
Mining Answers in German Web Pages

Günter Neumann and Feiyu Xu1
Language Technology Lab, DFKI
D-66123 Saarbrücken, Germany

{neumann, feiyu}@dfki.de

1 The work presented in this paper has been funded by the BMBF projects Whiteboard and Quetal. Tanks to Olga
Goldmann for her implementation support. The author’s names are alphabetically ordered.

Abstract

We present a novel method for mining textual answers
in German Web pages using semi-structured NL questions
and Google for initial document retrieval. We exploit the
redundancy on the Web by weighting all identified named
entities (NEs) found in the relevant document set based on
their occurrences and distributions. The ranked NEs are
used as our primary anchors for document indexing,
paragraph selection, and answer identification. The latter
is dependent on two factors: the overlap of terms at
different levels (e.g., tokens and named entities) between
queries and sentences, and the relevance of identified NEs
corresponding to the expected answer type. The set of
answer candidates is further subdivided into ranked
equivalent classes from which the final answer is selected.
The system has been evaluated using question-answer
pairs extracted from a popular German quiz book.

1. Introduction

Recent advances in the area of information extraction (IE)
have demonstrated successfully that domain-specific
processing of large free text collections is achievable by
using shallow NLP components; it has been shown that
shallow technology can provide sufficient information for
highly accurate and useful tasks to be carried out. The
success in IE as well as in the area of Information
Retrieval (IR) also have led to a very recent development
of open-domain textual question answering systems
(abbreviated as TextQA). They combine IR and IE
technology in order to handle user queries of the sort
”Where is the Taj Mahal?” by producing answer strings
extracted from relevant paragraphs of retrieved free NL
documents, e.g., ”…list of more than 360 cities
throughout the world includes the Great Reef in Australia,

the Taj Mahal in India, Chartre’s Cathedral in France, and
Serengeti National Park in Tanzania.”. The majority of
TextQA handle a limited sort of NL questions, namely
fact-based, short-answer questions, where answers are
usually simple slot-oriented entities (e.g., when, where,
who, what…). They are evaluated systematically as part of
the text retrieval conference series (TREC). Evaluation is
performed by means of a large corpus of textual
documents from which a set of question-answer pairs is
mainly pre-selected as reference material.
Currently, there is also an increased interest to consider the
Web as an attractive resource for seeking answers for
simple, fact-based questions in order to explore open-
domain web-based question answering systems
(abbreviated as WebQA), e.g. [7], [12], and [13].
Although the basic functionality between TextQA and
WebQA is similar, there are some differences that make
the development of WebQA a worthwhile venture. One
important aspect of the Web is that of data or answer
redundancy: the more frequently an answer appears, the
easier it is to find it (cf. [2], [5], [9], [10]). The core
assumption here is that with the massive amount of data on
the Web it is more likely that a QA-system can find
statements that answer the question in an obvious way,
using simple pattern matching-based NLP methods (cf. [3],
[5]). For example, if we consider a question like ”Who
won the Nobel price 2000 in chemistry?” then a WebQA
would consider all Web pages that contain the content
words ”won”, ”Nobel price”, ”chemistry” and the time
expression ”2000” and any person name. The candidate
answer person name could then be the person name with
relevant distance to the other terms and the one with the
highest likelihood. In this case the redundancy of the Web
is used as a substitute for

Figure 1. WAG’s system architecture

a deeper structural analysis that would probably be more
successful in case of small data sources and hence less
redundancy (cf. also [5]).
Another important aspect of the Web concerns multi-
linguality [16]. The growth of multilingual users and
content on the Web in recent years is impressive.
According to the newest data in 2002 provided by Global
Internet Statistics2, the English-speaking users are 36.5%,
while the non-English users play now a dominant role
with 63.5%, in which the European languages contain
35.5% (German: 6.7%). At the same time, the content
distribution of non-English Web pages has increased too:
there are 68.4% English Web pages, among other
languages, the distribution of German Web pages is at the
third position with 5.8% following the Japanese pages.
In this paper we describe WAG, an experimental search
engine for performing answer extraction from German
Web pages, allowing semi-structured queries for asking,
e.g., who, when, where, how many questions. WAG uses
Google for performing an initial Web search. The N-best
Web pages found by Google are linguistically processed
by a shallow NL processor, which among others
recognizes Named Entities (NE such as person, company,
location names, time, date expressions) and maps each
document into a stream of sentences.
The core idea of WAG is to combine:
- an NE-directed voting technique by ranking all found

