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Abstract In Process-Oriented Case-Based Reasoning (POCBR), deter-
mining the similarity between cases represented as semantic graphs often
requires some kind of inexact graph matching, which generally is an NP-
hard problem. Heuristic search algorithms such as A* search have been
successfully applied for this task, but the computational performance
is still a limiting factor for large case bases. As related work shows a
great potential for accelerating A* search by using GPUs, we propose
a novel approach called AMonG for efficiently computing graph simi-
larities with an A* graph matching process involving GPU computing.
The three-phased matching process distributes the search process over
multiple search instances running in parallel on the GPU. We develop
and examine different strategies within these phases that allow to cus-
tomize the matching process adjusted to the problem situation to be
solved. The experimental evaluation compares the proposed GPU-based
approach with a pure CPU-based one. The results clearly demonstrate
that the GPU-based approach significantly outperforms the CPU-based
approach in a retrieval scenario, leading to an average speedup factor of
16.

Keywords: GPU Graph Matching · A* Search · Similarity-Based Re-
trieval · Semantic Workflow Graphs · Process-Oriented Case-Based
Reasoning

1 Introduction

During the past 15 years, the application of workflows, initially proposed to
automate business processes, has significantly expanded to new areas such as
scientific workflows [31], medical guideline support [22], cooking recipes [25],
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robotic process automation [1], or IoT environments [4] such as manufactur-
ing [13, 24, 28, 29]. Workflow management, which involves creating, adapting,
optimizing, executing, and monitoring them, is getting increasingly challenging
in these areas and provides ample opportunities for Artificial Intelligence (AI)
support. During the past decade, Case-Based Reasoning (CBR) [2, 27] demon-
strated various benefits in the workflow domain, which led to the subfield of
Process-Oriented Case-Based Reasoning (POCBR) [5] addressing the integra-
tion of process-oriented information systems with CBR. Among other things,
POCBR enables the experience-based creation of workflows by reusing success-
ful workflows from the past, stored as cases in a case base. Respective research
conducted so far addresses the similarity-based retrieval of reusable workflows
as well as their adaptation towards new problems [7]. In both CBR-phases, the
similarity assessment between a query and case from the case base is an essential
operation, applied frequently during the problem-solving process. The fact that
in POCBR query and case are workflows typically represented as semantically
annotated graphs, turns the similarity assessment problem into a graph similarity
problem based on some domain-specific model of similarity. For addressing this
problem, graph matching [10,26] approaches have demonstrated significant ben-
efits, as in addition to the similarity value also a related (best) mapping between
query and case graph is computed, which is quite useful, e. g., during adapta-
tion [7]. The involved search process required to compute the mapping can be
implemented with A* search [5] but as the problem is inherently NP-hard [11,26]
large graphs can still lead to unacceptable computation times for practical ap-
plications. Particularly for case retrieval, in which a query has to be compared
with each case in the case base, several POCBR approaches have been proposed
to either speed up the computation of a single similarity assessment [30, 33] or
to speed up the overall retrieval using MAC/FAC approaches [14, 19] based on
faster but approximative similarity measures for preselection [8,18,20]. However,
up to now, only moderate speed improvements could be demonstrated.

To address this problem, this paper explores the opportunity to achieve larger
performance benefits based on a highly parallelized A*-based graph matching
approach for execution on Graphic Processing Units (GPUs), which is inspired
by impressive performance improvements obtained for A* search for path-finding
[9,35] based on GPUs. Therefore, we describe and analyze a novel approach called
AMonG (A*-Based Graph Matching on GPUs) and thereby contribute to other
recent endeavors to exploit GPU computing for CBR [3,23]. The following section
presents foundations on the used semantic graph representation and similarity
assessment via A* graph matching. Next, we describe the AMonG approach
in detail, before Sect. 4 demonstrates an experimental evaluation comparing
AMonG with the currently based CPU-based approach. Finally, Sect. 5 concludes
with a summary of the results and a discussion of future work.
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2 Foundations and Related Work

Our approach addresses similarity assessment between pairs of semantic work-
flow graphs via A*-based graph matching. Although the method is generic re-
garding the semantic graph representation, we use NEST graphs [5] for the
presentation and evaluation. In the following, the NEST graph representation
(see Sect. 2.1) as well as the similarity assessment between NEST graphs using
A* search (see Sect. 2.2) is introduced. Additionally, we present related work
that covers accelerating the similarity assessment between semantic graphs and
generic A* search approaches on GPUs (see Sect. 2.3).

