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ABSTRACT
Item response theory models the probability of correct stu-
dent responses based on two interacting parameters: student
ability and item difficulty. Whenever we estimate student
ability, students have a legitimate interest in knowing how
certain the estimate is. Confidence intervals are a natu-
ral measure of uncertainty. Unfortunately, computing confi-
dence intervals can be computationally demanding. In this
paper, we show that confidence intervals can be expressed
as the solution to a feature relevance optimization problem.
We use this insight to develop a novel solver for confidence
intervals and thus achieve speedups by 4-50x while retain-
ing near-indistinguishable results to the state-of-the-art ap-
proach.
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1. INTRODUCTION
Item response theory (IRT) is a well-established method to
model the responses of students on a test [1, 5, 8]. The
basic version models the probability of student i to answer
correctly on item j as pi,j = 1/(1 + exp[bj − θi]), where θi
is a parameter representing the ability of student i, and bj
is a parameter representing the difficulty of item j. If a stu-
dent’s ability exceeds the item’s difficulty, the success prob-
ability is larger than 0.5, and vice versa. Numerous exten-
sions have been developed over the years, such as parameters
for item discrimination (two-parameter IRT), base success
chance due to random guessing (three-parameter IRT) [1,
5], IRT for multiple skills [10], performance factor analysis,
which describes the increased success chance for repeated
attempts [12], or combinations with machine learning [11,
13].

Whenever we use IRT to estimate student ability, students
have a legitimate interest in making sure that our model does

not underestimate them (in line with the European Union’s
concept of a right to explanation [6, 9]). Accordingly, it is
important that we not only estimate each student’s ability,
but also our uncertainty. We can quantify uncertainty in
IRT models via confidence intervals [3, 4]. Roughly speak-
ing, an α-confidence interval describes a range of possible
parameter values such that the ‘true’ value is outside the
range with probability at most α. For example, Wald’s
method assumes that parameters are Gaussian-distributed
and uses the Gaussian’s standard deviation to estimate con-
fidence intervals [3]. While this is efficient, the Gaussian
approximation assumes symmetry of the distribution and is
only valid for large numbers of items in the test[4]. This is
often unrealistic, which is why Wald’s method tends to pro-
vide inaccurate confidence intervals in practice [4]. Doebler
et al. have reacted by providing more exact methods under
the assumption of constant item parameters but the result-
ing confidence intervals are disconnected regions [4], which
are challenging to interpret.

More recently, Chalmers et al. [3] suggested the likelihood
profile method, which is based on a likelihood ratio test. In
particular, we look for a parameter range in which the log-
likelihood is at least the optimal log-likelihood minus half
the 1− α-quantile of the χ2-distribution with one degree of
freedom. Because this method does not assume symmetry
and works on the ’true’ likelihood, it improves the accuracy
of confidence intervals considerably. However, the computa-
tion requires a nested optimization scheme for every single
parameter, which is computationally demanding, especially
for large numbers of students.

In this paper, we provide a new perspective by showing that
likelihood profile confidence intervals are equivalent to fea-
ture relevance intervals, which can be found via an optimiza-
tion problem [7]. Second, we utilize this theoretical insight
to develop a novel solver for confidence intervals which is
considerably faster (by factors of 4-50x), while the resulting
confidence intervals are almost indistinguishable from direct
computation. We evaluate our proposed solver on a range of
synthetic experimental conditions from 30-500 students and
tests with 10 or 20 items. The experimental code can be
found at https://github.com/bpaassen/ability_bounds.

2. METHOD
Our goal is to develop a faster solver for confidence bounds
for ability parameters of IRT models via the likelihood pro-
file technique [3]. For an illustration of the technique, con-
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Figure 1: Illustration of the optimal NLL we can achieve for a
certain value of θi in a single-student, single-item setup with
C = 1 and y1,1 = 1. The dashed line shows the loss bound
for α = .05, the solid lines mark the corresponding confidence
interval

sider Fig. 1. The blue curve illustrates the best negative
log-likelihood (NLL) ` we can achieve when fixing the abil-
ity parameter θi to the value on the x axis. The likelihood
profile technique now asks for the values θ−i and θ+

i , such
that the NLL is exactly `∗ + 1

2χ
2,−1
α , where `∗ is the overall

minimum NLL and χ2,−1
α is the 1 − α quantile of the χ2

distribution with one degree of freedom. Our α confidence
interval is, then, given as [θ−i , θ

+
i ].