NE (independently from the fact whether they are
relevant for the answer using its term and document
frequency, with

2 http://global-reach.biz/globstats/index.php3

- an answer extraction and ranking strategy using
word/NE overlap between query expression and
answer candidates as scoring function extending the
approach of [9].

The answer extraction process as a whole realizes a kind
of text zooming method in the sense that we first identify
the relevant paragraphs, then the relevant sentences, and
then the relevant NE, i.e., the exact answer. In all of the
subsequent steps NE’s serve as anchors for the selection
of the relevant textual window. WAG has fully been
implemented and evaluated using a set of question-answer
pairs from a popular German quiz book, [14].

2. System description

Our scientific view on the development of a generic
question-answering system is that of a heterogeneous
system architecture. The idea is that depending on the
complexity of the query information (from simple fact-
based questions, to relational template-based questions, to
thematic-oriented questions, see also [4]). Shallow or deep
QA strategies should be selected (or even mixed) which
might involve different degrees of linguistic processing,
domain reasoning or interactivity between a user and the
system.
In case of using the Web as answering source for simple-
fact based open domain questions, our current system
design is focused on robustness, data directness, and
scalability. For that reason we are using a simple query
formulation process and few shallow NLP components. In
the future we will scale up the system by integrating more
advanced NLP components (as described in [11]).

2.1. Overview

Figure 1 displays the current system architecture of WAG.
We will now describe briefly the major steps.

Query formulation. We are using a semi-structured
template-based query formulation process. The internal
representation of an NL question consists of the set of
relevant content words, named entities and the expected
answer type (EAT). Thus for a question like ”Who won
the Nobel price 2000 in chemistry?” the internal query
object is as follows:

?:

:
,

chemistry:

:
,

2000:

:
,

NobelPrice:

:
,

won:

:

V

PNET

V

tokT

V

DNET

V

tokT

V

tokT

In our current system the mapping from an NL question to
such an internal query object is actually bypassed. Instead
of parsing an NL expression, the user fills in a simple
form that more or less corresponds to the structure of such
an internal query object, e.g., the user enters the set of
relevant content words, and selects named entities from a
pop-up menu and fills in desired values (of course, freely
selectable and including ”?”). An additional motivation for
this kind of query formulation is that it also supports
transparent adaptation of the system to additional or new
types of named entities or even domain specific
ontologies, see also [15].

Document retrieval and shallow processing. All content
words (all values from V) are passed to the Google search
engine and the N-best documents (currently, N=50 is
used) are further processed by our shallow NLP system,
cf. [11]. In WAG we are only making use of the system’s
tokenizer, POS-tagger (which also recognizes sentence
markers) and NE-recognition component. The NE-
recognition component applies a set of regular patterns
manually specified for handling German NE expressions
(12 different types including company and person names,
and locations). The coverage is state-of-the-art, e.g.,
93%/80% precision and recall for company names,
92%/90% for person names, and 98%/86% for locations.

2.2. Mining and extracting answers

Finding the answer of a simple fact-based query basically
means finding a single named entity – an instance of the
expected answer type of the question, e.g., a person name
for a who-question. We assume that a single sentence will
contain the answer. However, since the Web pages
returned by Google and further processed by the NLP

system will contain many, many NE expressions in a
single Web page as well as in multiple Web pages, simply
iterating through all sentences to look for candidate
answers is not appropriate.
In order to take advantage of the redundancy of NE
expressions, we compute a weight for each recognized NE
term. In later steps, we use this list of weighted NE terms
as anchor for the retrieval of relevant paragraphs and
sentences, and for the ranking of candidate answers.