2.1 Semantic Workflow Graph Representation

In our approach, we use semantically annotated graphs named NEST graphs
introduced by Bergmann and Gil [5] to represent workflows. A NEST graph
consists of four elements: Nodes, Edges, Semantic descriptions, and Types. Fig-
ure 1 illustrates a fragment of a cooking recipe. Task nodes represent cooking
steps (e. g., cut) and data nodes specify the corresponding ingredients that are
processed or produced during the execution of the cooking step (e. g., tomato).
In addition, workflow nodes are used to represent general information about
the cooking recipe, e. g., calories or the needed preparation time. Each task and
data node is connected with their corresponding workflow node by a part-of
edge. Control-flow edges define the execution order in a workflow and data-flow
edges indicate that a task consumes or produces this data node. For example, the
task dice processes cucumber in one piece and produces it again, but as diced
cucumber. Semantic descriptions can be used to attach specific information to
nodes and edges. They are based on a semantic metadata language (e. g., an on-
tology) that expresses domain-independent and domain-dependent knowledge.
In the NEST graph illustrated in Fig. 1, semantic descriptions are used to ex-
press properties of the data nodes or tasks (e. g., the duration or auxiliaries of a
cooking step).

2.2 State-Space Search by Using A*

By using the presented semantic graph format, it is possible to perform a graph
matching between a query graph and a case graph to get the similarity value. We
determine this similarity value with the approach proposed by Bergmann and
Gil [5] that aggregates local similarities of mapped nodes and edges to a global
similarity value according to the well-known local-global principle by Richter
[27]. The local similarities are computed with a model that defines similarities
based on the semantic descriptions of nodes and edges. The graph matching
process is restricted w. r. t. type equality, which means that only nodes and edges
of the same type (see Sect. 2.1) can be mapped to each other. Edge mappings are
further restricted such that two edges can only be mapped to each other if the
nodes linked by the edge are already mapped. However, several valid mappings
are possible for two graphs and an algorithm has to be used for finding the
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Fig. 1. A Cooking Recipe represented as a Semantic Workflow Graph.

best overall injective partial mapping M that maximizes the global similarity
sim(QW, CW ) between query workflow QW and case workflow CW :

sim(QW, CW ) = max {simM (QW, CW ) | mapping M}

The algorithm that is used for this purpose is the A* search algorithm (originally
proposed by Hart et al. [15]) that provides a complete and in particular optimal
search. The way that A* is used in a graph matching environment is very similar
to the original scenario of path search: The search goal is to find a mapping
(solution) that maximizes the similarity between two semantic graphs. Starting
with a set of unmapped nodes and edges of both graphs, the partial solutions
are iteratively build up by adding possible legal mappings. This is done until all
nodes and edges of the query graph are mapped. The process is guided by the
following equation that evaluates a mapping solution: f(M) = g(M) + h(M).
The estimation of the similarity f(M) of a mapping M is given by the sum
of the approved similarities of already mapped nodes and edges g(M) and the
estimation of the similarities of all unmapped nodes and edges computed by an
admissible heuristic h(M). Thereby, g(M) represents the aggregated similarities
of the nodes and edges that are already mapped. The function h(M) is a heuristic
estimation of the maximum similarity that can be achieved by mapping the
currently not mapped nodes and edges. This means, that f(M) = g(M) after
the mapping process is finished and f(M) = h(M) before the mapping process is
started. Figure 2 depicts two possible mappings (M1 and M2) between the nodes
of the query graph to the nodes of the case graph with their similarities. Please
consider that, for simplicity reasons, only the node mappings are illustrated.
In addition, it is important to note that the similarity between two graphs is
usually not symmetric: Thus, it makes a difference whether the nodes and edges
of the query graph are mapped to the case graph or the node and edges of the
case graph are mapped to the query graph. The illustrated graph is a typical
example for a query that is mostly only a partial graph that is a subgraph of the
case workflow graph. We take a closer look at the data node cheddar from the
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Fig. 2. Exemplary Mappings and Similarity Calculations between Two Semantic Work-
flow Graphs