More precisely, the NLL of an IRT model on a dataset with
m students and n items is given as

`(~θ,~b) =
m∑
i=1

n∑
j=1

−yi,j · log[pi,j ]− (1− yi,j) · log[1− pi,j ]

+ 1
2C · (‖

~θ‖2 + ‖~b‖2), (1)

where yi,j is 1 if student i answered correctly on item j and
is 0, otherwise, pi,j = 1/(1 + exp[bj − θi]), and C is the
variance of a Gaussian prior on the ability parameters ~θ and
item parameters ~b [1] (chapter 7).

Now, let ~θ¬i denote the vector ~θ without its ith element
and let `i(θi) := min~θ¬i,~b

`(~θ,~b). In other words, `i(θi) is
the minimum NLL value we can achieve if we hold θi fixed
but optimize all other parameters. Then, the likelihood pro-
file method solves the equation `i(θi) = `∗ + 1

2χ
2,−1
α , where

`∗ = min~θ,~b `(~θ,~b). Because ` is convex in θi, this equation
has exactly two solutions, which correspond to our interval
bounds. The drawback of the likelihood profile method is its
computational demand. For each student i, we need to solve
a nested optimization problem, where the outer optimization
searches for a solution to the equation `i(θi) = `∗ + 1

2χ
2,−1
α ,

and the inner optimization computes `i(θi) for each value of
θi probed by the outer optimization. We look for a way to
speed up this computation.

Our key inspiration is the concept of feature relevance in-
tervals (FRI) proposed by Göpfert et al. [7]. The FRI for
some parameter θ is defined as the interval between the min-
imum and maximum value that still retains a loss of at most
(1− δ) times the optimal loss, where δ is a user-defined hy-

perparameter. More precisely, given some loss function ` of
some parameter vector ~θ and some specific parameter θi, the
FRI for θi is computed by solving the following minimiza-
tion/maximization problem:

min
~θ
/max

~θ
θi s.t. `(~θ) ≤ `∗ · (1 + δ). (2)

Note that this concept is more general than confidence inter-
vals and is mostly intended for classifiers in machine learning
[7]. However, for IRT, confidence intervals via the likelihood
profile method and FRIs happen to be equivalent.

Theorem 1. Let `∗ = min~θ,~b `(~θ,~b) for the NLL (1) and
some C > 0. Then, for any α ∈ (0, 1) and any i ∈ {1, . . . ,m},
it holds: Problem (3) is convex with a global optimum ~θ±,~b±,
such that `(~θ±,~b±) = `i(θ±i ) = `∗ + 1

2χ
2,−1
α .

min
~θ,~b

/max
~θ,~b

θi s.t. `(~θ,~b) ≤ `∗ + 1
2χ

2,−1
α . (3)

Proof. As a notational shorthand, let Lα := `∗+ 1
2χ

2,−1
α .

Note that the objective function of (3) is linear and hence
convex. Now, consider the feasible set X = {(~θ,~b)|`(~θ,~b) ≤
Lα}. Let x, y ∈ X and let zγ = γ · x + (1 − γ) · y for some
γ ∈ [0, 1], that is, zγ is on the connecting line between x
and y. Then, it must hold: `(zγ) ≤ γ · `(x) + (1− γ) · `(y),
because ` is convex with respect to ~θ and ~b. Further, because
x, y ∈ X , `(x) ≤ Lα and `(y) ≤ Lα. Therefore, `(zγ) ≤ Lα,
implying that zγ ∈ X . Hence, X is convex and (3) is convex.

Next, note that, for any α ∈ (0, 1), χ2,−1
α is strictly larger

zero. Therefore, the feasible set X is not empty (it contains
at least the minimizer of `). In turn, problem (3) must have
a optimum (~θ±,~b±) with `(~θ±,~b±) = Lα because the objec-
tive function is strictly increasing.