NE ranking. The weight of an NE (and hence its
relevance) is computed as follows:

(1) ())1(
1

∑
=

−+∗×=
DF

i

i

N

r
TFDFNE α

where

• DF is a list of documents containing the NE and
ordered according to Google’s ranking,

• TF is the frequency of the NE,
• α is a smoothing factor,
• ri is the Google-rank of the ith document in DF

This means that an NE that occurs in more different
documents will receive higher weight than an NE that
occurs in fewer documents. Furthermore, NEs that occur
in documents ranked higher by Google receive a larger
weight than NEs occurring in lower ranked documents.
It might be the case that an NE is expressed using
different forms, for example, ”Heeger”, ”Alan Heeger”,
”Alan J. Heeger”. We are able to recognize these variants
and treat them as synonyms before the NE-ranking is
computed. [7] also clusters such name variations together
and provide them as alternative answers.

Paragraph filtering. Once the weight for every
recognized NE is computed, we construct an inverted
index from the individual NEs to their positions in the
original Web page. We further subdivide these indexed
NEs by collecting all NEs of the same type into an
individual list (e.g., a list of all found person names).
These NE-lists are used for paragraph selection, which
works as follows: for each NE from the NE-list which is
type-compatible with the expected answer type of the
current question (e.g., person) we determine each of its
position PNE in the original Web pages and extract an PNE-
centered window S1S2SNES3S4, where SNE is the sentence
containing the NE, and Si are the adjacent sentences. For
each triple S1S2SNE, S2SNES3 and SNES3S4, a weight is
computed based on the number of containing content
words of the question and the distance of each identified
content word from PNE. The highest scored triple is
selected as a candidate paragraph.

The major reason for computing a candidate paragraph
first instead of directly returning SNE is that of increased
robustness: it might be that the sentence Si which contains
the highest overlap with the question does not contain an
instance of the expected answer type, but a generic phrase
(e.g., in case of referential expressions), then we are still
able to consider Si for the answer extraction process (see
next section). In a similar way, we are able to handle
named entities which have not been recognized by our
NE-finder, but which co-occur with NE.

Sentence equi-class ranking. Note that we consider each
occurrence of NE in the selected document set.
Redundancy comes into play here, because it might be that
different paragraphs from different documents which
contain NE, differ only in view wordings because they
contain the same or very similar sentences. We now
describe, how we can collapse similar sentences into a
single equivalence class. These classes are then used as
ranked answer candidates.
The scoring function EC used in our approach for building
and ranking sentence-based equivalence classes is an
extension of the one described in [9]. EC is defined as
follows:

(2))5.1(*)(1
n

EAT

olNEolTokenEC

n

i

i∑
=++=

We consider both the number of overlapped tokens
(olToken), and the number of overlapped named entities
(olNE).3 Additionally, we consider the weight of each NE
that is compatible with the expected answer type (EATi).
Thus, a sentence has higher relevance than another one, if
it shares more common words and named entities with the
question, and if it contains instances of the expected
answer type with high weights. For n instances of the
expected answer type occurring in the sentence (which
means that the sentence has ambiguous answers), we use
their average weight. The EATi’s are chosen as exact
answers ranked according to their weights. For example,
for the question

(3) Welches Pseudonym nahm Norma Jean Baker an?
 Which pseudonym did Norma Jean Baker use?

WAG returns a list of equivalence classes of sentences
(abr. eclass), and ranked answer type named entities. (4)
shows one equivalence class for question (3). It contains

3 Note that this cannot include NE that have the same type
as the expected answer type (EAT) because EAT actually
serves as a typed variable in the question.

only one answer candidate, where two ranked person
names (“Marilyn Monroe” and “Norma Jean Mortenson”)
can be potential exact answers. The person name with
higher weight is “Marilyn Monroe”, which is selected as
the best exact answer in this case.