query graph and its two possible mappings M1 and M2: The data node cheddar
can due to the necessary type equality only be mapped to the other data nodes,
i. e., mozzarella or cucumber in the case graph. If the data node cheddar is
mapped to the data node mozzarella a similarity value of 0.8 can be reached.
Whereas, a mapping from cheddar to cucumber results also in a legal mapping
but with a lower similarity of 0.2. Thus, the first mapping increases the overall
similarity (simM1 = 0.65) between the two graphs more than the other mapping
(simM2 = 0.35).

2.3 Related Work

In this section, we present related work for our proposed approach. Thereby, we
distinguish between: 1) related work from POCBR for accelerating case retrieval
and similarity assessment by using deep learning or other techniques and 2)
related work that uses GPU capabilities in CBR or for performing a state-space
search with A*.

To accelerate the similarity assessment between two workflow graphs, several
approaches have been proposed, mostly as a similarity measure to be used in the
MAC-phase of a MAC/FAC retrieval approach [14]: Bergmann and Stromer [8]
present an approach that uses a manually-modeled feature-vector representa-
tion of semantic graphs. By using this simplified representation, it is possible to
efficiently determine an approximate similarity between two graphs. However,
the manual modeling and knowledge acquisition effort for generating appropri-
ate features is high. Klein et al. [20] and Hoffmann et al. [18] try to reduce the
manual effort by using neural networks for similarity assessment that can auto-
matically learn feature vectors for graphs. These approaches have good quality
and performance characteristics. However, they are also only an approximation
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of the mapping-based similarity, thus using them for case retrieval may lead to
retrieval errors. They also require an offline training phase with high computa-
tional cost. In contrast to these approaches, Zeyen and Bergmann [33] present
an enhanced version of the A* graph matching process introduced by Bergmann
and Gil [5] to improve the search performance while still computing the exact
similarity. The improvements consist of four aspects: 1) an improved initializa-
tion of the solutions also w. r. t. type equality, 2) a case-oriented mapping to
swap the mapping direction if the case workflow has fewer nodes than the query
workflow, 3) a more-informed heuristic to reduce the degree of overestimation
and to make the h-values more precise, and 4) a revised selection function that
decides when to map which nodes and edges during the process. However, even
with these improvements of the matching process, it tends to be not possible to
find optimal solutions in reasonable time for larger graphs.

A possible solution to this problem is GPU computing. To the best of our
knowledge, CBR research dealing with GPU-based case retrieval is only rarely
investigated [3, 23]. The motivation for this work are our previous findings [23]
where GPU computing is used for case retrieval of feature-vector cases and
achieves a speedup of 37 when compared to CPU-based retrieval. Agorgianitis
et al. [3] also work with graph similarities in conjunction with GPU computa-
tion but they do not cover semantic annotations as part of the graph similarity
computation and they do not use the approach in a retrieval context. Other
related work performs a state-space search using A* on the GPU. Bleiweiss [9]
presents an approach for accelerating the navigation planning and pathfinding in
games. This work focuses on finding the shortest path of several agents, achiev-
ing a speedup of up to 24 times. Caggianese and Erra [12] propose a similar A*
variant for multi-agent parallel pathfinding in a single graph. Individual threads
represent different agents and search different paths in a shared graph by using a
hierarchical graph abstraction. Zhou and Zeng [35] propose an A* algorithm that
is able to run on a GPU in a massively-parallel fashion, reporting a speedup of
up to 45 times. They explore the possibility of not only extracting a single state
from the priority queue in each iteration, but rather extracting and processing
multiple of the best states at once. All presented approaches are similar to our
approach but they are not used for similarity assessment via graph matching. In
addition, the gained speedups also promise a great potential for our use case.

