
Vol.:(0123456789)

Machine Learning
https://doi.org/10.1007/s10994-022-06223-7

1 3

Recursive tree grammar autoencoders

Benjamin Paaßen1,2 · Irena Koprinska1 · Kalina Yacef1

Received: 16 February 2022 / Revised: 24 May 2022 / Accepted: 2 July 2022
© The Author(s) 2022

Abstract
Machine learning on trees has been mostly focused on trees as input. Much less research
has investigated trees as output, which has many applications, such as molecule optimiza-
tion for drug discovery, or hint generation for intelligent tutoring systems. In this work, we
propose a novel autoencoder approach, called recursive tree grammar autoencoder (RTG-
AE), which encodes trees via a bottom-up parser and decodes trees via a tree grammar,
both learned via recursive neural networks that minimize the variational autoencoder loss.
The resulting encoder and decoder can then be utilized in subsequent tasks, such as optimi-
zation and time series prediction. RTG-AEs are the first model to combine three features:
recursive processing, grammatical knowledge, and deep learning. Our key message is that
this unique combination of all three features outperforms models which combine any two
of the three. Experimentally, we show that RTG-AE improves the autoencoding error,
training time, and optimization score on synthetic as well as real datasets compared to four
baselines. We further prove that RTG-AEs parse and generate trees in linear time and are
expressive enough to handle all regular tree grammars.

Keywords Recursive neural networks · Tree grammars · Representation learning ·
Variational autoencoders

Editors: Krzysztof Dembczynski, Emilie Devijver.

 * Benjamin Paaßen
 benjamin.paassen@dfki.de

 Irena Koprinska
 irena.koprinska@sydney.edu.au

 Kalina Yacef
 kalina.yacef@sydney.edu.au

1 School of Computer Science, The University of Sydney, 1 Cleveland Street, Darlington,
NSW 2008, Australia

2 Educational Technology Lab, German Research Center for Artificial Intelligence (DFKI),
Alt-Moabit 91c, 10559 Berlin, Berlin, Germany

http://orcid.org/0000-0002-3899-2450
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-022-06223-7&domain=pdf

 Machine Learning

1 3

1 Introduction

Neural networks on trees have made significant progress in recent years, achieving
unprecedented performance with new models such as tree echo state networks (Gallic-
chio & Micheli, 2013), tree LSTMs (Tai et al., 2015), code2vec (Alon et al., 2019), or
models from the graph neural network family (Kipf & Welling, 2017; Micheli, 2009;
Scarselli et al., 2009). However, these achievements are mostly limited to tasks with
numeric output, such as classification and regression. By contrast, much less research
has focused on tasks that require trees as output, such as molecular design (Kusner
et al., 2017; Jin et al., 2018) or hint generation in intelligent tutoring systems (Paaßen
et al., 2018). For such tasks, autoencoder models are particularly attractive because
they support both encoding and decoding, thus enabling tree-to-tree tasks (Kusner
et al., 2017). In this paper, we propose a novel autoencoder for trees, which is the
first model to combine grammar information, recursive processing, and deep learning.
Hence, we name it recursive tree grammar autoencoder (RTG-AE).

Our core claim in this paper is that combining these three features—recursive pro-
cessing, grammar knowledge, and deep learning—performs better than combining
only two of the three (refer to Fig. 1). Incidentally, there exist baseline models in the
literature which combine two features but not the last one. In particular, the grammar
variational autoencoder (Kusner et al., 2017, GVAE) represents strings as a sequence
of context-free grammar rules and is trained via deep learning, but does not use recur-
sive processing. Instead, it encodes the rule sequence via a series of 1D convolutions
and a fully connected layer; and it decodes a vector back to a rule sequence via a
multi-layer gated recurrent unit (Cho et al., 2014, GRU). We believe that this sequen-
tial scheme makes sense for string data but becomes a limitation for trees because the
sequential processing introduces long-term dependencies that do not exist in the tree.
For example, when processing the tree ∧(x,¬(y)) , a sequential representation would be
y,¬, x,∧ . When processing ∧ , we want to take the information from its children x and

Fig. 1 An illustration of the
advantages (a) of recursive
over sequential processing, b of
utilizing grammatical knowledge,
and c of learning the encoding
end-to-end. In (c), each point
represents the encoding of a
tree and color indicates some
semantic attribute with respect to
which the encoding space should
be smooth (right)

(a)

(b)

(c)

Machine Learning

1 3

¬ into account, but ¬ is already two steps away (refer to Fig. 1a). If we replace x with a
large subtree, this distance can become arbitrarily large.

Recursive neural networks (Tai et al., 2015; Pollack, 1990; Sperduti & Starita, 1997)
avoid this problem. They compute the representation of a parent node based on the repre-
sentation of all children, meaning the information flow follows the tree structure and the
length of dependencies is bounded by the depth of the tree. There also exist autoencoding
models in the recursive neural network tradition, such as the model of Pollack (1990) or
the directed acyclic graph variational autoencoder (M. Zhang, Jiang, Cui, Garnett, & Chen,
2019, D-VAE). Unfortunately, the autoencoding capability of recursive networks is limited
due to the enormous number of trees one could potentially decode from a vector. More pre-
cisely, Hammer (2002) showed that one needs exponentially many neurons to represent all
trees of a certain depth with a recursive network. We believe that grammars help to avoid
this limitation because the set of grammatical trees is usually much smaller than the set of
possible trees over an alphabet. For example, the tree ∧(x,¬(y)) represents a valid Boolean
expression but not the tree ∧(x,¬, y) (refer to Fig. 1b). Without a grammar as inductive
bias, models like D-VAE need to learn to avoid trees such as ∧(x,¬, y) . D-VAE serves as
our baseline model which uses recursive processing and deep learning but no grammar
knowledge.

Finally, in prior research we proposed tree echo state auto encoders (Paaßen, Koprin-
ska, & Yacef, 2020, TES-AE), a recursive, grammar-based autoencoder for trees which
does not use deep learning. Instead, this model randomly initializes its network param-
eters and only trains the final layer which chooses the next grammar rule for decoding.
This shallow learning scheme follows the (tree) echo state network paradigm, which
claims that a sufficiently large, randomly wired network is expressive enough to repre-
sent any input (Gallicchio & Micheli, 2013). However, a fixed representation may need
more dimensions compared to one that adjusts to the data. Consider our example of
Boolean formulae, again. Let’s code x as 0, y as 1, ¬ as 2, and ∧ as 3. We can then encode
trees as sequences of these numbers, padding with zeros wherever needed. In 2D, we
can then represent all trees with up to three nodes (filling up with x, where needed). In
particular, (0, 0) corresponds to x, (1, 0) to y, (2, 0) to ¬(x) , (3, 0) to ∧(x, x) , (2, 1) to
¬(y) , and (3, 1) to ∧(y, x) . However, we can also adapt our encoding by using the first
dimension to encode the x variable, and the second dimension to encode the y variable,
such that (1, 0) decodes to x, (0, 1) to y, (1, 1) to ∧(x, y) , and (1,−1) to ∧(x,¬(y)) (refer
to Fig. 1c). Adjusting to the data enabled us to represent larger trees with the same num-
ber of dimensions and to better take the semantics of the domain into account. Further,
learning enables us to enforce smoothness in the coding space, which may be helpful for
downstream tasks.

The key contributions of our work are:

• We develop a novel autoencoder for trees which is the first to combine recursive pro-
cessing, grammar knowledge, and deep learning, whereas prior models combined only
two of the three. We call our model RTG-AE.

• We provide a correctness proof for the encoding scheme of RTG-AE.
• Experimentally, we compare RTG-AE to models which combine two of the three

features, namely GVAE, which combines grammar knowledge and deep learning,
but not recursive processing; D-VAE, which combines recursive processing and
deep learning, but not grammar knowledge; and TES-AE, which combines recursive
processing and grammar knowledge, but not deep learning. We observe that RTG-
AE has the lowest autoencoding error and runtime—except for TES-AE, which has

 Machine Learning

1 3

lower autoencoding error on the smallest dataset and is always faster because it does
not use deep learning.

• In a further experiment, we evaluate the capability of a CMA-ES optimizer to find an
optimal tree in the encoding space of each model. We find that RTG-AE yields the best
median scores.

We begin by discussing background and related work before we introduce the RTG-AE
architecture and evaluate it on four datasets, including two synthetic and two real-world
ones.

2 Background and related work

Our contribution relies on substantial prior work, both from theoretical computer sci-
ence and machine learning. We begin by introducing our formal notion of trees and tree
grammars, after which we continue with neural networks for tree representations.

2.1 Regular tree grammars

Let Σ be some finite alphabet of symbols. We recursively define a tree x̂ over Σ as an
expression of the form x̂ = x(ŷ1,… , ŷk) , where x ∈ Σ and where ŷ1,… , ŷk is a list of
trees over Σ . We call x̂ a leaf if k = 0 , otherwise we call ŷ1,… , ŷk the children of x̂ . We
define the size |x̂| of a tree x̂ = x(ŷ1,… , ŷk) as 1 + |ŷ1| +…+ |ŷk|.

Next, we define a regular tree grammar (RTG) (Brainerd, 1969; Comon et al.,
2008) G as a 4-tuple G = (Φ,Σ,R, S) , where Φ is a finite set of nonterminal sym-
bols, Σ is a finite alphabet as before, S ∈ Φ is a special nonterminal symbol which
we call the starting symbol, and R is a finite set of production rules of the form
A → x(B1,… ,Bk) where A,B1,… ,Bk ∈ Φ , k ∈ ℕ0 , and x ∈ Σ . We say a sequence of
rules r1,… , rT ∈ R generates a tree x̂ from some nonterminal A ∈ Φ if applying all
rules to A yields x̂ , as specified in Algorithm 1. We define the regular tree language
L(G) of grammar G as the set of all trees that can be generated from S via some
(finite) rule sequence over R.

Machine Learning

1 3

The inverse of generation is called parsing. In our case, we rely on the bottom-up
parsing approach of Comon et al. (2008), as shown in Algorithm 2. For the input tree
x̂ = x(ŷ1,… , ŷk) , we first parse all children, yielding a nonterminal Bj and a rule sequence
r̄j that generates child ŷj from Bj . Then, we search the rule set R for a rule of the form
r = A → x(B1,… ,Bk) for some nonterminal A, and finally return the nonterminal A as well
as the rule sequence r, r̄1,… , r̄k , where the commas denote concatenation. If we don’t find a
matching rule, the process fails. Conversely, if the algorithm returns successfully, this implies
that the rule sequence r, r̄1,… , r̄k generates x̂ from A. Accordingly, if A = S , then x̂ ∈ L(G).

 Machine Learning

1 3

Algorithm 2 can be ambiguous if multiple nonterminals A exist such that
A → x(B1,… ,Bk) ∈ R in line 5. To avoid such ambiguities, we impose that our regular tree
grammars are deterministic, i.e. no two grammar rules have the same right-hand-side. This
is sufficient to ensure that any tree corresponds to a unique rule sequence.

Theorem 1 (mentioned in page 24 of Comon et al. (2008)) Let G = (Φ,Σ,R, S) be a
regular tree grammar. Then, for any x̂ ∈ L(G) there exists exactly one sequence of rules
r1,… , rT ∈ R which generates x̂.

Proof Refer to Appendix A.1. ◻

This is no restriction to expressiveness, as any regular tree grammar can be transformed
into an equivalent, deterministic one.

Theorem 2 (Therorem 1.1.9 by Comon et al. (2008)) Let G = (Φ,Σ,R, S) be a regular tree
grammar. Then, there exists a regular tree grammar G� = (Φ�,Σ,R�,S) with a set of start-
ing symbols S such that G′ is deterministic and L(G) = L(G�).

