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Abstract

Long Term Evolution (LTE), the Fourth Generation Wireless Technology (4G)
has been adopted by all major operators in the world and has already ruled
the cellular landscape for around a decade. Driven by the need to cope with
exponentially growing mobile data traffic and to support new traffic types from
massive numbers of machine-type devices, currently, they are also formed as the
starting point for further progress beyond the 4G mobile network towards the Fifth
Generation Wireless Technology (5G). A lot of researches and new technologies
are being considered as a potential element contributing to such a future mobile
network, including the use of massive Multiple-Input and Multiple-Output (MIMO),
exploiting unused spectrum, Cloud Radio Access Network (RAN)s. The lack of
the realistic and flexible experimentation platforms has limited and slowed the
landing of new approaches because the new technologies need a wide range of
experimentation modes from real-world experimentation to controlled and scalable
evaluations. Motivated by the outstanding performance of the approached channel
prediction algorithms on the simulated MIMO channel, however, we have noticed
that the simulated channel cannot capture the complex real-world environment
well. This has resulted in the need for building a real wireless communication
platform so that we can perform some real value channel measurements for
further algorithm verification and development. Software Defined Radio (SDR) may
provide flexible, upgradeable and longer lifetime radio equipment for the wireless
communications infrastructure. SDR may also provide more flexible and possibly
cheaper multi-standard-terminals for end users. Among all the General Purpose
Processor (GPP)-based SDR systems, OpenAirInterface (OAI) is one of the most
comprehensive and competitive open-source SDR systems. By altering the open-
source code individually, we can freely perform the real value measurement.

This thesis provides a real LTE access based on the SDR OAI platform for verifi-
cation of the channel prediction algorithm. Firstly, the experimentation platform will
be established by using OAI, Universal Software Radio Peripheral (USRP) and
commercial User Equipment (UE). Then, the author of this thesis has analyzed
the source code of OAI and changed some parts of the codes so that the real-time
over-the-air channel measurement can be achieved. The results from the measure-
ment are then formed so that the channel prediction algorithm can be retrained
and tested. The results of the test illustrate that the implemented experimentation
platform can meet the need for algorithms’ verification and can be further extended
for more developments of algorithms.
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Kurzzusammenfassung

LTE 4G wurde von allen großen Betreibern der Welt übernommen und beherrscht
die zellulare Landschaft bereits seit rund einem Jahrzehnt. Aufgrund der Notwendigkeit,
den exponentiell wachsenden mobilen Datenverkehr zu bewältigen und neue
Verkehrstypen von einer großen Anzahl von Geräten vom Maschinentyp zu un-
terstützen, bilden sie derzeit auch den Ausgangspunkt für weitere Fortschritte
über das 4G Mobilfunknetz hinaus in Richtung der 5G. Viele Forschungen und
neue Technologien werden als potenzielles Element angesehen, das zu einem
solchen zukünftigen Mobilfunknetz beiträgt, einschließlich der Verwendung von
MIMO, der Erschließung der nicht genutzten Frequenzen, Cloud RAN. Das Fehlen
realistischer und flexibler Experimentierplattformen hat die Landung neuer Ansätze
der Technik begrenzt und verlangsamt, da die neuen Technologien eine breite
Palette von Experimentiermodi erfordern, von realen Experimenten bis hin zu
kontrollierten und skalierbaren Bewertungen. Motiviert durch die hervorragende
Leistung der Algorithmen für das Vorhersage der Kanälen auf dem simulierten
MIMO Kanal haben wir jedoch festgestellt, dass der simulierte Kanal die komplexe
reale Umgebung nicht gut erfassen kann. Dies hat dazu geführt, dass eine echte
drahtlose Kommunikationsplattform aufgebaut werden muss, damit wir einige
echte Kanalmessungen zur weiteren Überprüfung und Entwicklung von Algorith-
men durchführen können. SDR bietet möglicherweise flexible, aktualisierbare und
lebenslange Funkgeräte für die drahtlose Kommunikationsinfrastruktur. SDR bietet
Endbenutzern möglicherweise auch flexiblere und möglicherweise billigere Multi-
Standard-Terminals. OAI ist eines der umfassendsten und wettbewerbsfähigsten
Open-Source SDR Systeme unter allen GPP basierten SDR Systemen. Indem
wir den Open-Source-Code individuell ändern, dann können wir die realwertige
Kanalmessung frei durchführen.