3 AMonG: A*-Based Graph Matching on Graphic
Processing Units

This section introduces our approach AMonG (A*-Based Graph Matching on
GPUs) for performing an A*-based graph matching between semantic workflow
graphs by exploiting the highly-parallel computing architecture of GPUs3. Our
approach integrates the key concepts and the heuristic of the CPU-based A*
3 Nico Bach formally described the approach in his bachelor thesis “Using Graphic

Processing Units for A*-Based Similarity Assessment in POCBR” submitted 2021 at
Trier University.
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similarity search presented by Zeyen and Bergmann [33] into a modified version
of the GPU-based A* search by Zhou and Zeng [35] where we reuse the structure
of parallel search instances (see Sect. 2.3). We first introduce an overview of the
approach with all associated components (see Sect. 3.1). Since the most impor-
tant component of this architecture is the parallel graph matching algorithm, we
describe its design in detail afterwards (see Sect. 3.2).

3.1 Overview and Components

The graph matching algorithm computes the maximum similarity for a query
graph and a case graph. Both graphs are semantic NEST graphs, as introduced
in Sect. 2.1. Due to the fact that NEST graphs have several types of nodes and
edges, some mappings during the A* search are not legal, e. g., the mapping
of a task node from the query graph to a data node in the case graph. For
this reason, we compute all legal mappings between the individual nodes and
edges of both graphs and their similarities (also called isolated mappings resp.
isolated similarities) on the CPU and transfer them to the GPU. This way,
the GPU-computation focuses on the pure graph matching process and not on
the computation of similarities between nodes and edges. In addition, this also
reduces the amount of data stored on the GPU since the semantic information of
nodes and edges remain in the CPU memory. In order to parallelize the matching
process, we introduce n separate search instances that operate individually and
in parallel for certain tasks (similar to [35]). Each of these instances operates on
its own priority queue that stores state descriptions containing partially matched
solutions. The search instances can be considered as separate A* search runs
that run in parallel as often as possible but share their search progress in form
of expanded states occasionally. The parameter n has a high influence on the
parallelism potential of the matching procedure. A higher value of n corresponds
to a higher degree of parallelism and possibly increased performance but comes
with the risk of generating more overhead, e. g., for communication and exchange
of solutions between the individual priority queues of the instances. The partially
matched solution represented by a state description is denoted as s and composed
of a set of already applied mappings A(s), i. e., all pairs of nodes and edges that
are already mapped between query and case graph [5], and a set of possible
mappings P (s). P (s) is computed by deleting all mappings from the isolated
similarities in which a node or an edge is already mapped in A(s) such that it
cannot be mapped anymore. Prior to the iterative graph matching procedure, we
initialize the priority queues by putting an empty solution, i. e., A(si) is empty
and P (si) is equal to the isolated similarities, into one of the priority queues and
leave all other priority queues empty. This is motivated by the findings of related
work [35] to prevent the need for computationally-intensive deduplication. By
starting with a single solution and deterministically adding new node or edge
mappings, it is not possible to generate the same solution twice by different
search instances.
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3.2 Parallel Graph Matching

The matching procedure is depicted in Fig. 3. The process consists of three
distinct phases that are executed iteratively for all search instances. These com-
ponents are explained in more detail in the following.

...

...
Insertion into
Priority Queues

Extraction and
Expansion

Evaluation

Insertion into
Priority Queues

...