Proof Refer to Appendix A.2. ◻

It is often convenient to permit two further concepts in a regular tree grammar,
namely optional and starred nonterminals. In particular, the notation B? denotes a
nonterminal with the production rules B? → B and B → � , where � is the empty word.
Similarly, B∗ denotes a nonterminal with the production rules B∗

→ B,B∗ and B∗
→ � .

To maintain determinism, one must ensure two conditions: First, if a rule generates
two adjacent nonterminals that are starred or optional, then these nonterminals must be
different, so A → x(B ∗,C ∗) is permitted but A → x(B ∗,B?) is not, because we would
not know whether to assign an element to B ∗ or B?. Second, the languages generated
by any two right-hand-sides for the same nonterminal must be non-intersecting. For
example, if the rule A → x(B ∗,C) exists, then the rule A → x(C?,D ∗) is not allowed
because the right-hand-side x(C) could be generated by either of them (refer to Appen-
dix A.2 for more details). In the remainder of this paper, we generally assume that we
deal with deterministic regular tree grammars that may contain starred and optional
nonterminals.

2.2 Tree encoding

We define a tree encoder for a regular tree grammar G as a mapping � ∶ L(G) → ℝ
n

for some encoding dimensionality n ∈ ℕ . While fixed tree encodings do exist, e.g. in
the form of tree kernels (Aiolli et al.., 2015; Collins & Duffy, 2002), we focus here on
learned encodings via deep neural networks. A simple tree encoding scheme is to list
all nodes of a tree in depth-first-search order and encode this list via a recurrent or con-
volutional neural network (Paaßen et al., 2020). However, one can also encode the tree
structure more directly via recursive neural networks (Gallicchio & Micheli, 2013; Tai
et al., 2015; Pollack, 1990; Sperduti & Starita, 1997; Sperduti, 1994). Generally speak-
ing, a recursive neural network consists of a set of mappings f x ∶ P(ℝn) → ℝ

n , one for
each symbol x ∈ Σ , which receive a (perhaps ordered) set of child encodings as input

Machine Learning

1 3

and map it to a parent encoding. Based on such mappings, we define the overall tree
encoder recursively as

Traditional recursive neural networks implement f x with single- or multi-layer perceptrons.
More recently, recurrent neural networks have been applied, such as echo state nets (Gal-
licchio & Micheli, 2013) or LSTMs (Tai et al., 2015). In this work, we extend the encoding
scheme by defining the mappings f x not over terminal symbols x but over grammar rules r,
thereby tying encoding closely to parsing. This circumvents a typical problem in recursive
neural nets, namely to handle the order and number of children (Sperduti & Starita, 1997).

Recursive neural networks can also be related to more general graph neural net-
works (Kipf & Welling, 2017; Micheli, 2009; Scarselli et al., 2009). In particular, we
can interpret a recursive neural network as a graph neural network which transmits
messages from child nodes to parent nodes until the root is reached. Thanks to the acy-
clic nature of trees, a single pass from leaves to root is sufficient, whereas most graph
neural net architectures would require as many passes as the tree is deep (Kipf & Well-
ing, 2017; Micheli, 2009; Scarselli et al., 2009). In other words, graph neural nets only
consider neighboring nodes in a pass, whereas recursive nets incorporate information
from all descendant nodes. Another reason why we choose to consider trees instead of
general graphs is that graph grammar parsing is NP-hard (Turán, 1983), whereas regu-
lar tree grammar parsing is linear (Comon et al., 2008).

For the specific application of encoding syntax trees of computer programs, three
further strategies have been proposed recently, namely: Code2vec considers paths from
the root to single nodes and aggregates information across these paths using attention
(Alon et al., 2019); AST-NN treats a syntax tree as a sequence of subtrees and encodes
these subtrees first, followed by a GRU which encodes the sequence of subtree encod-
ings (Zhang et al., 2019); and CuBERT treats source code as a sequence of tokens
which are then plugged into a big transformer model from natural language process-
ing (Kanade et al., 2020). Note that these models focus on encoding trees, whereas we
wish to support encoding as well as decoding.

2.3 Tree decoding

We define a tree decoder for a regular tree grammar G as a mapping � ∶ ℝ
n
→ L(G) for

some encoding dimensionality n ∈ ℕ . In early work, Pollack (1990) and Sperduti (1994)
already proposed decoding mechanisms using ’inverted’ recursive neural networks, i.e.
mapping from a parent representation to a fixed number of children, including a special
’none’ token for missing children. Theoretical limits of this approach have been investi-
gated by Hammer (2002), who showed that one requires exponentially many neurons to
decode all possible trees of a certain depth. More recently, multiple works have considered
the more general problem of decoding graphs from vectors, where a graph is generated by
a sequence of node and edge insertions, which in turn is generated via a deep recurrent
neural net (Zhang et al., 2019; Bacciu et al., 2019; Liu et al., 2018; Paaßen et al., 2021;
You et al., 2018). From this family, the variational autoencoder for directed acyclic graphs
(D-VAE) (Zhang et al., 2019) is most suited to trees because it explicitly prevents cycles.
In particular, the network generates nodes one by one and then decides which of the earlier
nodes to connect to the new node, thereby preventing cycles. We note that there is an entire
branch of graph generation devoted specifically to molecule design which is beyond our

(1)𝜙
(
x(ŷ1,… , ŷk)

)
∶= f x

(
{𝜙(y1),… ,𝜙(yk)}

)
.

 Machine Learning

1 3

capability to cover here (Sanchez-Lengeling & Aspuru-Guzik, 2018). However, tree decod-
ing may serve as a subroutine, e.g. to construct a junction tree in (Jin et al., 2018).

Another thread of research concerns the generation of strings from a context-free gram-
mar, guided by a recurrent neural network (Kusner et al., 2017; Dai et al., 2018). Roughly
speaking, these approaches first parse the input string, yielding a generating rule sequence,
then convert this rule sequence into a vector via a convolutional neural net, and finally
decode the vector back into a rule sequence via a recurrent neural net. This rule sequence,
then, yields the output string. Further, one can incorporate additional syntactic or semantic
constraints via attribute grammars in the rule selection step (Dai et al., 2018). We follow
this line of research but use tree instead of string grammars and employ recursive instead of
sequential processing. This latter change is key because it ensures that the distance between
the encoding and decoding of a node is bounded by the tree depth instead of the tree size,
thus decreasing the required memory capacity from linear to logarithmic in the tree size.

A third thread of research attempts to go beyond known grammars and instead tries to
infer a grammar from data, typically using stochastic parsers and grammars that are con-
trolled by neural networks (Allamanis et al., 2017; Dyer et al., 2016; Li et al., 2019; Kim
et al., 2019; Yogatama et al., 2017; Zaremba et al., 2014). Our work is similar in that we
also control a parser and a grammar with a neural network. However, our task is conceptu-
ally different: We assume a grammar is given and are solely concerned with autoencoding
trees within the grammar’s language, whereas these works attempt to find tree-like struc-
ture in strings. While this decision constrains us to known grammars, it also enables us
to consider non-binary trees and variable-length rules which are currently beyond gram-
mar induction methods. Further, pre-specified grammars are typically designed to support
interpretation and semantic evaluation (e.g. via an objective function for optimization).
Such an interpretation is much more difficult for learned grammars.

Finally, we note that our own prior work (Paaßen et al., 2020) already combines tree
grammars with recursive neural nets (in particular tree echo state networks (Gallicchio
& Micheli, 2013)). However, in this paper we combine such an architecture with an
end-to-end-learned variational autoencoder, thus guaranteeing a smooth latent space, a
standard normal distribution in the latent space, and smaller latent spaces. It also yields
empirically superior results, as we see later in the experiments.

2.4 Variational autoencoders

An autoencoder is a combination of an encoder � and a decoder � that is trained to mini-
mize some form of autoencoding error, i.e. some notion of dissimilarity between an input x̂
and its autoencoded version 𝜓(𝜙(x̂)) . In this paper, we consider the variational autoencoder
(VAE) approach of Kingma and Welling (2019), which augments the deterministic encoder
and decoder to probability distributions from which we can sample. More precisely, we
introduce a probability density q𝜙(�|x̂) for encoding x̂ into a vector � , and a probability dis-
tribution p𝜓 (x̂|�) for decoding � into x̂.

Now, let x̂1,… , x̂m be a training dataset. We train the autoencoder to minimize the loss:

(2)𝓁(𝜙,𝜓) =

m�

i=1

�q𝜙(zi�x̂i)

�
− log

�
p𝜓

�
x̂i
���i

���
+ 𝛽 ⋅DKL(q𝜙‖N),

Machine Learning

1 3

where DKL denotes the Kullback-Leibler divergence between two probability densities and
where N denotes the density of the standard normal distribution. � is a hyper-parameter to
weigh the influence of the second term, as suggested by Burda et al. (2016).

Typically, the loss in (2) is minimized over tens of thousands of stochastic gradient
descent iterations, such that the expected value over q𝜙(zi|x̂i) can be replaced with a single
sample (Kingma & Welling, 2019). Further, q� is typically modeled as a Gaussian with
diagonal covariance matrix, such that the sample can be re-written as �i = 𝜌(�i + �i ⊙ �i) ,
where �i and �i are deterministically generated by the encoder � , where ⊙ denotes element-
wise multiplication, and where �i is Gaussian noise, sampled with mean zero and standard
deviation s. s is a hyper-parameter which regulates the noise strength we impose during
training.

We note that many extensions to variational autoencoders have been proposed over the
years (Kingma & Welling, 2019), such as Ladder-VAE (Sønderby et al., 2016) or InfoVAE
(Zhao et al., 2019). Our approach is generally compatible with such extensions, but our
focus here lies on the combination of autoencoding, grammatical knowledge, and recursive
processing, such that we leave extensions of the autoencoding scheme for future work.

3 Method

Our proposed architecture is a variational autoencoder for trees, where we construct the
encoder as a bottom-up parser, the decoder as a regular tree grammar, and the reconstruc-
tion loss as the crossentropy between the true rules generating the input tree and the rules
chosen by the decoder. An example autoencoding computation is shown in Fig. 2. Because
our encoding and decoding schemes are closely related to recursive neural networks (Pol-
lack, 1990; Sperduti & Starita, 1997; Sperduti, 1994), we call our approach recursive tree
grammar autoencoders (RTG-AEs). We now introduce each of the components in turn.

3.1 Encoder

Our encoder is a bottom-up parser for a given regular tree grammar G = (Φ,Σ,R, S) , com-
puting a vectorial representation in parallel to parsing. In more detail, we introduce an
encoding function f r ∶ ℝ

k×n
→ ℝ

n for each grammar rule r = (A → x(B1,… ,Bk)) ∈ R ,
which maps the encodings of all children to an encoding of the parent node. Here, n is the
encoding dimensionality. As such, the grammar guides our encoding and fixes the number
and order of inputs for our encoding functions f r . Note that, if k = 0 , f r is a constant.

Next, we apply the functions f r recursively during parsing, yielding a vectorial encod-
ing of the overall tree. More precisely, our encoder � is defined by the recursive equation

where r = A → x(B1,… ,Bk) is the first rule in the sequence that generates x(ŷ1,… , ŷK)
from A. As initial nonterminal A, we use the grammar’s starting symbol S. Refer to Algo-
rithm 3 for details. Figure 2a–d shows an example of the scheme.

