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Abstract

Training classification models on clinical speech is a time-saving and effective solution for many healthcare challenges, such
as screening for Alzheimer’s Disease over the phone. One of the primary limiting factors of the success of artificial intelligence
(AI) solutions is the amount of relevant data available. Clinical data is expensive to collect, not sufficient for large-scale
machine learning or neural methods, and often not shareable between institutions due to data protection laws. With the
increasing demand for AI in health systems, generating synthetic clinical data that maintains the nuance of underlying patient
pathology is the next pressing task. Previous work has shown that automated evaluation of clinical speech tasks via automatic
speech recognition (ASR) is comparable to manually annotated results in diagnostic scenarios even though ASR systems
produce errors during the transcription process. In this work, we propose to generate synthetic clinical data by simulating ASR
deletion errors on the transcript to produce additional data. We compare the synthetic data to the real data with traditional
machine learning methods to test the feasibility of the proposed method. Using a dataset of 50 cognitively impaired and 50
control Dutch speakers, ten additional data points are synthetically generated for each subject, increasing the training size
for 100 to 1000 training points. We find consistent and comparable performance of models trained on only synthetic data
(AUC=0.77) to real data (AUC=0.77) in a variety of traditional machine learning scenarios. Additionally, linear models are not
able to distinguish between real and synthetic data.

Keywords: Data Augmentation, Synthetic Data, Clinical Speech, Mild Cognitive Impairment, Automatic Speech Recognition,
Machine Learning

1. Introduction
Analysing clinical speech by means of natural language
processing (NLP) techniques is a low-cost and effec-
tive approach for many healthcare challenges, such as
screening for early signs of Alzheimer’s Disease from
clinical speech tasks. One of the primary limiting fac-
tors of the success of artificial intelligence (AI) solu-
tions in health is the amount of relevant data avail-
able to train models. Clinical speech data is expensive
and invasive to collect and the quantity is not sufficient
for large-scale machine learning or even simple neu-
ral methods. In addition, collected data is difficult—if
not impossible—to share between clinical and research
institutions due to concerns for patient privacy. With
the increasing demand for digital AI-driven solutions in
health systems, generating synthetic clinical data that
can be scaled-up and performs on-par with real data is
the next challenge.
Previous work has shown that automated evaluation of
clinical speech tasks via automatic speech recognition
(ASR) is comparable to manually annotated results in
diagnostic scenarios even though ASR systems pro-
duce errors during the transcription process, namely
deletion (König et al., 2018; Konig et al., 2019). While
the ASR-related loss of data in such a setting is typi-
cally seen as one of the major limitations of those ap-
proaches, this natural limitation can be harnessed to
naturally generate synthetic data. The concept is simi-

lar to a technique used for synthetic data augmentation
in computer vision, where random parts of an image are
erased in order to generate multiple training examples
from a single image (Zhong et al., 2017). We propose a
novel technique for synthetic data augmentation by ex-
ploiting the already occurring ASR error to randomly
delete portions of the transcribed clinical speech.

In this paper, we investigate if the technique of ran-
domly erasing speech transcripts—a result which is al-
ready seen when using ASR systems as part of an au-
tomatic pipeline—can be applied to clinical speech to
generate synthetic training data. This is done using 100
older Dutch speakers where 50 show signs of mild cog-
nitive impairment. Ten synthetic files are generated per
participant for a total of 1000 data points. This paper
is scoped to consider if the synthetically generated data
has comparable results to authentic data in traditional
machine learning scenarios. Through a series of down-
stream machine learning classification experiments, the
synthetic data is compared to the traditional scenario as
a baseline. Overall, we find that random erasing can be
used to generate synthetic clinical data that performs as
well as the real data. Based on the foundation of these
findings, future work should investigate if more com-
plex neural methods benefit from the addition of syn-
thetic data as well as if the proposed method is trans-
ferable to other clinical tasks.