Fig. 3. Execution Phases of the GPU-Based Graph Matching Algorithm (Based on:
[35])

The initial phase in the procedure consists of an extraction of the best par-
tial solution si by each search instance from its priority queue. The priority
queues evaluate and return the best solutions according to their f -value, which
is composed of the g-value and the h-value. Please note that although the ex-
tracted solutions are all optimal within the scope of the search instances, they
are not guaranteed to be optimal in the global scope of all search instances.
This might lead to non-optimal solutions being expanded, which can increase
matching time. This also motivates a careful parameterization of the approach,
in particular with the value of n. Each extracted solution si with i ∈ [1, n] is
expanded by selecting the next node or edge to match in the query graph. The
selected node or edge is then mapped to all legal nodes or edges of the case graph
by using P (si) that provides information which nodes and edges can be legally
mapped according to their types (type equality). This leads to k new solutions,
denoted as si.j with j ∈ [1, k]. Each si.j is stored in a list specific to its search
instance.
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In the evaluation phase, the function f of all previously expanded solutions
is computed. Updating the f -value means updating the g- and h-values and is
done with A(si.j) and P (si.j). The g-value can be computed by summing-up the
similarities of all applied mappings A(si.j). The h-value is denoted as the esti-
mated maximum similarity of all possible remaining mappings P (si.j). However,
P (si.j) has to be updated after the expansion by removing mappings with al-
ready mapped nodes and edges before computing the correct value of h. In order
to parallelize the computation of the h-value, we propose three different strate-
gies: The first naive strategy (Eval1) only semi-parallelizes the phase by letting
each search instance compute the h-value and the updated set of P (si.j) for its
expanded mappings in sequence. This strategy is semi-parallel as it parallelizes
across the search instances but the evaluation of each mapping is computed in
serial within each instance. The second strategy (Eval2) aims at an improved load
distribution by collecting the expanded mappings from all search instances and
then invoking individual computations of h-value and P (si.j) for each expanded
mapping si.j in parallel. The third strategy (Eval3) follows Eval2 but additionally
splits up the computation of the h-value and the update of P (si.j) into separate
parallel subphases by evaluating each node and edge separately. The last two
strategies aim at reducing the computations into small, parallelizable parts (di-
vide and conquer) in order to improve load distribution. All strategies contribute
to the trade-off between parallelism and communication overhead generated by
the parallel execution.

In the insertion phase, the previously evaluated mappings are inserted into
the priority queues of the individual search instances. The evaluated mappings
should be distributed between the search instances in order to also distribute
the workload for subsequent iterations of the search. An even distribution of
partially matched solutions is crucial for the performance of this algorithm and
has to be well coordinated. Although there are typically more insertions than
extractions [9], priority queues might become empty or are not able to hold more
solutions if the distribution is not well coordinated. We propose two different
insertion strategies: The first strategy (Ins1) distributes the expanded mappings
of one search instance into the priority queue of only one randomly chosen search
instance. Thus, only fixed pairs of search instances share data with each other
for one iteration. Consequently, less synchronization is needed but the solutions
are not evenly distributed to all other search instances. In contrast, the second
strategy (Ins2) distributes the expanded mappings of a single search instance
evenly to the priority queues of all other instances. This achieves the maximum
degree of distribution and aims to keep the similarities of the solutions in the
priority queues uniformly distributed. However, accessing the priority queues of
all instances simultaneously, requires a nearly-equal runtime of the instances in
the previous expansion phase to avoid waiting for some instances. The insertion
phase also has the purpose of checking the termination criteria of the algorithm.
It terminates if one of the solutions from all priority queues is fully matched,
i. e., all nodes and edges of the query graph are part of a mapping, and this
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solution also features the maximum similarity value among all solutions, i. e., it
satisfies the goal function.

4 Experimental Evaluation

In the experimental evaluation, we compare our AMonG approach with the CPU-
based graph matching method [33] in the context of similarity-based retrieval.
Our central claim states that using GPUs for similarity assessment via graph
matching increases the performance compared to the CPU-based approach (see
Sect. 2.3). We investigate the following hypotheses in our experiment:

H1 Distributing all expanded mappings of one search instance into the prior-
ity queues of all other instances (Ins2) leads to a lower runtime in com-
parison to limiting the distribution by only inserting the mappings into
the priority queue of another random instance (Ins1).

H2 Evaluating the expanded mappings in parallel and parallelizing the com-
putation of the h-value and the update of the possible mappings in strat-
egy Eval3 increases the speedup compared to the other evaluation strate-
gies Eval1 and Eval2.