We implement f r as a single-layer feedforward neural network of the form
f r(�1,… , �k) = tanh(

∑k

j=1
U

r,j
⋅ �j + �r) , where the weight matrices Ur,j ∈ ℝ

n×n and the
bias vectors �r ∈ ℝ

n are parameters to be learned. For optional and starred nonterminals,

(3)𝜙

(
x(ŷ1,… , ŷK),A

)
= f r(𝜙(ŷ1,B1),… ,𝜙(ŷ1,Bk)),

 Machine Learning

1 3

we further define f B?→� = f B
∗
→� = � , f B?→B(�) = � , and f B∗

→B,B∗

(�1, �2) = �1 + �2 . In
other words, the empty string � is encoded as the zero vector, an optional nonterminal is
encoded via the identity, and starred nonterminals are encoded via a sum, following the
recommendation of Xu et al. (2019) for graph neural nets.

(a) (b) (c) (d)

(e)

(f)(g)(h)(i)

Fig. 2 An illustration of the recursive tree grammar autoencoder (RTG-AE) for the tree x̂ = ∧(x,¬(y)) .
Steps a–d encode the tree as the vector �(∧(x,¬(y))) (also refer to Algorithm 3). Step e maps it to the VAE
latent space vector � . Steps f–i decode the vector back to the tree ∧(x,¬(y)) (also refer to Algorithm 4)

Machine Learning

1 3

We can show that Algorithm 3 returns without error if and only if the input tree is part
of the grammar’s tree language.

Theorem 3 Let G = (Φ,Σ,R, S) be a deterministic regular tree grammar. Then, it holds:
x̂ is a tree in L(G) if and only if Algorithm 3 returns the nonterminal S as first output.
Further, if Algorithm 3 returns with S as first output and some rule sequence r̄ as second
output, then r̄ uniquely generates x̂ from S. Finally, Algorithm 3 has O(|x̂|) time and space
complexity.

Proof Refer to Appendix A.3. ◻

3.2 Decoder

Our decoder is a stochastic version of a given regular tree grammar G = (Φ,Σ,R, S) ,
controlled by two kinds of neural network. First, for any nonterminal A ∈ Φ , let LA
be the number of rules in R with A on the left hand side. For each A ∈ Φ , we intro-
duce a linear layer hA ∶ ℝ

n
→ ℝ

LA with hA(�) = V
A
⋅ � + �A . To decode a tree from

a vector � ∈ ℝ
n and a nonterminal A ∈ Φ , we first compute rule scores � = hA(�)

and then sample a rule rl = (A → x(B1,… ,Bk)) ∈ R from the softmax distribution
pA(rl��) = exp(�l)∕

∑LA
l�=1

exp(�l�) . Then, we apply the sampled rule and use a second kind
of neural network to decide the vectorial encodings for each generated child nonterminal
B1,… ,Bk . In particular, for each grammar rule r = (A → x(B1,… ,Bk)) ∈ R , we introduce
k feedforward layers gr

1
,… , gr

k
∶ ℝ

n
→ ℝ

n and decode the vector representing the jth child
as �j = gr

j
(�) . Finally, we decode the children recursively until no nonterminal is left. More

precisely, the tree decoding is guided by the recursive equation

where the rule r = x → A(B1,… ,Bk) is sampled from pA as specified above and �j = gr
j
(�) .

As initial nonterminal argument we use the grammar’s starting symbol S. For details, refer
to Algorithm 4. Figure 2f–i shows an example of the scheme. Note that the time and space
complexity is O(|x̂|) for output tree x̂ because each recursion step adds exactly one terminal
symbol. Since the entire tree needs to be stored, the space complexity is also O(|x̂|) . Also
note that Algorithm 4 is not generally guaranteed to halt (Chi, 1999). In practice, we solve
this problem by imposing a maximum number of generated rules.

(4)�(�,A) = x
(
�(�1,B1),… ,�(�k,Bk)

)
,

 Machine Learning

1 3

For optional nonterminals, we introduce a classifier hB? which decides whether to
apply B? → B or B? → � , and we define gB?→B

1
(�) = � . For starred nonterminals, we

introduce hB∗ which decides whether to apply B∗
→ B,B∗ or B∗

→ � , and we introduce
new decoding layers gB

∗
→B,B∗

1
 and gB

∗
→B,B∗

2
.

An interesting special case are trees that implement lists. For example, consider a
carbon chain CCC from chemistry. In the SMILES grammar (Weininger, 1988), this is
represented as a binary tree of the form single_chain(single_chain(single_chain(chain_
end, C), C), C), i.e. the symbol ‘single_chain’ acts as a list operator. In such a case,
we recommend to use a recurrent neural network to implement the decoding function
g
Chain→single_chain(Chain,Atom)

1
 , such as a gated recurrent unit (GRU) (Cho et al., 2014). In

all other cases, we stick with a simple feedforward layer. We consider this issue in more
detail in Appendix D.

Machine Learning

1 3

3.3 Training

We train our recursive tree grammar autoencoder (RTG-AE) in the variational autoencoder
(VAE) framework, i.e. we try to minimize the loss in Eq. 2. More precisely, we define the
encoding probability density q𝜙(�|x̂) as the Gaussian with mean 𝜇(𝜙(x̂)) and covariance
matrix diag

[
𝜎(𝜙(x̂))

]
 , where the functions � ∶ ℝ

n
→ ℝ

nVAE and � ∶ ℝ
n
→ ℝ

nVAE are defined
as

where U�,U� ∈ ℝ
nVAE×n and ��, �� ∈ ℝ

nVAE are additional parameters.
To decode, we first transform the encoding vector � with a single feedforward layer

� ∶ ℝ
nVAE → ℝ

n and then apply the decoding scheme from Algorithm 4. As the decoding
probability p𝜓 (x̂|�) , we use the product over all probabilities pA(rt|�t) from line 5 of Algo-
rithm 4, i.e. the probability of always choosing the correct grammar rule during decod-
ing, provided that all previous choices have already been correct. The negative logarithm
of this product can also be interpreted as the crossentropy loss between the correct rule

(5)
�(�) = U

�
⋅ � + ��,

�(�) = exp
(
1

2
⋅ [U�

⋅ � + ��]
)
,

 Machine Learning

1 3

sequence and the softmax probabilities from line 5 of Algorithm 4. The details of our loss
computation are given in Algorithm 5. Note that the time and space complexity is O(|x̂|)
because the outer loop from line 7–17 runs T = |x̂| times, and the inner loop in lines 12–15
runs |x̂| − 1 times in total because every node takes the role of child exactly once (except
for the root). Because the loss is differentiable, we can optimize it using gradient descent
schemes such as Adam (Kingma & Ba, 2015). The gradient computation is performed by
the pyTorch autograd system (Paszke et al., 2019).

4 Experiments and discussion

We evaluate the performance of RTG-AEs on four datasets, namely:

Boolean Randomly sampled Boolean formulae over the variables x and y with at most
three binary operators, e.g. x ∧ ¬y or x ∧ y ∧ (x ∨ ¬y).
Expressions Randomly sampled algebraic expressions over the variable x of the form
3 ∗ x + sin(x) + exp(2∕x) , i.e. consisting of a binary operator plus a unary operator plus
a unary of a binary. This dataset is taken from (Kusner et al., 2017).
SMILES Roughly 250k chemical molecules as SMILES strings (Weininger, 1988), as
selected by (Kusner et al., 2017).
Pysort 29 Python sorting programs and manually generated preliminary development
stages of these programs, resulting in 294 programs overall.
Table 1 shows dataset statistics, Appendix C lists the grammars for each of the datasets
as well as the detailed sampling strategies for Boolean and Expressions.
We compare RTG-AEs to the following baselines.
GVAE Grammar variational autoencoders (Kusner et al., 2017) are grammar-based
auto-encoders for strings. A string is first parsed by a context-free grammar, yielding
a sequence of grammar rules. Next, the rule sequence is encoded via one-hot-coding,
followed by three layers of 1D convolutions, followed by a fully connected layer. Note
that this requires the maximum sequence length to be fixed in advance. Decoding occurs
via a three-layer gated recurrent unit (Cho et al., 2014, GRU), followed by masking out
invalid rule sequences according to the grammar. In this paper, we slightly adapt GVAE
because we apply it to rule sequences of a regular tree grammar instead of a context-free
grammar (otherwise, GVAE could not be applied to trees). Note that GVAE is different
from RTG-AE because it uses sequential processing instead of recursive processing.
GRU-TG-AE Even though GVAE uses sequential instead of recursive processing, it
is not a strict ablation of RTG-AE because it uses different architectures for encoding
(conv-nets) and decoding (GRUs). Therefore, we also introduce an ablation of RTG-AE

Table 1 The statistics for all four
dataset

Boolean Expressions SMILES Pysort

Dataset size 34,884 104,832 249,456 294
Avg. tree size 5.21 8.95 83.66 57.97
Avg. depth 3.18 4.32 21.29 9.25
Max. rule seq. length 14 11 285 168
No. symbols 5 9 43 54
No. grammar rules 5 9 46 54

Machine Learning

1 3

which uses GRUs for both encoding and decoding, but otherwise the same architecture.
We call this baseline GRU-TG-AE.
D-VAE Directed acyclic graph variational autoencoders (Zhang et al., 2019) encode an
input directed acyclic graph via a graph neural net that computes encodings following
the structure of the graph—and hence becomes equivalent to a recursive neural net, as
it is used by RTG-AE. However, the encoding does not use any grammatical informa-
tion. It simply encodes the symbol at each node via one-hot coding and uses it as an
additional input of the recursive net. For decoding, D-VAE uses the following recurrent
scheme: Update the graph representation � with a GRU. Sample a new node from a
softmax distribution over node types, where the scores for each type are computed via
an MLP from � . Then, for each previously sampled node, compute an edge probability
via an MLP based on the encoding of the current node and the encoding of the previous
node and sample the edge from a Bernoulli distribution with the computed probability.
Continue with sampling nodes and edges until a special end token is sampled. Note that
this scheme is different from RTG-AE because it does not use grammar knowledge. So
D-VAE serves as the ablation of our model with recursive processing, learned encoding,
but grammar-free processing.
TES-AE Tree Echo State Auto Encoders (Paaßen et al., 2020) are a predecessor to RTG-
AE. TES-AEs use the same, recursive, grammar-based encoding and decoding scheme
as presented in Sect. 3. However, the training scheme is entirely different: TES-AEs set
the parameters for encoding layers f r and decoding layers gr

j
 randomly. Only the rule

classifiers hA are trained. This implies that the encoding for each tree is generated by an
untrained function, as usual in an echo state network paradigm. Accordingly, the model
needs to use a very high-dimensional encoding space to make sure that the untrained
encodings still retain sufficient information to represent the tree. On the upside, treating
f r and gr

j
 as fixed reduces the trainable parameters massively, and speeds up the train-

ing. TES-AEs serve as an ablation of RTG-AE because it uses recursive processing and
grammar knowledge but a random encoding.

The number of parameters for all models on all datasets is shown in Table 2. We trained
all neural networks using Adam (Kingma & Ba, 2015) with a learning rate of 10−3 and a
ReduceLROnPlateau scheduler with minimum learning rate 10−4, following the learn-
ing procedure of Kusner et al. (2017) as well as Dai et al. (2018). We sampled 100k trees
for the first two and 10k trees for the latter two datasets. To obtain statistics, we repeated
the training ten times with different samples (by generating new data for boolean and
expressions and by doing a 10-fold crossvalidation for SMILES and pysort). Following

Table 2 The number of
parameters for all models on all
datasets

Model Boolean Expressions Smiles Pysort

D-VAE 249,624 252,828 1,979,038 1,859,417
GVAE 198,316 197,536 1,928,431 1,630,263
TES-AE 500 900 11,776 13,824
GRU-TG-AE 67,221 70,025 437,080 445,280
RTG-AE 104,021 165,125 5,161,816 5,493,600

 Machine Learning

1 3

Zhang et al. (2019), we used a batch size of 32 for all approaches.1 For each approach and
each dataset, we optimized the regularization strength � and the sampling standard devia-
tion s in a random search with 20 trials over the range [10−5, 1], using separate data. For the
first two datasets, we set n = 100 and nVAE = 8 , whereas for the latter two we set n = 256
and nVAE = 16 . For TES-AE, we followed the protocol of Paaßen et al. (2020), training on
a random subset of 500 training data points, and we optimized the sparsity, spectral radius,
regularization strength with the same hyper-parameter optimization scheme.