2. Background
In this section, background is provided to further mo-
tivate the argumentation of the paper. First, the au-
tomatic pipeline for evaluating clinical speech is de-
scribed. Next, focusing on going from speech to text
portion of the automatic evaluation pipeline, an expla-
nation of how the quality of the transcription is esti-
mated if provided . Finally, drawing from data aug-
mentation techniques in computer vision, parallels are
drawn between the technique of random erasing and the
role of deletion during the transcription process.

2.1. Automatic Evaluation of the Semantic
Verbal Fluency task (SVF)

The semantic verbal fluency task is a timed clinical
speech test where a person is asked to name as many
words as they can pertaining to a given semantic cat-
egory (e.g. Name as many animals as you can in one
minute). This task has been shown to be sensitive for
screening for mild cognitive impairment (MCI) from
typical ageing in older adults (McDonnell et al., 2020;
Clark et al., 2009; Vaughan et al., 2016). The au-
tomatic pipeline for evaluating this speech task starts
with recording a person during the task. Next, this
speech is passed through an automatic speech recog-
nition (ASR) model to obtain a text transcript. Once
this automatic transcript has been generated multiple
methods of feature extraction and analysis have been
proposed for evaluating the SVF task based on relevant
cognitive clinical literature. Previous work has investi-
gated using semantically motivated measures, such as
semantic word embeddings, to consider semantic clus-
tering strategies (Troyer et al., 1997; Pakhomov and
Hemmy, 2014). Other methods have considered tem-
poral measures for clustering (Tröger et al., 2019) or
investigating the task on a finer time resolution (Linz et
al., 2019a).

2.2. Word Error rate (WER)
One of the first elements of an automatic pipeline for
evaluating the SVF, is to automatically transcribe the
speech task using automatic speech recognition. As
with any automatic method, there is always some form
of error. To evaluate automatic speech recognition,
word error rate is used. Word error rate (WER) is
the number of insertions, substitutions, and deletions
that occur during the automatic transcription process
divided by the number of words in the manual tran-
script. (Errattahi et al., 2018)

WER =
Substitutions+Deletions+ Insertions

WordCountmanualtranscript

The most common form of error found when automati-
cally transcribing the SVF task is deletion. In addition,
before extracting clinically relevant features from the
task, the text is preprocessed, removing words outside
the task domain. Therefore substitutions and insertions

that are not in the semantic category (e.g. animals)
would also be seen as deletions.
The effect of the automatic speech pipeline on this clin-
ical task has been investigated previously by comparing
manual versus automatic evaluation methods. Konig
and colleagues found that both methods yielded com-
parable results when screening for dementia over the
phone using the SVF (König et al., 2018).

2.3. Generating Synthetic Data
Drawing from computer vision, one of the common
methods is to alter images in the training set by crop-
ping, flipping, rotating, or randomly erasing part of the
image. By perturbing the original image in some way,
many versions of a single image can be created. Ran-
dom erasing is a data augmentation technique where
additional training data is created by erasing a random
portion of an image in varying amounts. Although the
idea is simple, it was previously proposed to reduce
overfitting in deep learning image recognition models
(Shorten and Khoshgoftaar, 2019; Zhong et al., 2017).
This idea lends itself easily to the clinical speech ap-
plication when combined with the WER caused by
the automatic transcription process. Since the deletion
caused by the WER does not affect the downstream ap-
plication of detecting cognitive impairment from the
speech recording, it should be possible to randomly
delete portions of manual transcripts at the same rate
as the WER. This can be done in many variations and
combinations, yielding synthetically augmented data.

3. Data
100 older Dutch speakers completed a battery of cog-
nitive tests including a one minute semantic verbal flu-
ency on the subject of animals with a clinician from
Maastricht University Clinic, Netherlands. Of the
100 participants, 50 are healthy controls (HC) and 50
present with mild cognitive impairment (MCI). The de-
mographic data for the sample population is given in
table 1.