In Hypothesis H1, we validate the proposed insertion strategies in our experi-
ments. The hypothesis is derived from the assumption that the wider distribution
by sharing the expanded mappings with all other priority queues (Ins2) leads to
overall lower runtimes compared to less parallelization by inserting the expanded
mappings only to random instances in strategy Ins1. Similar to this, we assume
in Hypothesis H2 that the selected strategy in the evaluation phase should par-
allelize the workload as much as possible. For this reason, we assume that Eval3
increases the speedup compared to the other strategies. Thus, we expect that the
experiments benefit more from an increased parallelization than the associated
communication and synchronization overhead harms performance. In the follow-
ing, we first describe our experimental setup (see Sect. 4.1) and subsequently the
results of our experiments in Sect. 4.2 w. r. t. the hypotheses. Finally, a discussion
and further considerations are presented in Sect. 4.3.

4.1 Experimental Setup

For our experiments, we implemented the previously presented approach in the
open-source POCBR framework ProCAKE4 [6], which is suitable for repre-
senting semantic graphs and enabling A*-based graph matching between them
(see [33]). We use the bindings of JCUDA [32] for GPU-acceleration, since Pro-
CAKE is implemented in Java. The case base for the experiments is an exem-
plary case base available in ProCAKE, containing 40 manually-modeled cooking
recipes represented as NEST graphs [6]. These recipes are similar to the recipe
that is illustrated in Fig. 1. To highlight the mapping complexity of this sce-
nario, we present important properties of the case base in Tab. 1. The numbers
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Table 1. Graph Size and Mapping Complexity of the Case Base

 
Graph  
Nodes 

Graph  
Edges 

Graph Node  
Mappings 

Graph Edge  
Mappings 

min 9 21 70 9.8 ∙ 104 
avg 21.15 55.63 2 ∙ 108 1 ∙ 1028 
max 38 110 7 ∙ 1028 1.2 ∙ 1031 

 

 show the enormous search space of the mapping problem. The evaluation is re-
stricted to similarity assessments between graphs from this case base that do
not reach the memory limitations of the system (GPU and CPU memory). As
already described in Sect. 2.2, query graphs are typically partial graphs with
fewer nodes and edges than the case graphs. For this reason, we also restrict
the experiments to similarities where this condition holds. The final number of
evaluated similarity assessments is 704 where all other assessments either reach
the memory limitations or do not meet the criteria of a query smaller than the
case. Our central evaluation metric is the speedup in computation time that
can be achieved by applying AMonG in addition to the CPU-based similarity
assessment. AMonG is introduced such that it always computes the similarity
in parallel to the pure CPU-based A* computation and considers the one that
first finishes the computation (the slower computation can be stopped and dis-
carded). Thus, the speedup is defined by the full computation time on the CPU
divided by the minimum of the time of AMonG and the full computation time
on the CPU. All experiments are repeated five times and averaged afterwards.
The computation results of AMonG are verified by comparing them with the
results of the CPU-based A* computation. The experiments are conducted on
a computer running Windows 10 64-bit with an Intel i7 6700 CPU and 48 GB
RAM. For the GPU, an NVIDIA GeForce GTX 1080 with compute capability
6.1 and 8 GB graphics RAM is used. In preliminary experiments, we determined
that a number of n = 2048 priority queues is sufficient for our experiments.

4.2 Experimental Results

In this section, we present and discuss the results of our experiments. With
Hypothesis H1, we want to examine which insertion strategy is best suited.
Figure 4 depicts the runtime of all examined similarity computations on the GPU
for both insertion strategies in relation to the number of expanded mappings.
Both strategies are comparable w. r. t. their runtime for relatively small numbers
of expansions. However, as the required number of expansions to find a solution
increases, Ins2 provides a better runtime overall. Further, we investigate the total
number of expanded mappings for both strategies: Ins1 expands fewer mappings
than Ins2. This could be attributed to having more idle priority queues in the
beginning of the search, as mappings are not spread out efficiently over the
4 http://procake.uni-trier.de

http://procake.uni-trier.de
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Fig. 4. Experimental Results of Different Insertion Strategies

priority queues, leading to fewer expansions in early phases. Due to the better
distribution of the workload in early iterations, Ins2, by contrast, expands more
mappings on average than Ins1. For our experiments, we confirm Hypothesis
H1 as the runtime difference of Ins2 becomes larger as expansions grow and the
runtime is overall lower than that of Ins1.