The SMILES experiment was performed on a computation server with a 24core CPU
and 48GB RAM, whereas all other experiments were performed on a consumer grade lap-
top with Intel i7 4core CPU and 16GB RAM. All experimental code, including all gram-
mars and implementations, is available at https:// gitlab. com/ bpaas sen/ RTGAE.

We measure autoencoding error on test data in terms of the root mean square tree edit
distance (Zhang & Shasha, 1989). We use the root mean square error (RMSE) rather than
log likelihood because D-VAE measures log likelihood different to GVAE, GRU-TG-AE,
and RTG-AE, and TES-AE does not measure log likelihood at all. By contrast, the RMSE
is agnostic to the underlying model. Further, we use the tree edit distance as a tree metric
because it is defined on all possible labeled trees without regard for the underlying distribu-
tion or grammars (Bille, 2005) and hence does not favor any of the model.

The RMSE results are shown in Table 3. We observe that RTG-AE achieves signifi-
cantly lower errors compared to all baselines on the first two datasets (p < 0.001 in a Wil-
coxon signed rank test), significantly lower than all but D-VAE on the SMILES dataset (p
< 0.01), and significantly lower than all but TES-AE on the Pysort dataset (p < 0.001).
On SMILES, we note that we used a GRU in RTG-AE to represent chains of atoms, as
described in Sect. 3. The vanilla RTG-AE performs considerably worse with an RMSE
of 594.92 (the same as GVAE). On Pysort, TES-AE performs best, which is likely due to
the fact that Pysort is roughly 100 times smaller than the other datasets while also having
the most grammar rules. For this dataset, the dataset size was likely too small to fit a deep
model.

Training times in seconds are shown in Table 4. We note that TES-AE is always the fast-
est because it only needs to fit the last layer. All other methods use deep learning. Among
these models, RTG-AE had the lowest training times, likely because it consists of feedfor-
ward layers (except for one GRU layer in the SMILES case) whereas all other models use
GRUs.

Table 3 The average autoencoding RMSE (± SD)

model Boolean Expressions SMILES Pysort

D-VAE 4.32 ± 0.41 5.84 ± 0.32 132.70 ± 57.02 70.67 ± 7.20
GVAE 3.61 ± 0.51 5.84 ± 2.00 594.92 ± 5.99 1.44 ± 5.18
TES-AE 2.62 ± 0.26 2.09 ± 0.18 581.08 ± 25.99 20.41 ± 4.27
GRU-TG-AE 1.98 ± 0.53 3.70 ± 0.31 482.88 ± 129.52 9363.32 ± 1.44
RTG-AE 0.83 ± 0.23 0.77 ± 0.23 111.14 ± 159.97 38.14 ± 3.63

1 On the Pysort dataset, the batch size of D-VAE had to be reduced to 16 to avoid memory overload.

https://gitlab.com/bpaassen/RTGAE

Machine Learning

1 3

To evaluate the ability of all models to generate syntactically valid trees, we sampled
1000 standard normal random vectors and decoded them with all models.2 Then, we
checked the syntactic correctness syntax with the regular tree grammar of the respec-
tive dataset (refer to Appendix C). The percentage of correct trees is shown in Table 5.
Unsurprisingly, D-VAE has the worst results across the board because it does not use gram-
matical knowledge for decoding. In principle, the other models should always have 100%
because their architecture guarantees syntactic correctness. Instead, we observe that the
rates drop far below 100% for GRU-TG-AE on Pysort and for all models on SMILES. This
is because the decoding process can fail if it gets stuck in a loop. Overall, RTG-AE, fails
the least with an average of 83.74% across datasets, whereas D-VAE has 13.53%, GVAE
has 72.53%, and GRU-TG-AE has 51%.

We also evaluated the utility of the autoencoder for optimization, in line with Kusner
et al. (2017). The idea of these experiments is to find an optimal tree according to some
objective function by using a gradient-free optimizer, such as Bayesian optimization, in
the latent space of our tree autoencoder. If the optimizer is able to achieve a better objec-
tive function value, this indicates that the latent space behaves smoothly with respect to the
objective function and, thus, may be a useful representation of the trees.

Kusner et al. (2017) considered two data sets, namely Expressions and SMILES. For the
Expressions dataset, Kusner et al. (2017) suggest as objective function the log mean square
error compared to the ground truth expression 1

3
+ x + sin(x ∗ x) for 1000 linearly spaced

values of x in the range [−10,+10] . So any expression which produces similar outputs as
the ground truth will achieve a good objective function value, but expressions that behave
very differently achieve a worse error. For the SMILES dataset, Kusner et al. (2017) sug-
gest an objective function which includes a range of chemically relevant properties, such

Table 4 The average runtime in seconds (± SD) as measured by Python

model Boolean Expressions SMILES Pysort

D-VAE 882.0 ± 45.9 1201.5.0 ± 24.8 64225.9 ± 4500.3 66789.9 ± 3555.2
GVAE 1316.5 ± 86.7 1218.8 ± 73.8 7771.2 ± 1524.2 1393.7 ± 120.9
TES-AE 0.9 ± 0.1 1.5 ± 0.2 583.6 ± 103.6 10.1 ± 0.6
GRU-TG-AE 440.8 ± 30.4 734.5 ± 50.8 334.2 ± 42.7 648.6 ± 50.1
RTG-AE 221.5 ± 4.7 357.4 ± 13.2 1903.4 ± 34.1 399.9 ± 21.9

Table 5 The rate of syntactically correct trees decoded from standard normal random vectors

Model Boolean (%) Expressions (%) SMILES (%) Pysort (%)

D-VAE 28.8 23.8 0.1 1.4
GVAE 90.4 99.8 0 99.9
GRU-TG-AE 99.9 98.2 5.9 0
RTG-AE 98.5 99.6 37.3 99.7

2 We excluded TES-AE in this analysis because it does not guarantee a Gaussian distribution in the latent
space and, hence, is not compatible with this sampling approach.

 Machine Learning

1 3

as logP, synthetic availability, and cycle length. Here, higher values are better. For details,
please refer to the original paper and/or our source code at https:// gitlab. com/ bpaas sen/
RTG- AE. We used both objective functions exactly as specified in the original work. For
SMILES, we also re-trained all models with nVAE = 56 and 50k training samples to be con-
sistent with Kusner et al. (2017).

We tried to use the same optimizer as Kusner et al. (2017), namely Bayesian Optimiza-
tion, but were unable to get the original implementation to run. Instead, we opted for a
CMA-ES optimizer, namely the cma implementation in Python. CMA-ES is a well-estab-
lished method for high-dimensional, gradient-free otpimization and has shown competitive
results to Bayesian optimization in some cases (Loshchilov & Hutter, 2016). Conceptu-
ally, CMA-ES fits well with variational autoencoders because both VAEs and CMA-ES
use Gaussian distributions in the latent space. In particular, we initialize CMA-ES with the
standard Gaussian and then let it adapt the mean and covariance matrix to move to samples
with better objective function value. As hyper-parameters, we set 15 iterations and a budget
of 750 objective function evaluations, which is the same as Kusner et al. (2017). To obtain
statistics, we performed the optimization 10 times for each autoencoder and each dataset.

The median results (± inter-quartile ranges) are shown in Table 6. We observe that
RTG-AEs significantly outperform all baselines on both datasets (p < 0.01 in a Wil-
coxon rank-sum test) by a difference of several inter-quartile ranges. On the SMILES
dataset, D-VAE failed with an out-of-memory error during re-training and G-VAE
failed because CMA-ES could not find any semantically valid molecule in the latent
space, such that both methods receive an n.a. score. We note that, on both datasets, our
results for GVAE are worse than the ones reported by Kusner et al. (2017), which is
likely because Bayesian optimization is a stronger optimizer in these cases. Still, our
results show that even the weaker CMA-ES optimizer can consistently achieve good
scores in the RTG-AE latent space. We believe there are two reasons for this: First,
RTG-AE tends to have a higher rate of syntactically correct trees (refer to Table 5);
second, recursive processing tends to cluster similar trees together (Paaßen et al.,
2020; Tiňo & Hammer, 2003) in a fractal fashion, such that an optimizer only needs
to find a viable cluster and optimize within it. Figure 3 shows a t-SNE visualization
of the latent spaces, indicating a cluster structure for TES-AE and RTG-AE, whereas
GVAE yields a single blob. We also performed a 30-means clustering in the latent

Table 6 The optimization scores
for the Expressions (lower is
better) and SMILES (higher is
better) with median tree and
median score (± 1

2
 IQR)

Model Median tree Median score

Expressions
D-VAE x 0.49 ± 0.00
GVAE x + 1 + sin(3 + 3) 0.46 ± 0.00
TES-AE x 0.49 ± 0.00
GRU-TG-AE x 0.49 ± 0.00
RTG-AE x + 1 + sin(x * x) 0.33 ± 0.05

SMILES
D-VAE n.a. n.a.
GVAE n.a. n.a.
TES-AE CCO − 0.31 ± 0.50
GRU-TG-AE C=C − 2.23 ± 1.56
RTG-AE CCC CCC C 2.57 ± 0.31

https://gitlab.com/bpaassen/RTG-AE
https://gitlab.com/bpaassen/RTG-AE

Machine Learning

1 3

space, revealing that the cluster with highest objective function value for TES-AE and
RTG-AE had higher mean and lower variance compared to the one for GVAE (black
rectangles in Fig. 3).

5 Conclusion

In this contribution, we introduced the recursive tree grammar autoencoder (RTG-AE),
a novel neural network architecture that combines variational autoencoders with recur-
sive neural networks and regular tree grammars. In particular, our approach encodes a
tree with a bottom-up parser, and decodes it with a tree grammar, both learned via neu-
ral networks and variational autoencoding. Experimentally, we showed that the unique
combination of recursive processing, grammatical knowledge, and deep learning
generally improves autoencoding error, training time, and optimization performance
beyond existing models that use only two of these features, but not all three. The lower
autoencoding error can be explained by three conceptual observations: First, recursive
processing follows the tree structure whereas sequential processing introduces long-
range dependencies between children and parents in the tree; second, grammatical
knowledge avoids obvious decoding mistakes by limiting the terminal symbols we can
choose; third, deep learning allows to adjust all model parameters to the data instead
of merely the last layer. The lower training time can be explained by the fact that RTG-
AE uses (almost) only feedforward layers whereas other models require recurrent lay-
ers. The improved optimization performance is likely because recursive processing
yields a clustered latent space that helps optimization, grammar knowledge avoids a lot
of trees with low objective function values, and variational autoencoding encourages a
smooth encoding space that makes it easier to optimize over the space.