HC MCI
N 50 50
Sex (M/F) 18/32 19/31
Age (years) 70.66 (8.96) 65.94 (7.80)
Word Error Rate (%) 20.29 23.13
MMSE (max 30) 28.68(1.27) 26.92 (2.07)

Table 1: Demographic information for the Dutch par-
ticipants. The Mini-Mental State Exam (MMSE) is
a test to measure cognitive function (Max score 30).
Means are given with standard deviation in parenthe-
ses.

To complete the SVF task, participants are instructed
to name as many animals as they can in one minute.
The response is recorded and transcribed twice; once
manually by trained clinicians via an iPad application.
The second time the data is transcribed automatically



via Google translation services. In both cases, the re-
sponses are automatically pre-processed to remove any
additional sounds, such as ’uhh’ or ’ahh’. The final
response result is a time-aligned list of animals. For
example, a transcript could look like ”dog, cat, lions,
tiger, bear, blue whale, dolphin”.

4. Methods
4.1. Data Augmentation by Random Erasing

with WER (REWER)
First, the word error rate is calculated for each partic-
ipant between the manually annotated and automati-
cally generated transcript. The, number of words to
be deleted from the transcript is determined given the
WER percentage. Because the goal is to simulate the
naturally occurring error in the ASR transcript, the
WER produced by the ASR is applied to the manual
SVF transcript. An exhaustive list is created of every
possible variation of the SVF with the determined num-
ber of missing words from the manual transcript. From
this list, a random number generator is used to ran-
domly select ten newly generated, synthetically aug-
mented SVF texts per manual transcript. These files
are then saved for the next step of explicit feature ex-
traction.

4.2. Data Augmentation by Random Erasing
with Constant Deletion (REWCD)

One of the limiting factors of the REWER method is
that it requires manual transcription of the SVF task in
order to calculate the WER. To investigate additional
random erasing methods that do not require manual an-
notation, a constant rate of deletion is considered. In-
stead of a variable per participant deletion rate based
on the WER determined by ASR, a constant deletion
rate is considered for all transcripts. The same proce-
dure is applied as describe in Section 4.1 where the rate
of deletion is 10% and 20%. These rates are chosen to
be below the average WER for the sample population
given in Table 1.

4.3. Feature Extraction
A comprehensive feature set is extracted from the au-
tomatic and augmented transcripts based on recent ap-
proaches for automatically evaluating the SVF task.
Previous literature has proposed investigating the un-
derlying strategy for completing the SVF task by look-
ing for clusters of semantically related words in the task
(Troyer et al., 1997; Farzanfar et al., 2018). This pro-
cess was previously automated and Four features are
extracted for semantic clustering and switching based
on Linz et al., 2017 using pre-trained Dutch seman-
tic word embeddings from Fasttext (Bojanowski et al.,
2016). Beyond semantics, temporal methods have also
been proposed for extracting five clustering and switch-
ing metrics in SVF based on (Tröger et al., 2018). In
addition, another temporal method has been investi-
gated by breaking the sixty second task into six ten-
second bins (Linz et al., 2019b; Lindsay et al., 2021).

For more detailed feature explanations, short descrip-
tions of each feature are given in Table 2

5. Experiments
Statistical Analysis is done in R Studio (R Core Team,
2017). All coding experiments are implemented using
python 3.7.

5.1. Machine learning Classification
Scenarios

To test the feasibility of the proposed data augmenta-
tion technique, multiple machine learning experiments
are conducted.

5.1.1. Augmentation Approach with REWER and
REWCD

This train-test setup is applied to the three synthetic
data sets that are created as well as the combination of
all of them: the WER set (WER), the 10% constant rate
(C 10%), the 20% constant rate (C 20%), and the com-
bination of all three synthetic datasets (ALL SYNTH).
Since the idea of this paper is to produce synthetic data
that performs similarly to the real data, we propose to
train on the synthetically generated data and test on the
real ASR data. To keep the models comparable to train-
ing and testing on the real ASR data, leave one out
cross validation(LOOCV) is also used in this scenario.
In this case, the one participant that is in the test set has
all their synthetic data removed from the training set.
For a concrete example, this means of the 1000 gen-
erated files, 990 synthetic data points are in the train-
ing set and 1 real data point is in the test set. The 10
data points that are removed are the files generated by
the one being tested. This is done to prevent inflating
model results.