Finally, we need to show that `i(θ±i ) = Lα. Assume this
is not the case. If `i(θ±i ) > Lα, then min~θ¬i,~b

`(~θ,~b) >

`(~θ±,~b±), which is a contradiction. If `i(θ±i ) < Lα, we need
to inspect the behavior of `i in more detail. Let (θ∗, b∗) be the
solution to the unconstrained problem min~θ,~b `(~θ,~b). Then,
we know that `i attains its minimum at θ∗i with `i(θ∗i ) = `∗.
Further, because `i is defined as the component-wise mini-
mum of a convex function, it is convex itself [2] (p. 87). In
turn, we know that for any θi > θ∗i , `i is increasing and for
any θi < θ∗i , `i is decreasing. Because C > 0, it is also
guaranteed that `i(θi) exceeds Lα for sufficiently large/small
θi, e.g., `i(±

√
2 · C · Lα) > 1

2C
√

2 · C · Lα
2 = Lα. Now,

consider the minimization version of (3). In that case, we
certainly have θ−i ≤ θ∗i , otherwise θ−i would not be mini-
mal. Now, because `i(θ−i ) < Lα, because `i is decreasing
for all values θi < θ∗i , and because `i is continuous, there
must exist some value θi < θ−i with `i(θ−i ) < `i(θi) ≤ Lα.
Therefore, (~θ−,~b−) is not a solution for the minimization
version of (3), which is a contradiction. The argument for
the maximization version is analogous.

Fig. 1 provides a graphical intuition for the proof: We can
find the two solutions to `i(θi) = `∗ + 1

2χ
2,−1
α by starting

at the minimum θ∗i of ` and then decreasing/increasing θi



as much as possible while maintaining a loss that is at most
`∗ + 1

2χ
2,−1
α . To do so, we automatically need to adjust all

other parameters to allow for as much slack as possible to
increase θi.

Alternating optimization solver. The key insight for our
solver is that problem (3) becomes much more efficient if we
only optimize over θi and not over any remaining parame-
ters. In particular, we can re-write the NLL (1) as:

˜̀
i(θi) =

n∑
j=1

−yi,j · log[pi,j ]− (1− yi,j) · log[1− pi,j ]

+ 1
2C · θ

2
i + `¬i, (4)

where `¬i is a constant term that does not depend on θi.
Computing ˜̀

i only requires O(n) computations, whereas the
full NLL (1) requires O(m · n). Overall, we obtain the sim-
plified problem:

min
θi

±θi s.t. ˜̀
i(θi) ≤ `∗ + 1

2χ
2,−1
α . (5)

By extension of Theorem 1, solving (5) is equivalent to solv-
ing the equation ˜̀

i(θi) = `∗ + 1
2χ

2,−1
α , which we can do

efficiently via standard nonlinear equation solvers.

Importantly, our solution of (5) will be sub-optimal accord-
ing to the original problem (3) because ˜̀

i only approximates
`i. Therefore, we update ˜̀

i by keeping θi fixed and mini-
mizing over all other parameters ~θ¬i and ~b. Then, we can
solve (5) again, and so forth, until convergence. This is our
proposed alternating optimization (AO) solver.

Figure 2 shows an illustration of the algorithm. To infer the
upper bound θ+

i , we start at θ+
0,i = θ∗i , i.e. the optimal value

according to the NLL. We obtain the next estimate θ+
1,i by

solving the −θi version of (5) with respect to the current
surrogate NLL ˜̀+

0,i. Then, we update all other parameters
~θ¬i and ~b by minimizing the NLL (1), yielding a new surro-
gate ˜̀+

1,i. Solving (5) again yields the next estimate θ+
2,i. In

this example, θ+
2,i would already be indistinguishable from

the optimal θ+
i according to (3) because ˜̀+

1,i and `i strongly
overlap. In general, we can prove that θ+

t,i converges to θ+
i .