Nonetheless, our work still has notable limitations that provide opportunities for
future work. First, we need a pre-defined, deterministic regular tree grammar, which
may not be available in all domains. Second, we only consider optimization as down-
stream task, whereas the utility of our model for other tasks—such as time series pre-
diction—remains to be shown. Third, on the (small) Pysort dataset, RTG-AE was out-
performed by the much simpler TES-AE model, indicating that a sufficient dataset size
is necessary to fit RTG-AE. This data requirement ought to be investigated in more
detail. Finally, RTG-AE integrates syntactic domain knowledge (in form of a grammar)
but currently does not consider semantic constraints. Such constraints could be inte-
grated in future extensions of the model.

Fig. 3 A 2D t-SNE reduction of the codes of 1000 random molecules from the SMILES dataset by GVAE
(left), TES-AE (center), and RTG-AE (right). Color indicates the objective function value. Rectangles indi-
cate the 30-means cluster with highest mean objective function value ± std

 Machine Learning

1 3

Appendix A: Proofs

For the purpose of our tree language proofs, we first introduce a few auxiliary concepts.
First, we extend the definition of a regular tree grammar slightly to permit multiple starting
symbols. In particular, we re-define a regular tree grammar as a 4-tuple G = (Φ,Σ,R,S) ,
where Φ and Σ are disjoint finite sets and R is a rule set as before, but S is now a subset
of Φ . Next, we define the partial tree language L(G|A) for nonterminal A ∈ Φ as the set of
all trees which can be generated from nonterminal A using rule sequences from R. Fur-
ther, we define the n-restricted partial language Ln(G|A) for nonterminal A ∈ Φ as the set
Ln(G|A) ∶=

{
x̂ ∈ L(G|A)|||x̂| ≤ n

}
 , i.e. it includes only the trees up to size n. We define the

tree language L(G) of G as the union L(G) ∶=
⋃

S∈S L(G�S).
As a final preparation, we introduce a straightforward lemma regarding restricted partial

tree languages.

Lemma 1 Let G = (Φ,Σ,R,S) be a regular tree grammar.

Then, for all A ∈ Φ , all n ∈ ℕ and all trees x̂ it holds: x̂ = x(ŷ1,… , ŷk) is in Ln(G|A) if
and only if there exist nonterminals B1,… ,Bk ∈ Φ such that A → x(B1,… ,Bk) ∈ R and
ŷj ∈ Lnj

(G|Bj) for all j ∈ {1,… , k} with n1 +…+ nk = n − 1.

Proof If x̂ ∈ Ln(G|A) , then there exists a sequence of rules r1,… , rT ∈ R which generates x̂
from A. The first rule in that sequence must be of the form A → x(B1,… ,Bk) , otherwise x̂
would not have the shape x̂ = x(ŷ1,… , ŷk) . Further, r2,… , rT must consist of subsequences
r̄1,… , r̄k = r2,… , rT such that r̄j generates ŷj from Bj for all j ∈ {1,… , k} , otherwise
x̂ ≠ x(ŷ1,… , ŷk) . However, that implies that ŷj ∈ L(G|Bj) for all j ∈ {1,… , k} . The length
restriction to nj follows because—per definition of the tree size—the sizes |ŷj| must add up
to |x̂| − 1.

Conversely, if there exist nonterminals B1,… ,Bk ∈ Φ such that
r = A → x(B1,… ,Bk) ∈ R and ŷj ∈ Lnj

(G|Bj) for all j ∈ {1,… , k} , then there must exist
rule sequences r̄1,… , r̄k which generate ŷj from Bj for all j ∈ {1,… , k} . Accordingly,
r, r̄1,… , r̄k generates x̂ from A and, hence, x̂ ∈ L(G|A) . The length restriction follows
because |x̂| = 1 + |ŷ1| +…+ |ŷk| ≤ 1 + n1 +…+ nk = n . ◻

A.1 Deterministic grammars imply unique rule sequences

Recall that we define a regular tree grammar as deterministic if no two rules have the same
right-hand-side. Our goal is to show that every deterministic regular tree grammar is unam-
biguous, in the sense that there always exists a unique rule sequence generating the tree.
We first prove an auxiliary result.

Lemma 2 Let G = (Φ,Σ,R, S) be a deterministic regular tree grammar. Then, for any two
A ≠ A� ∈ Φ , L(G|A) ∩ L(G|A�) = �.

Proof We perform a proof via induction over the tree size. First, consider trees x̂ with
|x̂| = 1 , that is, x̂ = x() . If x̂ ∈ L(G|A) for some A ∈ Φ , the rule A → x() must be in R.

Machine Learning

1 3

Because G is deterministic, there can exist no A� ≠ A ∈ Φ with A�
→ x() ∈ R , otherwise

there would be two rules with the same right-hand-side. Accordingly, x̂ lies in L(G|A) for at
most one A ∈ Φ.

Now, assume that the claim holds for all trees up to size n and consider a tree x̂ with
|x̂| = n + 1 . Without loss of generality, let x̂ = x(ŷ1,… , ŷk) . If x̂ ∈ L(G|A) for some
A ∈ Φ , a rule of the form A → x(B1,… ,Bk) must be in R, such that for all j ∈ {1,… , k} :
ŷj ∈ L(G|Bj) . Now, note that |ŷj| ≤ n . Accordingly, our induction hypothesis applies and
there exists no other B′

j
≠ Bj such that ŷj ∈ L(G|B�

j
) . Further, there can exist no A′ ≠ A with

A�
→ x(B1,… ,Bk) , otherwise there would be two rules with the same right-hand-side.

Accordingly, x̂ lies in L(G|A) for at most one A ∈ Φ . ◻

Now, we prove the desired result.

Theorem 4 Let G = (Φ,Σ,R, S) be a deterministic regular tree grammar. Then, for any
x̂ ∈ L(G) there exists exactly one sequence of rules r1,… , rT ∈ R which generates x̂ from S.

Proof In fact, we will prove a more general result, namely that the claim holds for all
x̂ ∈

⋃
A∈Φ L(G�A) . We perform an induction over the tree size.

First, consider trees x̂ with |x̂| = 1 , that is, x̂ = x() . Then, the only way to generate x̂ is by
applying a single rule of the form A → x() . Because G is deterministic, only one such rule
can exist. Therefore, the claim holds.

Now, assume that the claim holds for all trees up to size n and consider a tree x̂ with
|x̂| = n + 1 . Without loss of generality, let x̂ = x(ŷ1,… , ŷk) . If x̂ ∈ L(G|A) for some
A ∈ Φ , then there must exist a rule of the form A → x(B1,… ,Bk) in R, such that for all
j ∈ {1,… , k} : ŷj ∈ L(G|Bj) . Due to the previous lemma and our induction hypothesis
we know that for each j, there exists a unique nonterminal Bj and rule sequence r̄j , such
that r̄j generates ŷj from Bj . Further, because G is deterministic, there can exist no other
A� ≠ A ∈ Φ , such that A�

→ x(B1,… ,Bk) in R. Therefore, the rule A → x(B1,… ,Bk) con-
catenated with the rule sequences r̄1 , … , r̄k is the only way to generate x̂ , as claimed. ◻

A.2 All regular tree grammars can be made deterministic

Theorem 5 Let G = (Φ,Σ,R,S) be a regular tree grammar. Then, there exists a regular
tree grammar G� = (Φ�,Σ,R�,S�) which is deterministic and where L(G) = L(G�).

Proof This proof is an adaptation of Theorem 1.1.9 of Comon et al. (2008) and can also be
seen as an analogue to conversion from nondeterministic finite state machines to determin-
istic finite state machines.

In particular, we convert G to G′ via the following procedure.
We first initialize Φ� and R′ as empty sets.
Second, iterate over k, starting at zero up to the maximum number of children in a rule in

R, and iterate over all right-hand-sides x(B1,… ,Bk) that occur in rules in R. Next, we col-
lect all A1,… ,Am ∈ Φ such that Ai → x(B1,… ,Bk) ∈ R and add the set A� = {A1,… ,Am}
to Φ�.

 Machine Learning

1 3

Third, we perform the same iteration again, but this time we add grammar rules
{A1,… ,Am} → x(B�

1
,… ,B�

k
) to R′ for all combinations B�

1
,… ,B�

k
∈ Φ� where Bj ∈ B�

j
 for

all j ∈ {1,… , k}.
Finally, we define S� = {A� ∈ Φ�|A� ∩ S ≠ �}.
It is straightforward to see that G′ is deterministic because all rules with the same right-

hand-side get replaced with rules with a unique left-hand-side.
It remains to show that the generated tree languages are the same. To that end, we first

prove an auxiliary claim, namely that for all A ∈ Φ it holds: A tree x̂ is in Ln(G|A) if and
only if there exists an A� ∈ Φ� with A ∈ A� and x̂ ∈ Ln(G

�|A�).
We show this claim via induction over n. First, consider n = 1 . If x̂ ∈ L1(G|A) , x̂ must

have the shape x̂ = x() , otherwise |x̂| > 1 , and the rule A → x() must be in R. Accordingly,
our procedure assures that there exists some A� ∈ Φ� with A ∈ A� and A�

→ x() ∈ R� .
Hence, x̂ ∈ L1(G

�|A�).
Conversely, if x̂ ∈ L1(G

�|A�) for some A� ∈ Φ� then x̂ must have the shape x̂ = x() , oth-
erwise |x̂| > 1 , and the rule A�

→ x() must be in R′ . However, this rule can only be in R′ if
for any A ∈ A� the rule A → x() was in R. Accordingly, x̂ ∈ L1(G|A).

Now, consider the case n > 1 and let x̂ = x(ŷ1,… , ŷk) . If x̂ ∈ Ln(G|A) , Lemma 1 tells us
that there must exist nonterminals B1,… ,Bk ∈ Φ such that A → x(B1,… ,Bk) ∈ R and
ŷj ∈ Lnj

(G|Bj) for all j ∈ {1,… , k} with n1 +…+ nk = n − 1 . Hence, by induction we
know that there exist B�

j
∈ Φ� such that Bj ∈ B�

j
 and ŷj ∈ Lnj

(G�|B�
j
) for all j ∈ {1,… , k} .

Further, our procedure for generating G′ ensures that there exists some A� ∈ Φ� such that
the rule A�

→ x(B�
1
,… ,B�

k
) is in R′ . Hence, Lemma 1 tells us that x̂ ∈ Ln(G

�|A�).
Conversely, if x̂ ∈ Ln(G

�|A�) then Lemma 1 tells us that there must exist nonterminals
B�
1
,… ,B�

k
∈ Φ� such that A�

→ x(B�
1
,… ,B�

k
) ∈ R� and ŷj ∈ Lnj

(G�|B�
j
) for all j ∈ {1,… , k}

with n1 +…+ nk = n − 1 . Hence, by induction we know that for all j ∈ {1,… , k} and all
Bj ∈ B�

j
 we obtain ŷj ∈ Lnj

(G|Bj) . Further, our procedure for generating G′ ensures that for
any A ∈ A� there must exist a rule A → x(B1,… ,Bk) ∈ R for some B1,… ,Bk ∈ Φ and
Bj ∈ B�

j
 for some combination of B�

j
∈ Φ� . Hence, Lemma 1 tells us that x̂ ∈ Ln(G|A) . This

concludes the induction.
Now, note that x̂ ∈ L(G) implies that there exists some S ∈ S with x̂ ∈ L(G|S) . Our aux-

iliary result tells us that there then exists some S� ∈ Φ� with S ∈ Φ� and x̂ ∈ L(G�|S�) . Fur-
ther, since S� ∪ S contains at least S, our construction of G′ implies that S� ∈ S� . Hence,
x̂ ∈ L(G�).

Conversely, if x̂ ∈ L(G�) , there must exist some S� ∈ S� with x̂ ∈ L(G�|S�) . Since
S� ∈ S� , there must exist at least one S ∈ S� such that S ∈ S . Further, our auxiliary result
tells us that x̂ ∈ L(G|S) . Accordingly, x̂ ∈ L(G) . ◻

As an example, consider the following grammar G = (Φ,Σ,R,S) for logical formulae in
conjuctive normal form.