5.1.2. Classic Approach
To compare the newly proposed technique to traditional
methods, model performance is considered when train-
ing on the real ASR data (REAL ASR) using LOOCV.

5.1.3. Machine learning Classification
Specifications

The classification models are created using the scikit-
learn library1 (Pedregosa et al., 2011).
For the feasibility of this method, binary classification
is done to distinguish between the MCI and control
group. Three classification algorithms are considered;
Logistic Regression (LR), Random Forest (RF), and
Support Vector Machine (SVC). Features are normal-
ized using the standard scalar. Grid search is used to
optimize model parameters in the training fold. In ad-
dition, univariate feature selection is done to test how
increasing the number of features increases as the data
increases. To gauge and compare model performance,
accuracy and area under the receiver operator curve
(AUC) are calculated.

1sklearn version==0.24.0 for python 3.7



Feature Name Description

Word Count The total number of animal words said in one minute, excluding repetitions
Semantic Clustering Measures

Mean Cluster Size Average number of animals in an semantic cluster over the entire sample
Number of Switches the number of times switched to a different semantic cluster
Mean Intercluster Similarity On average, how semantically related are the semantic clusters

Temporal Clustering Measures
Mean Transition Time Mean time (in seconds) between consecutive words
Mean Cluster Size Average number of animals in a temporal cluster over the entire sample
Number of Switches the number of times switched to a different temporal cluster
Mean Intercluster Similarity On average, how semantically related are the temporal clusters

Bin Measures
Word Count by Bin The number of words per 10 second bin
Transition Length by Bin The average transition time in seconds between the end of one word and the

onset of the next word by 10 second bin
Semantic Similarity by Bin On average, how semantically related the words are by 10 second bin

Table 2: Features extracted from the SVF task produced by the participants with description.

5.2. Additional Experiments
A few other experiments are considered to examine the
synthetically generated data. A random baseline is gen-
erated using the permutation test to see if the synthetic
data can be distinguished from the real ASR data. In
addition, incremental experiments are considered to see
how the amount of synthetic data used in training ef-
fects the binary diagnostic classification experiment.

5.2.1. Permutation Test
To test if we can tell the difference between the syn-
thetic and authentic data, permutation test is computed.
A permutation test consists of obtaining a randomised
baseline by training a linear model a series of times
while permuting the target labels in question each time,
removing any dependence between the input features
and the mentioned target label. In this case, the tar-
get label is authentic or synthetic. The p-value repre-
sents the probability of obtaining the model accuracies
we observe, assuming the that the null hypothesis is
true. For this experiment, the null hypothesis is that
there is no difference between the synthetic and au-
thentic data. To test this, authentic and synthetic la-
bels are randomly assigned to the transcripts. A linear
model is trained and tested with the randomly assigned
labels. Accuracy is used to determine model perfor-
mance. This is permuted 1000 times for comparison.
An empirical p-value is calculated by computing how
many of the random models have a higher accuracy
than the model trained on the true labels. The empirical
p-value is calculated by taking the number of times per-
formance falls within the random model score distribu-
tion divided by the total number of permutations. The
p-value, in this case, represents how many of the ran-
dom models have superior or comparable performance
to the one trained on the actual experimental scenario.
We report the p-value with statistical significance set to
0.05.

5.2.2. Incremental Experiments
In addition, the amount of synthetic data used to train a
model is tested where the training amount is increased
incrementally. A model where one synthetic data point
per participant is trained, then a model where two syn-
thetic data points per participants is trained and so on,
until all ten points per participant are used. In this sce-
nario, the machine learning scenario is simplified. A
simple logistic regression using all extracted features
is created with no hyperparameter optimization. As
stated previously, LOOCV is used where the synthetic
data is used to train and real ASR data is used to test
and no data from the test participant is seen during
training.

