a number of systems 
also using the TREC 8 corpus. Relevant numbers he 
reports are (considering recall on “top1”): 
AnswerBus=60%, LCC6=37.5%, START=14.5%. We 
obtain a value of 38% for top1 (with the restriction 
mentioned above, of course). 
From a more qualitative point of view, the major 
performance influence of our methods can be summarized 
as follows: 
• Redundancy: NE-ranking, 
• Relative score is better than absolute score: the 

integration of document ranking into NE-ranking and 
further the integration of NE-ranking into scoring 
function,  

• Building equivalence classes based on scoring 
function for ranking the answer candidates, 

• The ambiguity of exact answers is handled in the 
scoring function. 

 

The positive effect of these issues has also been 
highlighted by [9]. 
 

5. Conclusion and future work 
 
We described and evaluated WAG, a Web-based answer 
extraction system for extracting sentences and short 

                                                 
5 http://uk.altavista.com/babelfish 

6 Cf. [8] 



answers from German Web pages using semi-structured 
fact-based queries. WAG uses ranking of named entities 
and statistical based text zooming as major strategies. It 
can handle ambiguous answers and performs a multi-
document answer extraction process. 
The focus of our research so far is based on simplicity and 
robustness following a data-driven, bottom-up system 
design. Of course there is enough room for increasing the 
performance of WAG. For example, currently we do no 
query expansion or re-formulation which would surely 
help to increase at least the recall. Furthermore, our semi-
structured query format allows us very easily to express 
multi-fact (or template-based) questions (by specifying 
more than one expected answer type of different type). 
This could also be viewed as specifying a kind of on 
demand template (who did what when where). In this case 
our paragraph selection and sentence ranking process 
would be extended to return partially filled templates that 
have to be merged in a later step to find candidate 
templates. In some sense, the whole approach performs a 
kind of “template mining”. We have already implemented 
a first prototype, however not yet evaluated. 
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