Machine Learning

1 3

The deterministic version of this grammar is G� = (Φ�,Σ,R�,S�) with S� = Φ� and

A.3 Proof of the Parsing Theorem

We first generalize the statement of the theorem to also work for regular tree grammars
with multiple starting symbols. In particular, we show the following:

Theorem 6 Let G = (Φ,Σ,R,S) be a deterministic regular tree grammar. Then, it holds:
x̂ is a tree in L(G) if and only if Algorithm 3 returns a nonterminal S ∈ S , a unique rule

Φ = {F,C, L,A}

Σ = {∧,∨,¬, x, y}

R = {F → ∧(C,F)| ∨ (L,C)|¬(A)|x|y,
C → ∨(L,C)|¬(A)|x|y,
L → ¬(A)|x|y,
A → x|y}

S = {F}

Φ� = {{F,C, L,A}, {F,C, L}, {F,C}, {F}}

R� =
{
{F,C, L,A} → x|y,

{F,C, L} → ¬({F,C, L,A}),

{F,C} → ∨({F,C, L,A}, {F,C, L,A}),

{F,C} → ∨({F,C, L,A}, {F,C, L}),

{F,C} → ∨({F,C, L,A}, {F,C}),

{F,C} → ∨({F,C, L}, {F,C, L,A}),

{F,C} → ∨({F,C, L}, {F,C, L}),

{F,C} → ∨({F,C, L}, {F,C}),

{F} → ∧({F,C, L,A}, {F,C, L,A}),

{F} → ∧({F,C, L,A}, {F,C, L}),

{F} → ∧({F,C, L,A}, {F,C}),

{F} → ∧({F,C, L,A}, {F}),

{F} → ∧({F,C, L}, {F,C, L,A}),

{F} → ∧({F,C, L}, {F,C, L}),

{F} → ∧({F,C, L}, {F,C}),

{F} → ∧({F,C, L}, {F}),

{F} → ∧({F,C}, {F,C, L,A}),

{F} → ∧({F,C}, {F,C, L}),

{F} → ∧({F,C}, {F,C}),

{F} → ∧({F,C}, {F})
}
.

 Machine Learning

1 3

sequence r1,… , rT that generates x̂ , and a vector 𝜙(x̂) ∈ ℝ
n for the input x̂ . Further, Algo-

rithm 3 has O(|x̂|) time and space complexity.

Proof We structure the proof in three parts. First, we show that x̂ ∈ L(G) implies that
Algorithm 3 returns with a nonterminal S ∈ S , a unique generating rule sequence, and
some vector �(�) ∈ ℝ

n . Second, we show that if Algorithm 3 returns with a nonterminal
S ∈ S and some rule sequence as well as some vector, then the tree generated by the rule
sequence lies in L(G) . Finally, we prove the complexity claim.

We begin by a generalization of the first claim. For all A ∈ Φ and for all x̂ ∈ L(G|A) it
holds: Algorithm 3 returns the nonterminal A, a rule sequence r1,… , rT ∈ ℝ that generates
x̂ from A, and a vector 𝜙(x̂) . The uniqueness of the rule sequence r1,… , rT follows from
Theorem 4.

Our proof works via induction over the tree size. Let A ∈ � be any nonterminal and let
x̂ ∈ L1(G|A) . Then, because |x̂| = 1 , x̂ must have the form x̂ = x() for some x ∈ Σ and there
must exist a (unique) rule of the form r = A → x() ∈ R for some A ∈ Φ , otherwise x̂ would
not be in L1(G|A) . Now, inspect Algorithm 3 for x̂ . Because k = 0 , lines 2-4 do not get
executed. Further, because G is deterministic, the ∃ Quantifier in line 5 is unique, such that
r in line 6 is exactly A → x() . Accordingly, line 7 returns exactly A, r, f r.

Now, assume that the claim holds for all trees ŷ ∈
⋃

A∈Φ Ln(G�A) with n ≥ 1 . Then, con-
sider some nonterminal A ∈ Φ and some tree x̂ ∈ Ln+1(G|A) with size |x̂| = n + 1 . Because
|x̂| > 1 , x̂ must have the shape x̂ = x(ŷ1,… , ŷk) with k > 0 for some x ∈ Σ and some trees
ŷ1,… , ŷk . Lemma 1 now tells us that there must exist nonterminals B1,… ,Bk ∈ Φ with
ŷj ∈ Lnj

(G|Bj) for all j ∈ {1,… , k} such that n1 +…+ nk = n − 1 . Hence, our induction
applies to all trees ŷ1,… , ŷk.

Now, inspect Algorithm 3 once more. Due to induction we know that line 3 returns
for each tree ŷj a unique combination of nonterminal Bj and rule sequence r̄j , such
that r̄j generates ŷj from Bj . Further, the rule A → x(B1,… ,Bk) must exist in R, oth-
erwise x̂ ∉ Ln+1(G|A) . Also, there can not exist another nonterminal B ∈ Φ with
B → x(B1,… ,Bk) ∈ R , otherwise G would not be deterministic. Therefore, r in line 6 is
exactly A → x(B1,… ,Bk) . It remains to show that the returned rule sequence does gener-
ate x̂ from A. The first step in our generation is to pop A from the stack, replace A with
x(B1,… ,Bk) , and push Bk,… ,B1 onto the stack. Next, B1 will be popped from the stack
and the next rules will be r̄1 . Due to induction we know that r̄1 generates ŷ1 from B1 , result-
ing in the intermediate tree x(ŷ1,B2,… ,Bk) and the stack Bk,… ,B2 . Repeating this argu-
ment with the remaining rule sequence r̄2,… , r̄k yields exactly x̂ and an empty stack, which
means that the rule sequence does indeed generate x̂ from A.

For the second part, we also consider a generalized claim. In particular, if Algorithm 3
for some input tree x̂ returns with some nonterminal A and some rule sequence r̄ , then r̄
generates x̂ from A. We again prove this via induction over the length of the input tree.
If |x̂| = 1 , then x̂ = x() for some x. Because k = 0 , lines 2-4 of Algorithm 3 do not get
executed. Further, there must exist some nonterminal A ∈ Φ such that r = A → x() ∈ R ,
otherwise Algorithm 3 would return an error, which is a contradiction. Finally, the return
values are A and r and and r generates x̂ = x() from A as claimed.

Now, assume the claim holds for all trees with length up to n ≥ 1 and consider a tree
x̂ = x(ŷ1,… , ŷk) with |x̂| = n + 1 . Because n + 1 > 1 , k > 0 . Further, for all j ∈ {1,… , k} ,
|ŷj| < |x̂| = n + 1 , such that the induction hypothesis applies. Accordingly, line 3 returns
nonterminals Bj and rule sequences r̄j , such that r̄j generates ŷj from Bj for all j ∈ {1,… , k} .
Further, some nonterminal A ∈ Φ must exist such that A → x(B1,… ,Bk) ∈ R , otherwise

Machine Learning

1 3

Algorithm 3 would not return, which is a contradiction. Finally, the return values are A and
r, r̄1,… , r̄k and r, r̄1,… , r̄k generates x̂ from A using the same argument as above. This con-
cludes the proof by induction.

Our actual claim now follows. In particular, if x̂ ∈ L(G) , then there exists some S ∈ S
such that x̂ ∈ L(G|S) . Accordingly, Algorithm 3 returns with S, a generating rule sequence
from S, and a vector 𝜙(x̂) as claimed. Conversely, if for some input tree x̂ Algorithm 3
returns with some nonterminal S ∈ S and rule sequence r̄ , then r̄ generates x̂ from S, which
implies that x̂ ∈ L(G).

Regarding time and space complexity, notice that each rule adds exactly one node tot
he tree and that each recursion of Algorithm 3 adds exactly one rule. Accordingly, Algo-
rithm 3 requires exactly |x̂| iterations. Since the returned rule sequence has length |x̂| and all
other variables have constant size, the space complexity is the same. ◻

Appendix B: Determinism for optional and starred nonterminals

As mentioned in the main text, A? denotes a nonterminal with the production rules A? → A
and A? → � , and A ∗ denotes a nonterminal with the production rules A ∗→ A,A ∗ and
A ∗→ � , where the comma refers to concatenation. It is easy to see that these concepts can
make a grammar ambiguous. For example, the grammar rule A → x(B ∗,B ∗) is ambiguous
because for the partially parsed tree x(B) we could not decide whether B has been produced
by the first or second B ∗ . Similarly, the two grammar rules A → x(B ∗,C) and B → x(C)
are ambiguous because the tree x(C) can be produced by both.

More generally, we define a regular tree grammar as deterministic if the following two
conditions are fulfilled.

1. Any grammar rule A → x(B1,… ,Bk) ∈ R must be internally deterministic in the sense
that any two neighboring symbols Bj , Bj+1 must be either unequal or not both starred/
optional.

2. Any two grammar rules A → x(B1,… ,Bk) ∈ R and A�
→ x(B�

1
,… ,B�

l
) ∈ R must be non-

intersecting, in the sense that the sequences B1,… ,Bk and B�
1
,… ,B�

l
 , when interpreted

as regular expressions, are not allowed to have intersecting languages.

Note that, if we do not have starred or optional nonterminals in any rule, the first condi-
tion is automatically fulfilled and the second condition collapses to our original definition
of determinism, namely that no two rules are permitted to have the same right hand side.
Further note that the intersection of regular expression languages can be checked efficiently
via standard techniques from theoretical computer science.

If both conditions are fulfilled, we can adapt Algorithm 3 in a straightforward fashion by
replacing line 5 with ∃A ∈ Φ,A → x(B�

1
,… ,B�

l
) ∈ R such that B�

1
,… ,B�

l
 when interpreted

as a regular expression matches B1,… ,Bk . There can be only one such rule, otherwise the
second condition would not be fulfilled. We then the encodings �1,… , �k to their matching
nonterminals in the regular expression B�

1
,… ,B�

l
 and proceed as before.

 Machine Learning

1 3

Appendix C: Grammars

In this section, we list the grammars for each of the datasets in the experiments.
Boolean The grammar is GBool = (ΦBool,ΣBool,RBool, SBool) , where

The sampling strategy uses the probabilities 0.3, 0.3, 0.1, 0.15, and 0.15 for the rules in
RBool until 3 ∧ or ∨ symbols have been sampled. Then, the probabilities are adjusted to 0.0,
0.0, 0.2, 0.4, and 0.4. If a ¬ has been sampled, then the probability for the third rule is set
to zero and instead distributed onto rules 4 and 5. This scheme ensures that the number of
binary operators (∧ or ∨) is limited to 3 and that no double negation can occur.

Expressions The grammar is GExp = (ΦExp,ΣExp,RExp, SExp) , where

The sampling strategy consists of three different sampling processes. Whenever we write
’sample’, here, we mean sampling with uniform probabilities. First, we sample a binary
operator b from {+, ⋅, ∕,L} . If b = L , we sample a single literal x̂1 from {x, 1, 2, 3} . Oth-
erwise, we sample two literals x and y from {x, 1, 2, 3} and set x̂1 = b(x, y) . Second, we
sample a unary operator u from {sin, exp, L} and a literal x from {x, 1, 2, 3} . If u = L , we
set x̂2 = x , otherwise x̂2 = u(x) . Third, we sample an operator u from {sin, exp,U,B} and
repeat the first strategy to obtain a tree ŷ . If u = B , we set x̂3 = ŷ . If u = U , we repeat the
second strategy to obtain x̂3 . Otherwise, we set x̂3 = u(ŷ).