(4)
<eclass rank=’7.254032855348923’>

<sentence url=’http://www.beatlesfan.de/alle.htm’>
 Marilyn Monroe war der Kuenstlername von Norma
Jean Mortenson, auch bekannt als Norma Jean Baker
Marilyn Monroe was the stage name of Norma Jean
Mortenson, also known as Norma Jean Baker
<exact-answer type =’PERSON’>

<name rank=’0.6029282321968642’>
Marilyn Monroe
</name>
<name rank=’0.024088195477597402’>
Norma Jean Mortenson
</name>

</exact-answer>
</sentence>

</eclass>

3. Evaluation

We have performed an initial evaluation of WAG by
comparing it to Google. Our German question-answer
pairs have been extracted from a popular quiz book
written by [14]. Currently, we have considered questions
of two answer types: person and location, although our
system can deal with other answer types too (e.g., date
time, organization, number, address and currency). For
each type, we have chosen manually the first 20 person-
related questions and the first 19 location-related
questions.
Here are some example question-answer pairs from the
corpus:
• Welches Pseudonym nahm Norma Jean Baker an?

(person)
Which pseudonym did Norma Jean Baker use?

• Wer wurde 1949 erster Ministerpräsident Israels?
(person)
Who became Israel’s first prime minister in 1949?

• In welcher ehemaligen Sowjetrepublik befand sich
das Kernkraftwerk Tschernobyl? (location)
In which former soviet state was the nuclear power
plant Chernobyl?

• In welcher europäischen Stadt nennt man die Altstadt
Alfama? (location)
In which European city is there an old city part called
Alfama?

In our evaluation scenario, we choose the top 50
documents found by Google. For each processed question
WAG returns the following information:
• the number of documents found by Google;
• the top five Google snippets; we treat them as

answers extracted by Google.
• the top five sentence-based equivalence classes;
• each equivalence class contains the list of weighted

named entities that are found instances of the
expected answer type;

• the time point when Google was called for that
question; this is important because this can also help
us to track changes in the answer results caused by
dynamically changed Web content (when trying to
answer the same question later).

Given these parameters, we have manually evaluated the
results. We consider two metrics: recall and mean
reciprocal rank (MRR). Recall is the percentage of the
questions answered correctly by WAG compared to all
questions of the test corpus, cf. [7].4 We consider two
cases: the recall of the first relevant answer (top1) and the
recall of the first three relevant answers (top3). The value
of MRR is the mean of the reciprocal values of the rank of
all correct answers among the top N:

N

rank
MRR

N

i i
∑
== 1

1

In our current experiments (see next section), we have
chosen N=5.

3.1 Evaluation of person questions

Figure 3.1.1 shows the distribution of the number of
documents retrieved by Google using the person
questions. For each of the 20 questions, we choose the top
50 documents. For 3 questions, Google cannot find any
documents. The average number of retrieved documents is
28. In Table 3.1.1, Table 3.1.2 and Table 3.1.3, the
average performance of Google snippets, WAG exact
answers and WAG sentences is listed. In general, WAG
has both a better recall and a better MRR value than
Google, regarding both exact answers and sentences.

4 Note that the test corpus consists of the questions
manually tagged with their correct answers. Thus if it
contains N questions, then a recall of 0.5 means that WAG
can answer half of them correctly, i.e., we do not consider
« wrong answers ».

google found documents (max 50)

0

10

20

30

40

50

60

1 5 9 13 17

google
found
document
s (max 50)

Figure 3.1.1 documents found by Google

(person questions)

Google snippet MRR
(N=5)

Recall
top1

Recall
top3

all questions 0.103 0.3 0.35
excluding zero
document
cases

0.122 0.35 0.41

Table 3.1.1 the average performance of the Google
snippets (person questions)

WAG
exact answer

MRR
(N=5)

Recall
top1

Recall
top3

all questions 0.212 0.45 0.55
excluding zero
document
cases

0,236 0.53 0.64

Table 3.1.2 the average performance of WAG exact
answers (person questions)

WAG
Sentence

MRR
(N=5)

Recall
top1

Recall
top3

all questions 0,216 0.5 0.55
excluding zero
document
cases

0,254 0.59 0.64

Table 3.1.3 the average performance of WAG sentence
(person questions)

3.2 Evaluation location questions

We have also evaluated 19 location questions. Google has
found documents for all these questions. The distribution
of the retrieved documents is shown in Figure 3.2.1. The
average number of retrieved documents is 39. Table 3.2.1,
Table 3.2.2 and Table 3.2.3 show that WAG has generally
better performance than Google except for one case,
namely the recall of top3.