6. Results
6.1. Machine Learning Results

Model N Accuracy AUC Method

BEST ACC

LR 13 0.74 0.76 REWER
SVC 22 0.75 0.76 REWER
RF 11 0.73 0.76 ASR

BEST AUC

LR 13 0.69 0.77 ASR
SVC 22 0.69 0.77 ALL SYNTH
RF 11 0.73 0.76 ASR

Table 3: Best result for feasibility experiments for each
classifier. N is the number of features. Method is which
training data had the best score. The upper table is
based on highest accuracy. The lower tables is based
on highest AUC.

Results for the machine learning experiments explained
in Section 5.1 are visualized in Figure 1. In addition
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Figure 1: Visualization of results from the machine learning experiments. The number of features used to traain the
modedl is represented on x-axis. Logistic Regression(LR). Support Vector Machine(SVC), Random Forest(RF).
Area Under Curve (AUC).

the best accuracy and AUC score for each algorithm
are displayed in Table 3.
From the results, comparable performance is seen be-
tween both the REWER and REWCD methods to the
classic approach. Overall, the synthetic data improves
in performance with the number of features. Looking
at the best accuracy by classifier, for the logistic regres-
sion and support vector machine, the WER method pro-
duces the max result. For AUC, the support vector ma-
chine best result is achieved using the combined syn-
thetic data sets. However, real data yields better AUC
performance in general. There is also appears to be
some dependence on classifier type the random forest
classifier consistently performs better in both accuracy
and AUC with real data.

6.2. Permutation Test Results
For the random baseline from the permutation tests, No
significant p-values are reported. Values range from
0.44 to 0.56 with the average significance value being
0.51. Therefore, the alternate hypothesis is rejected and
the null hypothesis is accepted. This can be interpreted
as the linear model not being able to distinguish be-

tween the synthetic and authentic transcripts.

6.3. Incremental Experiments
Results for the incremental experiments are visualized
in Figure 2. In addition, Table 4 summarizes the results
by averaging AUC and accuracy scores by the number
of synthetic data points used during training per partic-
ipant.
As the amount of data increases, consistent AUC values
are reported ranging from 0.74 to 077, and consistently
averaging to 0.76. The accuracy presents with a mild
downward slope 71% with one data to 69% accuracy
at nine synthetic points per person. The slight decrease
in accuracy could be to the lack of optimization during
training as higher accuracy (74%) is reported for the
logistic regression with ten data points per person.

7. Discussion
Of the synthetic methods considered, WER had the best
accuracy. This result is expected based on the train-test
setup used. The REWER method generates training
data closest to the ASR test data. However, the con-
stant deletion had comparable results to the WER and
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N AUC Accuracy
1 0.76 0.71
2 0.76 0.71
3 0.76 0.69
4 0.76 0.70
5 0.76 0.69
6 0.76 0.69
7 0.76 0.69
8 0.76 0.69
9 0.76 0.69

Table 4: Summarization of incremental experiment re-
sults. N is the number of synthetic data points per par-
ticipant used during training. AUC and accuracy are
averaged over the augmentation method.