SMILES The grammar is GSMILES = (ΦSMILES,ΣSMILES,RSMILES, SSMILES) where

ΦBool = {SBool},

ΣBool = {∧,∨,¬, x, y}, and

RBool = {SBool → ∧(SBool, SBool), SBool → ∨(SBool, SBool),

SBool → ¬(SBool), SBool → x, SBool → y}.

ΦExp = {SExp},

ΣExp = {+, ⋅, ∕, sin, exp, x, 1, 2, 3}, and

RBool = {SExp → +(SExp, SExp), SExp → ⋅(SExp, SExp), SExp → ∕(SExp, SExp),

SExp → sin(SExp), SExp → exp(SExp),

SExp → x, SExp → 1, SExp → 2, SExp → 3}.

Machine Learning

1 3

In this grammar, the nonterminal C generates a chain of atoms. A1 generates an atom which
can branch off multiple chains, A2 generates a single atom, E1 , and E2 generate different
kinds of element symbols, � generates chirality, H generates a hydrogen count, Ch gener-
ates a charge, O1 and O2 generate element symbols in their role as aliphatic or aromatic
atoms, B1 generates a bond in the function of a ringbond, and B2 generates a bond in the
function of a branch. The logic of this grammar follows the SMILES specification (Wein-
inger, 1988) in the version used by Kusner et al. (2017).

Pysort The pysort grammar is too unwieldy to be printed here in full. Instead, we point
the interested reader to our source code repository https:// gitlab. com/ bpaas sen/ rtgae/-/ blob/
master/ pysort_ data. py or to the official Python documentation https:// docs. python. org/3/
libra ry/ ast. html.

ΦSMILES = {SSMILES, C,A1,A2,E1,E2,� ,H,Ch,O1,O2,B1,B2},

ΣSMILES = {smiles,−,=,≡, ∕, ⧵, #, branch,−
◦
,=

◦
, ∕

◦
, ⧵

◦
,−b,=b,≡b, ∕b, ⧵b,

[], hcount, charge,@,@@,C,N,O,P, S, n, o, s,

CAli,NAli,OAli, SAli,PAli,FAli,ClAli,BrAli,

cAro, nAro, oAro, sAro}, and

RSMILES = {SSMILES → smiles(C), C → −(C,A1), C →= (C,A1),

C →≡ (C,A1), C → ∕(C,A1), C → ⧵(C,A1), C → #(A1),

A1 → branch(A2,B
∗
1
,B∗

2
),

A1 → branch(O1,B
∗
1
,B∗

2
),A1 → branch(O2,B

∗
1
,B∗

2
),

A2 → [](E1,�?,H?,Ch?),A2 → [](E2,�?,H?,Ch?),

E1 → C,E1 → N,E1 → O,E1 → P,E1 → S,

E2 → n,E2 → o,E2 → s,

� → @,� → @@,

H → hcount,Ch → charge,

O1 → CAli,O1 → NAli,O1 → OAli,O1 → SAli,

O1 → PAli,O1 → FAli,O1 → ClAli,O1 → BrAli,

O2 → cAro, nAro, oAro, sAro,

B1 → −
◦
,B1 →=

◦
,B1 → ∕

◦
,B1 → ⧵

◦
,

B2 → −b(C),B2 →=b (C),B2 →≡b (C),

B2 → ∕b(C),B2 → ⧵b(C)}.

Fig. 4 The autoencoding error
(tree edit distance) for vanilla
RTG-AE (blue) and RTG-AE
with a GRU layer for gS⊕→⊕(B,S⊕)

2

(orange)

https://gitlab.com/bpaassen/rtgae/-/blob/master/pysort_data.py
https://gitlab.com/bpaassen/rtgae/-/blob/master/pysort_data.py
https://docs.python.org/3/library/ast.html
https://docs.python.org/3/library/ast.html

 Machine Learning

1 3

Appendix D: List encoding

In Sect. 3.2, we noted that a GRU layer is preferable for decoding lists. To investigate
this issue in more detail, we provide an extra experiment with the following grammar
G⊕ = (Φ⊕,Σ⊕,R⊕, S⊕) , which represents lists of binary numbers.

where ⊕ expresses list concatenation.
We now generate trees of the form #(0) , ⊕(1, #(0)) , ⊕(1,⊕(1, #(0))) , and so on up to

size 60. We train two RTG-AE models to auto-encode these trees, one vanilla model and
one where we use a GRU layer for the decoding function gS⊕→⊕(B,S⊕)

2
 . As hyperparameters,

we use n = 100 , nVAE = 8 , and learning rate 10−3 , same as for the Boolean and Expressions
dataset.

Figure 4 displays the auto-encoding error versus tree length. We observe that the GRU
model consistently achieves a lower error, especially for larger trees. Further, the RTG-AE
model still gets caught in an endless loop for some cases: it produces an endless tree of
the form ⊕(1,⊕(1,⊕(1,…))) , whereas the GRU model perfectly auto-encodes all training
trees.

This experiment illustrates the reason for our recommendation. In a list encoding, the
danger of endless loops is very high because the same decoding gets repeated many times.
In such a case, a feedforward layer for gS⊕→⊕(B,S⊕)

2
 has trouble to keep track how many

remaining nodes still have to be decoded—even in this very simple example. Maintaining
this memory over a lot of repetitions is simpler for a GRU layer.

Author contributions BP developed and implemented the proposed method, performed the experiments,
acquired funding and wrote the initial draft. IK and KY supervised BP during development and experimen-
tal evaluation, and performed extensive revisions of the text.

Funding Open Access funding enabled and organized by Projekt DEAL. This work was supported by the
German Research Foundation (DFG) under Grant Numbers PA 3460/1-1 and PA 3460/2-1.

Data availability All data and material required to reproduce the experiments is available at https:// gitlab.
com/ bpaas sen/ rtgae/.

Code availability All code required to reproduce the experiments is available at https:// gitlab. com/ bpaas sen/
rtgae/.

Declarations

Conflict of interest The authors declare that they have no conflict of interest (beyond the funding acknowl-
edged above).

Ethics approval Not applicable.

Consent to participate Not applicable.

Consent for publication Not applicable.

Φ⊕ = {S⊕,B},

Σ⊕ = {⊕, #, 0, 1},

R⊕ = {S⊕ → ⊕(B, S⊕), S⊕ → #(B),B → 0,B → 1},

https://gitlab.com/bpaassen/rtgae/
https://gitlab.com/bpaassen/rtgae/
https://gitlab.com/bpaassen/rtgae/
https://gitlab.com/bpaassen/rtgae/

Machine Learning

1 3

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Aiolli, F., Da San, G. M., & Sperduti, A. (2015). An efficient topological distance-based tree kernel. IEEE
Transactions on Neural Networks and Learning Systems, 26(5), 1115–1120. https:// doi. org/ 10. 1109/
TNNLS. 2014. 23293 31.

Allamanis, M., Chanthirasegaran, P., Kohli, P., & Sutton, C. (2017). Learning continuous semantic repre-
sentations of symbolic expressions. In Proceedings of the ICML (pp. 80–88). http:// proce edings. mlr.
press/ v70/ allam anis1 7a. html.

Alon, U., Zilberstein, M., Levy, O., & Yahav, E. (2019). Code2vec: Learning distributed representations of
code. In Proceedings of the ACM programming languages (Vol. 3). https:// doi. org/ 10. 1145/ 32903 53.

Bacciu, D., Micheli, A., & Podda, M. (2019). Graph generation by sequential edge prediction. In M. Ver-
leysen (Ed.), Proceedings of the ESANN (pp. 95–100). https:// www. elen. ucl. ac. be/ Proce edings/ esann/
esann pdf/ es2019- 107. pdf.

Bille, P. (2005). A survey on tree edit distance and related problems. Theoretical Computer Science, 337(1),
217–239. https:// doi. org/ 10. 1016/j. tcs. 2004. 12. 030.

Brainerd, W. S. (1969). Tree generating regular systems. Information and Control, 14(2), 217–231. https://
doi. org/ 10. 1016/ S0019- 9958(69) 90065-5.

Burda, Y., Grosse, R. B., & Salakhutdinov, R. (2016). Importance weighted autoencoders. In Proceedings of
the ICLR. arXiv: 1509. 00519.

Chi, Z. (1999). Statistical properties of probabilistic context-free grammars. Computational Linguistics,
25(1), 131–160. https:// doi. org/ 10. 5555/ 973215. 973219.

Cho, K., van Merrienboer, B., Gülçehre, Ç ., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning
phrase representations using RNN encoder-decoder for statistical machine translation. In A. Moschitti
(Ed.), Proceedings of the EMNLP (pp. 1724–1734). arXiv: 1406. 1078.

Collins, M., & Duffy, N. (2002). New ranking algorithms for parsing and tagging: Kernels over discrete
structures, and the voted perceptron. In P. Isabelle, E. Charniak, & D. Lin (Eds.), Proceedings of the
ACL (pp.263–270). http:// www. aclweb. org/ antho logy/ P02- 1034. pdf

Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D., & Tommasi, M. (2008). Tree
automata techniques and applications. Lyon, France: HAL open science. https:// hal. inria. fr/ hal- 03367
725.

Dai, H., Tian, Y., Dai, B., Skiena, S., & Song, L. (2018). Syntax-directed variational autoencoder for struc-
tured data. In Y. Bengio, & Y. LeCun (Eds.), Proceedings of the ICLR. Retrieved from https:// openr
eview. net/ forum? id= SyqSh MZRb.

Dyer, C., Kuncoro, A., Ballesteros, M., & Smith, N. A. (2016). Recurrent neural network grammars. In Pro-
ceedings of the NAACL (pp. 199–209). https:// www. aclweb. org/ antho logy/ N16- 1024. pdf.

Gallicchio, C., & Micheli, A. (2013). Tree echo state networks. Neurocomputing, 101, 319–337. https:// doi.
org/ 10. 1016/j. neucom. 2012. 08. 017.

Hammer, B. (2002). Recurrent networks for structured data-A unifying approach and its properties. Cogni-
tive Systems Research, 3(2), 145–165. https:// doi. org/ 10. 1016/ S1389- 0417(01) 00056-0.

Jin, W., Barzilay, R., & Jaakkola, T. (2018). Junction tree variational autoencoder for molecular graph gen-
eration. In J. Dy & A. Krause (Eds.), Proceedings of the ICML (pp. 2323–2332). Retrieved from http://
proce edings. mlr. press/ v80/ jin18a. html.

Kanade, A., Maniatis, P., Balakrishnan, G., & Shi, K. (2020). Learning and evaluating contextual embed-
ding of source code. In H.D. III & A. Singh (Eds.), Proceedings of the ICML (pp. 5110–5121).
Retrieved from http:// proce edings. mlr. press/ v119/ kanad e20a. html.