google found documents (max 50)

0
10
20

30

40
50

60

1 4 7 10 13 16 19

google found
documents
(max 50)

Figure 3.2.1 documents found by Google (location

questions)

Google snippet MRR
(N=5)

Recall
Top1

Recall
top3

all questions 0,092 0.21 0.52
Table 3.2.1 the average performance of the Google

snippets (location questions)

WAG
exact answer

MRR
(N=5)

Recall
top1

Recall
top3

all questions 0,135 0.31 0.42
Table 3.2.2 the average performance of WAG exact

answers (location questions)

WAG
sentence

MRR
(N=5)

Recall
top1

Recall
top3

all questions 0,126 0.26 0.37
Table 3.2.3 the average performance of WAG sentences

(location questions)

3.3 Summarization of the whole experiments

The following table summarizes the performance of WAG
given the total 39 questions:

Metric exact answer Sentence
MRR (N=5) 0.174 0.171
Recall top1 0.38 0.38
Recall top3 0.48 0.46

Table 3.3.1 average values of all 39 questions

4. Discussion and related work

To best of our knowledge, WAG is the first publication of
an open-domain “German Speaking” WebQA.
AnswerBus developed by [13] also allows German input
queries. However the queries have to be translated (using

the translator provided through Babelfish5) into English
because answer extraction is only performed for English
Web pages.
Our experiments have approved the experiences reported
in [2], [5], [7], [9] and [10], that the redundancy plays an
important role for WebQA. The NE-ranking measure that
we have developed is similar to that described in [5],
which weights candidate answer terms by the integration
of corpus frequency into the scoring function. The main
differences are 1) that they count the passage frequency
instead of the document frequency and 2) that they do not
take into account the relevance of the document or
passage given through the document or passage retrieval.
All published WebQA systems that are known to us are
“English Speaking” systems (e.g., START, [6]; Ionaut,
[1]; MULDER, [7]; AnswerBus, [13]; NSIR, [12]). A
direct comparison of the corresponding reported results
with our result is difficult, because our evaluation data set
contains only German Web pages and German questions.
Furthermore, currently we are using a small corpus (39
questions), where these other systems mostly used a
corpus from TREC-8 of around 200 questions. However,
we feel that our system has yielded encouraging results
(cf. Table 3.3.1). [13] has compared a number of systems
also using the TREC 8 corpus. Relevant numbers he
reports are (considering recall on “top1”):
AnswerBus=60%, LCC6=37.5%, START=14.5%. We
obtain a value of 38% for top1 (with the restriction
mentioned above, of course).
From a more qualitative point of view, the major
performance influence of our methods can be summarized
as follows:
• Redundancy: NE-ranking,
• Relative score is better than absolute score: the

integration of document ranking into NE-ranking and
further the integration of NE-ranking into scoring
function,

• Building equivalence classes based on scoring
function for ranking the answer candidates,

• The ambiguity of exact answers is handled in the
scoring function.

The positive effect of these issues has also been
highlighted by [9].

5. Conclusion and future work

We described and evaluated WAG, a Web-based answer
extraction system for extracting sentences and short

5 http://uk.altavista.com/babelfish

6 Cf. [8]

answers from German Web pages using semi-structured
fact-based queries. WAG uses ranking of named entities
and statistical based text zooming as major strategies. It
can handle ambiguous answers and performs a multi-
document answer extraction process.
The focus of our research so far is based on simplicity and
robustness following a data-driven, bottom-up system
design. Of course there is enough room for increasing the
performance of WAG. For example, currently we do no
query expansion or re-formulation which would surely
help to increase at least the recall. Furthermore, our semi-
structured query format allows us very easily to express
multi-fact (or template-based) questions (by specifying
more than one expected answer type of different type).
This could also be viewed as specifying a kind of on
demand template (who did what when where). In this case
our paragraph selection and sentence ranking process
would be extended to return partially filled templates that
have to be merged in a later step to find candidate
templates. In some sense, the whole approach performs a
kind of “template mining”. We have already implemented
a first prototype, however not yet evaluated.