Theorem 2. Let θ±0,i = θ∗i , where (~θ∗,~b∗) minimizes the
NLL `(~θ,~b). Let ˜̀±

t,i be the surrogate NLL (4) for parame-
ters min~θ¬i,~b

`(~θ,~b) for fixed θi = θ±t,i, and let θ±t+1,i be the
solutions of the ∓ versions of (5) for ˜̀

i = ˜̀±
t,i. Then, for

C > 0 and t → ∞, θ±t,i converge to solutions of the mini-
mization/maximization version of (3).

Proof. As a notational shorthand, let Lα := `∗+ 1
2χ

2,−1
α .

For simplicity, we only consider θ+
t,i here; the proof for θ−t,i is

analogous. First, observe that, for all t, we have ˜̀+
t,i(θ

+
t,i) =

`i(θ+
t,i) by construction, and we have ˜̀+

t,i(θ
+
t+1,i) = Lα, oth-

erwise θ+
t+1,i would not be a solution to (5). Further, by

definition, we have ˜̀+
t,i(θi) ≥ `i(θi) for all t and all θi ∈ R.

Therefore, we obtain ˜̀+
t,i(θ

+
t,i) = `i(θ+

t,i) ≤ ˜̀+
t−1,i(θ

+
t,i) = Lα.
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Figure 2: Illustration of the alternating optimization algo-
rithm. We start with the optimum value for θ+

0,i = θ∗1 , then
maximize θi via (5), yielding θ+

1,i, then update ˜̀
i, then max-

imize θi via (5) again, and so forth.

Accordingly, whenever we solve (5) in step t + 1, θ+
t,i is a

feasible initial point. Therefore, θ+
t+1,i ≥ θ

+
t,i.

Whenever θ+
t+1,i = θ+

t,i, we have ˜̀+
t+1,i = ˜̀+

t,i and, thus,
θ+
t,i = θ+

t+1,i = θ+
t+2,i = . . ., that is, we have a fixed point.

Further, we have `i(θ+
t+1,i) = ˜̀

t+1,i(θ+
t+1,i) = ˜̀

t+1,i(θ+
t,i) =

Lα, which is a solution to the maximization version of (3).
Before the fixed point, the sequence θ+

0,i, θ
+
1,i, . . . is strictly

increasing. Since `i is convex with a minimum at θ+
0,i, the

sequence `i(θ+
0,i), `i(θ

+
1,i), . . . is also increasing. For C > 0,

it would eventually grow beyond bounds due to the regular-
ization term, but since it is upper-bounded by Lα, it must
converge to Lα and, hence, θ+

t,i must converge to θ+
i .

While Theorem 2 only holds in the limit, very few steps t
suffice for a close-to-optimal solution in practice (e.g., Fig-
ure 2). We investigate this issue in more detail in our ex-
periments.

3. EXPERIMENTS
In our experiments, we simulate synthetic data from a ground-
truth IRT model with ability and difficulties sampled from
a standard normal distribution. We varied the number of
students m in the range {30, 50, 100, 500} and the number
of items n in the range {10, 20} (similar to the protocol of
[3]). For each model, we repeated the sampling 10 times
to asses variation. In each repeat, we computed confidence
intervals for θi at α = 0.05 via Wald’s method, the like-
lihood profile-method via solving `i(θi) = `∗ + 1

2χ
2,−1
α for

each i (LP), a log-barrier solver (barrier) for (3), and our
proposed alternating optimization scheme (Theorem 2) for
t = 1 (AO(1)), t = 2 (AO(2)), and t = 3 (AO(3)) steps.
All experimental code is available at https://github.com/
bpaassen/ability_bounds.