Kim, Y., Dyer, C., & Rush, A. M. (2019). Compound probabilistic contextfree grammars for grammar
induction. In Proceedings of the ACL (pp. 2369–2385). Retrieved from https:// www. aclweb. org/ antho
logy/ P19- 1228. pdf.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/TNNLS.2014.2329331
https://doi.org/10.1109/TNNLS.2014.2329331
http://proceedings.mlr.press/v70/allamanis17a.html
http://proceedings.mlr.press/v70/allamanis17a.html
https://doi.org/10.1145/3290353
https://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2019-107.pdf
https://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2019-107.pdf
https://doi.org/10.1016/j.tcs.2004.12.030
https://doi.org/10.1016/S0019-9958(69)90065-5
https://doi.org/10.1016/S0019-9958(69)90065-5
http://arxiv.org/abs/1509.00519
https://doi.org/10.5555/973215.973219
http://arxiv.org/abs/1406.1078
http://www.aclweb.org/anthology/P02-1034.pdf
https://hal.inria.fr/%20hal-03367725
https://hal.inria.fr/%20hal-03367725
https://openreview.net/forum?id=SyqShMZRb
https://openreview.net/forum?id=SyqShMZRb
https://www.aclweb.org/anthology/N16-1024.pdf
https://doi.org/10.1016/j.neucom.2012.08.017
https://doi.org/10.1016/j.neucom.2012.08.017
https://doi.org/10.1016/S1389-0417(01)00056-0
http://proceedings.mlr.press/v80/jin18a.html
http://proceedings.mlr.press/v80/jin18a.html
http://proceedings.mlr.press/v119/kanade20a.html
https://www.aclweb.org/anthology/P19-1228.pdf
https://www.aclweb.org/anthology/P19-1228.pdf

 Machine Learning

1 3

Kingma, D., & Ba, J. (2015). Adam: A method for stochastic optimization. In Y. Bengio & Y. LeCun (Eds.),
Proceedings of the ICLR. arXiv: 1412. 6980.

Kingma, D. P., & Welling, M. (2019). An introduction to variational autoencoders. Foundations and Trends
in Machine Learning, 12(4), 307–392. https:// doi. org/ 10. 1561/ 22000 00056.

Kipf, T., & Welling, M. (2017). Semi-supervised classification with graph convolutional networks. Y. Ben-
gio & Y. LeCun (Eds.), Proceedings of the ICLR. Retrieved from https:// openr eview. net/ forum? id=
SJU4a yYgl.

Kusner, M. J., Paige, B., & Hernández-Lobato, J. M. (2017). Grammar variational autoencoder. D. Precup
& Y. W. Teh (Eds.), Proceedings of the ICML (pp. 1945–1954). http:// proce edings. mlr. press/ v70/ kusne
r17a. html.

Li, B., Cheng, J., Liu, Y., & Keller, F. (2019). Dependency grammar induction with a neural variational
transition-based parser. In Proceedings of the AAAI (pp. 6658–6665). https:// doi. org/ 10. 1609/ aaai.
v33i01. 33016 658.

Liu, Q., Allamanis, M., Brockschmidt, M., & Gaunt, A. (2018). Constrained graph variational autoencod-
ers for molecule design. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, &
R. Garnett (Eds.), Proceedings of the NeurIPS (pp. 7795–7804). Retrieved from http:// papers. nips. cc/
paper/ 8005- const rained- graph- varia tional- autoe ncode rs- for- molec ule- design.

Loshchilov, I., & Hutter, F. (2016). CMA-ES for hyperparameter optimization of deep neural networks.
arXiv, 1604.07269 . arXiv: 1604. 07269.

Micheli, A. (2009). Neural network for graphs: A contextual constructive approach. IEEE Transactions on
Neural Networks, 20(3), 498–511. https:// doi. org/ 10. 1109/ TNN. 2008. 20103 50.

Paaßen, B., Grattarola, D., Zambon, D., Alippi, C., & Hammer, B. (2021). Graph edit networks. In S.
Mohamed, K. Hofmann, A. Oh, N. Murray, & I. Titov (Eds.), Proceedings of the ICLR. https:// openr
eview. net/ forum? id= dlEJs yHGeaL.

Paaßen, B., Hammer, B., Price, T., Barnes, T., Gross, S., & Pinkwart, N. (2018). The continuous hint fac-
tory–providing hints in vast and sparsely populated edit distance spaces. Journal of Educational Data
Mining, 10(1), 1–35.

Paaßen, B., Koprinska, I., & Yacef, K. (2020). Tree echo state autoencoders with grammars. In A. Roy
(Ed.), Proceedings of the IJCNN (pp. 1–8). Retrieved from https:// doi. org/ 10. 1109/ IJCNN 48605. 2020.
92071 65

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Chintala, S. (2019). Pytorch: An
imperative style, high-performance deep learning library. In H. Wallach, H. Larochelle, A. Beygel-
zimer, F. d’Alché Buc, E. Fox, & R. Garnett (Eds.), Proceedings of the NeurIPS (pp. 8026–8037).
http:// papers. nips. cc/ paper/ 9015- pytor ch- an- imper ative- style- high- perfo rmance- deep- learn ing- libra ry.

Pollack, J. B. (1990). Recursive distributed representations. Artificial Intelligence, 46(1), 77–105. https://
doi. org/ 10. 1016/ 0004- 3702(90) 90005-K.

Sanchez-Lengeling, B., & Aspuru-Guzik, A. (2018). Inverse molecular design using machine learning:
Generative models for matter engineering. Science, 361(6400), 360–365. https:// doi. org/ 10. 1126/ scien
ce. aat26 63.

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., & Monfardini, G. (2009). The graph neural net-
work model. IEEE Transactions on Neural Networks, 20(1), 61–80. https:// doi. org/ 10. 1109/ TNN. 2008.
20056 05.

Sperduti, A. (1994). Labelling recursive auto-associative memory. Connection Science, 6(4), 429–459.
https:// doi. org/ 10. 1080/ 09540 09940 89157 33.

Sperduti, A., & Starita, A. (1997). Supervised neural networks for the classification of structures. IEEE
Transactions on Neural Networks, 8(3), 714–735. https:// doi. org/ 10. 1109/ 72. 572108.

Sønderby, C. K., Raiko, T., Maaløe, L., Sønderby, S. K., Winther, O. (2016). Ladder variational autoencod-
ers. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, & R. Garnett (Eds.), Proceedings of the NeurIPS.
https:// proce edings. neuri ps. cc/ paper/ 2016/ file/ 6ae07 dcb33 ec3b7 c814d f797c bda0f 87- Paper. pdf.

Tai, K. S., Socher, R., & Manning, C. D. (2015). Improved semantic representations from tree-structured
long short-term memory networks. In Proceedings of the ACL (pp. 1556–1566).

Tiňo, P., & Hammer, B. (2003). Architectural bias in recurrent neural networks: Fractal analysis. Neural
Computation, 15(8), 1931–1957. https:// doi. org/ 10. 1162/ 08997 66036 06750 99.

Turán, G. (1983). On the complexity of graph grammars. Acta Cybernetica, 6, 271–281.
Weininger, D. (1988). Smiles, a chemical language and information system. 1. Introduction to methodology

and encoding rules. Journal of Chemical Information and Computer Sciences, 28(1), 31–36. https://
doi. org/ 10. 1021/ ci000 57a005.

Xu, K., Hu, W., Leskovec, J., & Jegelka, S. (2019). How powerful are graph neural networks? In T. Sainath,
A. Rush, S. Levine, K. Livescu, & S. Mohamed (Eds.), Proceedings of the ICLR. arXiv: 1810. 00826.

http://arxiv.org/abs/1412.6980
https://doi.org/10.1561/2200000056
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
http://proceedings.mlr.press/v70/kusner17a.html
http://proceedings.mlr.press/v70/kusner17a.html
https://doi.org/10.1609/aaai.v33i01.33016658
https://doi.org/10.1609/aaai.v33i01.33016658
http://papers.nips.cc/paper/8005-constrained-graph-variational-autoencoders-for-molecule-design
http://papers.nips.cc/paper/8005-constrained-graph-variational-autoencoders-for-molecule-design
http://arxiv.org/abs/1604.07269
https://doi.org/10.1109/TNN.2008.2010350
https://openreview.net/forum?id=dlEJsyHGeaL
https://openreview.net/forum?id=dlEJsyHGeaL
https://doi.org/10.1109/IJCNN48605.2020.9207165
https://doi.org/10.1109/IJCNN48605.2020.9207165
http://papers.nips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library
https://doi.org/10.1016/0004-3702(90)90005-K
https://doi.org/10.1016/0004-3702(90)90005-K
https://doi.org/10.1126/science.aat2663
https://doi.org/10.1126/science.aat2663
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1080/09540099408915733
https://doi.org/10.1109/72.572108
https://proceedings.neurips.cc/paper/2016/file/6ae07dcb33ec3b7c814df797cbda0f87-Paper.pdf
https://doi.org/10.1162/08997660360675099
https://doi.org/10.1021/ci00057a005
https://doi.org/10.1021/ci00057a005
http://arxiv.org/abs/1810.00826

Machine Learning

1 3

Yogatama, D., Blunsom, P., Dyer, C., Grefenstette, E., & Ling, W. (2017). Learning to compose words into
sentences with reinforcement learning. In Y. Bengio & Y. LeCun (Eds.), Proceedings of the ICLR.
https:// openr eview. net/ forum? id= Skvgq gqxe.

You, J., Ying, R., Ren, X., Hamilton, W., & Leskovec, J. (2018). GraphRNN: Generating realistic graphs
with deep auto-regressive models. In J. Dy & A. Krause (Eds.), Proceedings of the ICML (pp. 5708–
5717). Retrieved from http:// proce edings. mlr. press/ v80/ you18a. html.

Zaremba, W., Kurach, K., & Fergus, R. (2014). Learning to discover efficient mathematical identities. In
Proceedings of the neurips (Vol. 27, pp. 1278–1286). https:// proce edings. neuri ps. cc/ paper/ 2014/ file/
08419 be897 40532 15428 38d77 f8552 26- Paper. pdf.

Zhang, J., Wang, X., Zhang, H., Sun, H., Wang, K., Liu, X. (2019). A novel neural source code representa-
tion based on abstract syntax tree. In Proceedings of the ICSE (pp. 783-794). https:// doi. org/ 10. 1109/
ICSE. 2019. 00086.

Zhang, K., & Shasha, D. (1989). Simple fast algorithms for the editing distance between trees and related
problems. SIAM Journal on Computing, 18(6), 1245–1262. https:// doi. org/ 10. 1137/ 02180 82.

Zhang, M., Jiang, S., Cui, Z., Garnett, R., Chen, Y. (2019). D-VAE: A variational autoencoder for directed
acyclic graphs. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché Buc, E. Fox, & R. Garnett
(Eds.), Proceedings of the NeurIPS (pp. 1586–1598). http:// papers. nips. cc/ paper/ 8437-d- vae-a- varia
tional- autoe ncoder- for- direc ted- acycl ic- graphs.

Zhao, S., Song, J., Ermon, S. (2019, Jul.). Infovae: Balancing learning and inference in variational autoen-
coders. In Proceedings of the AAAI (pp. 5885–5892). https:// doi. org/ 10. 1609/ aaai. v33i01. 33015 885.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://openreview.net/forum?id=Skvgqgqxe
http://proceedings.mlr.press/v80/you18a.html
https://proceedings.neurips.cc/paper/2014/file/08419be897405321542838d77f855226-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/08419be897405321542838d77f855226-Paper.pdf
https://doi.org/10.1109/ICSE.2019.00086
https://doi.org/10.1109/ICSE.2019.00086
https://doi.org/10.1137/0218082
http://papers.nips.cc/paper/8437-d-vae-a-variational-autoencoder-for-directed-acyclic-graphs
http://papers.nips.cc/paper/8437-d-vae-a-variational-autoencoder-for-directed-acyclic-graphs
https://doi.org/10.1609/aaai.v33i01.33015885

	Recursive tree grammar autoencoders
	Abstract
	1 Introduction
	2 Background and related work
	2.1 Regular tree grammars
	2.2 Tree encoding
	2.3 Tree decoding
	2.4 Variational autoencoders

	3 Method
	3.1 Encoder
	3.2 Decoder
	3.3 Training

	4 Experiments and discussion
	5 Conclusion
	References