References

[1] Steven Abney, Michael Collins, and Amit Singhal. Answer
Extraction. In Proceedings of ANLP, 2000.

[2] Eric Breck, Marc Light, Gideon S. Mann, Ellen Riloff,
Brianne Brown, Pranav Anand, Mats Rooth, and Miachael
Thelen (2001). Looking under the hood: Tools for diagnosing
your question answering engine. In Proceedings of the ACL-
01 Workshop on Open-Domain Question Answering.

[3] Eric Brill, Jimmy Lin, Michele Banko, Susan Dumais, and
Andrew Ng (2001). Data-intensive question answering. In
Proceedings of TREC 2001.

[4] J. Burger, C. Cardie, V. Chaudhri, R. Gaizauskas,
S.Harabagiu, D. Israel, C. Jacquemin, C. Lin, S. Maiorano, G.
Miller, D. Moldovan, B. Ogden, J. Prager, E. Riloff, A.
Singhal, R. Shrihari, T. Strzalkowski, E. Voorhees and R.
Weischedel (2001). Structures to Roadmap Research in
Question & Answering (Q&A), In NIST DUC Vision and
Roadmap Documents, http://www-
nlpir.nist.gov/projects/duc/roadmapping.html.

[5] Charles L. A. Clarke, Gordon V. Cormack and Thomas R.
Lynam (2001). Exploiting Redundancy in Question
Answering. In Proceedings of the 24th Annual International
ACM SIGIR Conference on Research and Development in
Information Retrieval. New Orleans. September.

 [6] Boris Katz (1997). From Sentence Processing to Information
Access on the World Wide Web. AAAI Spring Symposium on
Natural Language Processing for the World Wide Web.
Stanford, California.

[7] Cody Kwok, Oren Etzioni, and Daniel S. Weld (2001).
Scaling question answering on the Web. In Proceedings of the
Tenth International World Wide Web Conference (WWW10).

[8] Sanda Harabagiu, Dan Moldovan, Marius Pasca, Mihai
Surdeanu, Rada Mihalcea, Roxana Gîrju, Vasile Rus, Finley
L•c•tu•u, Paul Mor•rescu and R•zvan Bunescu (2001).
Answering complex, list and context questions with LCC’s
Question-Answering Server In Proceedings of the TREC-10.

[9] Marc Light, Gidcon S. Mann, Ellen Riloff and Eric Breck
(2001). Analyses for Elucidating Current Question Answering
Technology. Natural Language Engineering 1(1), Cambridge
University Press.

[10] Jimmy Lin (2002). The Web as a Resource for Question
Answering: Perspective and Challenges. In Proceedings of
LREC 2002, Spain.

[11] G. Neumann and J. Piskorski (2002) A Shallow Text
Processing Core Engine. In Journal of Computational
Intelligence, August 2002, vol. 18, no. 3, pp. 451-476(26).

[12] Dragomir Radev, Weiguo Fan, Hong Qi, Harris Wu, and
Amardeep Grewal (2002). Probabilistic question answering
on the web. In Proceedings of the Eleventh International
World Wide Web Conference.

[13] Zhiping Zheng (2002). AnswerBus Question Answering
System. In Proceedings of HLT Human Language Technology
Conference (HLT 2002). San Diego, CA. March 24 – 27.

[14] René Zey (2001). Quiz für Millionen. Falken Verlag.
Niedernhausen

[15] A. Maedche, G. Neumann, S.Staab (2002) Bootstrapping an
Ontology-based Information Extraction System In
Szczepaniak, Piotr S.; Segovia, Javier; Kacprzyk, Janusz;
Zadeh, Lotfi A. (eds), Intelligent Exploration of the Web,
Springer, ISBN 3-7908-1529-2, 2002, pages 345-360.

[16] F. Xu (2003) Multilingual WWW - Modern Multilingual
and Cross-lingual Information Access Technologies. In
“Knowledge-Based Information Retrieval and Filtering from
the Web”. Witold Abramowicz (Ed.), Kluwer Academic
Publishers, to appear.