Diese Arbeit bietet einen echten LTE-Zugang basierend auf der SDR OAI Plattform
zur Überprüfung des Kanalvorhersagealgorithmus. Zunächst wird die Experimen-
tierplattform unter Verwendung von OAI USRP und kommerzieller UE eingerichtet.
Anschließend hat der Autor dieser Arbeit den Quellcode von OAI analysiert und
einige Teile der Codes geändert, damit die echtzeite Kanalmessung über Kannal
erreicht werden kann. Die Ergebnisse der Messung werden dann gebildet, so
dass der Kanalvorhersagealgorithmus umgeschult und getestet werden kann.
Die Testergebnisse zeigen, dass die implementierte Experimentierplattform die
Notwendigkeit der Überprüfung von Algorithmen erfüllen und für die weitere En-
twicklung von Algorithmen erweitert werden kann.

viii



Contents

Acronyms and symbols xi

List of Figures xv

List of Tables xvii

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Organization of Thesis . . . . . . . . . . . . . . . . . . . . . . . . 4

2 State Of The Art 5
2.1 Software Defined Radio (SDR) . . . . . . . . . . . . . . . . . . . . 5
2.2 System Architecture of OAI . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Channel Estimation for Channel Prediction . . . . . . . . . . . . . 15

2.3.1 Channel Estimation . . . . . . . . . . . . . . . . . . . . . . 15
2.3.2 Uplink frame structure . . . . . . . . . . . . . . . . . . . . . 19
2.3.3 Uplink Data Transmission Scheduling . . . . . . . . . . . . 22

3 Implementation of LTE Access Platform 25
3.1 Software and IP Setup . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Installation of Evolved Node B (eNB) . . . . . . . . . . . . . . . . . 27
3.3 Installation of Evolved Packet Core (EPC) . . . . . . . . . . . . . . 30
3.4 User database configuration . . . . . . . . . . . . . . . . . . . . . 36
3.5 Process OAI system startup and UE attachment . . . . . . . . . . 40

4 Implementation of Channel Measurement 49
4.1 OAI eNB source code analysis . . . . . . . . . . . . . . . . . . . . 49
4.2 Streaming SIMD Extensions (SSE) intrinsics and output data storage 54
4.3 Channel estimates formatting and visualizing . . . . . . . . . . . . 61
4.4 Changes of uplink Scheduling . . . . . . . . . . . . . . . . . . . . 65

ix



5 Verification of Channel Prediction Algorithm 69
5.1 RNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.2 Recurrent Neural Network (RNN) for Channel Prediction . . . . . . 72
5.3 Numerical results and evaluations . . . . . . . . . . . . . . . . . . 74

6 Conclusion and Future Works 79
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Bibliography 83

x



Acronyms and symbols

Acronyms

3GPPP 3rd Generation Partnership Project
4G the Fourth Generation Wireless Technology
5G the Fifth Generation Wireless Technology
ACK Acknowledgement
AI Artificial Intelligent
APIs Application Program Interfaces
AVX Advanced Vector Extensions
CFI Control Format Indicator
CPU Central Processing Unit
CQI Channel Quality Index
CSI Channel State Information
DCI Downlink Control Indicator
DDC Digital Down Converter
DHCP Dynamic Host Configuration Protocol
DRS Demodulation Reference Signal
DSP Digital Signal Processor
DUC Digital Up Converter
eNB Evolved Node B
EPC Evolved Packet Core
FDD Frequency Domain Division
FPGA Field Programmable Gate Array
GPP General Purpose Processor
GTP GPRS Tunnelling Protocol
HARQ Hybrid Automatic Repeat Request
HSS Home Subscriber Server
I/Q In-phase and Quadrature
IF Intermediate Frequency