real data. One of the downsides to using WER is the
need for expensive and time-consuming manual anno-
tation. However, this can be bypassed with the constant
rate method. In addition, constant deletion rates could
be blended, similarly to what has been done with the
ALL SYNTH method that achieved the highest AUC
score for the SVM. Additional experiments determined
that a linear model was not able to distinguish between
the synthetic and real data based on the permutation
test. Furthermore, as the amount of synthetic data used
for training is increased consistent performance is re-
ported that is comparable to the real data scenario.
One benefit of using random erasing to generate syn-
thetic transcripts—rather than just simulating feature

values from a distribution—is that the data is still ex-
plainable. There are synthetic transcripts that can be
viewed and investigated. This is something that is
highly sought after in clinical settings as medical pro-
fessionals prefer tangible and explainable solutions.
These findings have an impact on future work. The
ability to generate additional synthetic clinical data
could open the door to training deep learning models
and neural approaches. As well as, the raw data could
be used for new solutions that are now possible due to
increased amounts of data. For example, the sequence
of words could be used as an input for an LSTM.
However, there are still some unknown factors of what
this method has on data in other domains. For in-
stance, this paper is scoped to a single clinical task
that is focused on assessing cognition. It is unknown
if this methodology would work on free speech clini-
cal tasks, such as the picture description task or story
telling task, where cognition and language abilities in-
teract more heavily (Themistocleous et al., 2020). Fu-
ture work would need to investigate the transference of
this technique to other domains.

8. Conclusion
This paper proposed to generate synthetic data by sim-
ulating ASR error already found in automatic evalua-
tion pipelines. Random erasing by either WER or con-
stant deletion is a low cost and simple solution that ef-
fectively delivers machine learning performance that is
on par with current real data methods. These findings
present impactful solutions for future work to investi-
gate how much data can be generated and achieving



better performance using deep learning and neural ap-
proaches.
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Dissociating semantic and phonemic search strate-
gies in the phonemic verbal fluency task in early de-
mentia. In Proceedings of the Seventh Workshop on
Computational Linguistics and Clinical Psychology:
Improving Access, pages 32–44, Online, June. Asso-
ciation for Computational Linguistics.

Linz, N., Lundholm Fors, K., Lindsay, H., Eckerström,
M., Alexandersson, J., and Kokkinakis, D. (2019a).
Temporal analysis of the semantic verbal fluency
task in persons with subjective and mild cognitive
impairment. In Proceedings of the Sixth Workshop
on Computational Linguistics and Clinical Psychol-
ogy, pages 103–113, Minneapolis, Minnesota, June.
Association for Computational Linguistics.

Linz, N., Lundholm Fors, K., Lindsay, H., Eckerström,
M., Alexandersson, J., and Kokkinakis, D. (2019b).
Temporal analysis of the semantic verbal fluency
task in persons with subjective and mild cognitive
impairment. In Proceedings of the Sixth Workshop

on Computational Linguistics and Clinical Psychol-
ogy, pages 103–113, Minneapolis, Minnesota, June.
Association for Computational Linguistics.

McDonnell, M., Dill, L., Panos, S., Amano, S., Brown,
W., Giurgius, S., Small, G., and Miller, K. (2020).
Verbal fluency as a screening tool for mild cog-
nitive impairment. Int Psychogeriatr, 32(9):1055–
1062, Sep.

Pakhomov, S. and Hemmy, L. (2014). A computa-
tional linguistic measure of clustering behavior on
semantic verbal fluency task predicts risk of fu-
ture dementia in the nun study. Cortex, 55(1):97–
106, June. Funding Information: The work on this
study was supported in part by the National Insti-
tutes of Health National Library of Medicine Grant
[ LM00962301 – S.P.] and the Nun Study data col-
lection was supported by a grant from the National
Institute of Aging ( R01AG09862 ). The authors also
wish to thank Heather Hoecker for helping with dig-
itization of the SVF samples.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., and Duch-
esnay, E. (2011). Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.

R Core Team, (2017). R: A Language and Environment
for Statistical Computing. R Foundation for Statisti-
cal Computing, Vienna, Austria.

Shorten, C. and Khoshgoftaar, T. M. (2019). A sur-
vey on image data augmentation for deep learning.
Journal of Big Data, 6(1):60.

Themistocleous, C., Eckerström, M., and Kokkinakis,
D. (2020). Voice quality and speech fluency dis-
tinguish individuals with mild cognitive impairment
from healthy controls. Plos one, 15(7):e0236009.
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