To check Hypothesis H2, we run the experiments by using the best inser-
tion strategy from the first experiment Ins2 with all three proposed evaluation
strategies (Eval1, Eval2, and Eval3). We measure the average speedup that is cal-
culated with the speedups of all 704 similarity assessments. Additionally, the
average retrieval speedup is given based on the mean of the conducted retrievals
where the case base is queried with every graph. These values can be interpreted
as the expected speedup for a single similarity assessment of a query-case pair
and a typical retrieval, respectively. The results in Fig. 5 show that the strategy

Fig. 5. Experimental Results of Different Evaluation Strategies
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Eval3 achieves the highest values overall, with an average retrieval speedup of
16.29 and an average speedup of 23.33. This strategy also achieves a maximum
speedup of a single similarity assessment of 67.72. For this reason, we clearly
accept Hypothesis H2.

4.3 Discussion and Further Considerations

In our experimental evaluation, we have shown the performance gains that are
possible by using the GPU for A* search and we support our central claim
with the hypotheses. However, of the 704 similarity computations 379 were not
accelerated using AMonG. Nevertheless, the similarity assessment on the GPU
is faster in a typical retrieval scenario (see retrieval speedup), as 178 calculations
can be performed with a speedup greater than 1 and less than 10, and 147
calculations can even be executed with a speedup greater than 10. Our approach
thereby benefits from being used for larger problem spaces, where it clearly
outperforms the CPU-based method. In our experiments, we determine that
a similarity assessment, in which more than 2500 expansions on the CPU are
needed, should be performed on the GPU. The required expansions on the CPU
vary between 29 and 1,765,595 with an average of 44920.

5 Conclusion and Future Work

We presented the AMonG approach to accelerate A*-based similarity assess-
ment between semantic graphs by using GPUs in POCBR. AMonG exploits
the architecture of GPUs to evaluate multiple mappings in parallel during the
search process. To factor in the trade-off between parallelism and synchroniza-
tion overhead, we also discuss several strategies that contribute to either of these
two aspects, making the approach customizable w. r. t. multiple scenarios. The
evaluation investigates the potential of the proposed approach in speeding up
similarity assessment between semantic workflow graphs. It demonstrates that
our GPU-based approach significantly outperforms the CPU-based approach,
leading to speedup factors of up to 67. GPU retrieval acceleration is novel to
POCBR and is only little investigated in CBR (e. g., [3, 23]. The approach can
serve as the basis for future applications dealing with a wide variety of CBR
tasks. It can be especially useful in scenarios that deal with many similarity
assessments such as the learning process of adaptation knowledge [7]. Further, it
enables to process large case bases in complex domains that could be inefficient
or even infeasible using only CPU-based methods (e. g., [33]).

To further enhance the performance of the overall system, we propose to use
GPU-based and CPU-based matching in parallel. This could be achieved with
a suitable method for distributing graph pairs to both components a-priori,
e. g., by using a heuristic or a learning approach. It can lead to both approaches
fully utilizing their potential. This can also be important in the context of a
dependency-guided retrieval [21], where the search space can be particularly
large due to consideration of dependencies between cases during the retrieval
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phase. Furthermore, we aim to provide more flexibility with the algorithm’s hy-
perparameters to better fit the computation for different domains of semantic
graphs. This also emphasizes an automated method for hyperparameter opti-
mization [16]. To validate the findings from this paper, future work should also
cover more extensive evaluations with further POCBR domains (e. g., scientific
workflows [34] or cyber-physical manufacturing workflows [24, 29]). In addition,
the usage of the approach in combination with other techniques for accelerating
similarity-based retrieval (e. g., [17, 18,20,23]) promises further benefits.
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