Coverage. Table 1 shows the coverage rates of all methods,
that is, the rate at which the ground truth θi value was in-
cluded in the confidence interval [θ−i , θ

+
i ] [3]. For α = 0.05,

the coverage rate should be as close as possible to 0.95. We
observe that Wald’s method selects too large confidence in-
tervals, yielding rates close to 100%. The barrier method



Table 1: Coverage rates of all methods across experimental conditions
m n Wald LP barrier AO(1) AO(2) AO(3)
30 10 0.983± 0.022 0.943± 0.054 0.910± 0.056 0.943± 0.054 0.943± 0.054 0.943± 0.054
30 20 1.000± 0.000 0.943± 0.021 0.083± 0.050 0.940± 0.025 0.943± 0.021 0.943± 0.021
50 10 0.998± 0.006 0.926± 0.041 0.884± 0.047 0.920± 0.041 0.926± 0.041 0.926± 0.041
50 20 0.998± 0.006 0.942± 0.039 0.098± 0.039 0.938± 0.040 0.942± 0.039 0.942± 0.039
100 10 0.998± 0.004 0.934± 0.028 0.892± 0.029 0.933± 0.027 0.934± 0.028 0.934± 0.028
100 20 0.999± 0.003 0.937± 0.030 0.059± 0.012 0.933± 0.031 0.937± 0.030 0.937± 0.030
500 10 0.998± 0.002 0.940± 0.011 0.898± 0.015 0.939± 0.010 0.940± 0.011 0.940± 0.011
500 20 1.000± 0.001 0.949± 0.008 0.097± 0.016 0.948± 0.008 0.949± 0.008 0.949± 0.008
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Figure 3: Log-Log plots for the runtime in seconds versus m
for n = 10 (top) and n = 20 (bottom). Dotted, gray lines
show linear functions at .1, 1, 10, and 100ms per student.

selects smaller confidence intervals, yielding rates around
90% for n = 10 items. If we choose n = 20 items, the bar-
rier method becomes numerically unstable and the coverage
rates degrade (smaller 10%). The likelihood profile (LP)
method consistently achieves rates between 92% and 95%
and thus is closest to the desired value of 95%. Alternating
optimization achieves indistinguishable results to LP at 3
significant digits for t ≥ 2 (AO(2) and AO(3)).

Runtime. Figure 3 displays the time it took to compute
confidence intervals for all students in every experimental
settings in log-log plots. Dotted, gray lines are linear refer-
ence functions at .1, 1, 10, and 100ms per student. Using
linear fits, we find that Wald’s method is fastest (at about
.3ms per student), followed by AO(1) (about .8ms per stu-
dent), barrier (about 4ms per student), AO(2) (about 9ms
per student), AO(3) (about 12ms per student), and finally
LP (about 37ms per student). Accordingly, AO(1) is roughly
50x faster than LP, and AO(2) is roughly 4x faster.

4. DISCUSSION AND CONCLUSION
In this paper, we introduced a new solver for confidence
intervals on item response theory parameters via the like-
lihood profile method. In particular, we found that our

alternating optimization solver was 4-50 times faster than
the existing solver while achieving almost indistinguishable
results. For anyone who seeks to compute confidence inter-
vals, this should provide massive speedups in practice. More
generally, though, we hope that our new solver can help the
community to respond to an emerging need in educational
data mining: more and more, policy makers and the general
public expect machine learning models to provide explana-
tions for their decisions. This is exemplified by recent policy
initiatives in the European Union for a right to explanation
and a risk-based approach to regulate artificial intelligence.
Grading student ability—like in item response theory—will
likely be under increasing scrutiny in the years to come. As
such, we believe that it is crucial to quantify a model’s un-
certainty precisely, which our solver can help to do.

We also provide a key theoretical insight in our paper: Tradi-
tionally, confidence intervals express the range of parameter
values which is likely to contain the ’true’ value. We showed
that the likelihood profile method for confidence intervals
can also be interpreted as an optimization problem: We try
to find the minimum/maximum ability value for a student
which is still consistent with a high likelihood of the data.
This interpretation provides a new way to explain an ability
estimate: The upper bound of our confidence interval is the
highest possible grade we can give to a student while still
being consistent with the responses they provided.

Beyond this paper, there remains ample room for future
work. Our evaluation has only covered synthetic data to
validate the runtime advantage and the closeness to existing
methods. Future work could investigate how large confi-
dence intervals tend to be in practical scenarios. Further,
our experiments indicated that the size of our confidence
is still larger than it would need to be to cover the ’true’
ability value. Future work could try to find new methods
to compute confidence intervals which are more precise. In
particular, it may be promising to investigate combinations
with recently proposed models for variational item response
theory [14].
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