xi



JTRS The Joint Tactical Radio System project
KUAR Kansas University Agile Radio
LNA Low-Noise Amplifier
LO Local Oscillator
LTE Long Term Evolution
MAC Media Access Control Layer
MIMO Multiple-Input and Multiple-Output
MME Mobility Management Entity
MSE Mean Square Error
NAK Negative Acknowledgement
NAS Non-Access Stratum
NN Neural Network
NR New Radio
OAI OpenAirInterface
PBCH Physical Broadcast Channel
PCFICH Physical Control Format Indicator Channel
PDCCH Physical Downlink Control Channel
PDCP Packet Data Convergence Protocol
PDSCH Physical Downlink Shared Channel
PGW Public Data Network (PDN) Gateway
PHICH Physical channel HybridARQ Indicator Channel
PHY Physical layer
PMCH Physical Multicast Channel
PMI Precoding Matrix Indicator
PRACH Physical Random Access Channel
PSS Primary Synchronization Signal
PUCCH Physical Uplink Control Channel
PUSCH Physical Uplink Shared Channel
RAN Radio Access Network
RF Radio Frequency
RI Rank Indicator
RLC Radio Link Control
RNN Recurrent Neural Network
RRC Radio Resource Control Protocol
RS Reference Signal
SCA Software Communications Architecture
SDR Software Defined Radio
SGW Serving Gateway

xii



SIMD Single Instruction Multiple Data
SISO Single-Input and Single-Output
SNR Signal to Noise Ratio
SRS Sounding Reference Signal
SSE Streaming SIMD Extensions
SSS Secondary Synchronization Signal
TDD Time Domain Division
UCI Uplink Control Indicator
UE User Equipment
UHD USRP Hardware driver
USRP Universal Software Radio Peripheral
WARP Wireless open-Access Research Platform
ZC Zadoff–Chu

Symbols

Symbol Unit Description

h communication channel
h̄ averaged channel estimate
fn reference signal
x transmitted signal
y received signal
n estimated noise
TS ms the time duration for one frame
Ts ms the time duration for one subframe
Tslot ms the time duration for one slot
k the index of RE in the frequency domain
l the index of SC-FDMA symbols in the time domain
NUL
RB the number of RB in the frequency domain

NRB
SC the number of subcarriers in a RB

NUL
symb the number of SC-FDMA symbols in an uplink slot

N the number of input neurons
NI the number of external inputs
NL the number of hidden neurons
No the number of output neurons
xe vector of external inputs

xiii



yo output vector
X combination vector of xe and delayed feedback
wl,n the weight connection between the nth input and the lth hidden

neuron
cm,l the weight connection between the lth hidden and the mth output

neuron
wl the lth weight vector
γl(t) the output of the lth hidden neuron

xiv



List of Figures

2.1 General Architecture of Radio Transceiver . . . . . . . . . . . . . . 6
2.2 The First Evolution of SDR . . . . . . . . . . . . . . . . . . . . . . 7
2.3 The Second Evolution of SDR . . . . . . . . . . . . . . . . . . . . 8
2.4 The open-source USRP-based SDR system architecture . . . . . . 9
2.5 OpenAirInterface LTE software stack [26] . . . . . . . . . . . . . . 11
2.6 OpenAirInterface LTE RAN system directory . . . . . . . . . . . . . 14
2.7 Block diagram of a simple MIMO system channel prediction . . . . 16
2.8 Channel estimation by comparing transmitted and received refer-

ence signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.9 Uplink frame structure . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.10 LTE uplink channel resouce grid in a slot [3] . . . . . . . . . . . . . 20
2.11 Reference signal distribution in a subframe . . . . . . . . . . . . . 21
2.12 Uplink transmission under persistent scheduling . . . . . . . . . . 24

3.1 LTE platform hardware set up . . . . . . . . . . . . . . . . . . . . . 26
3.2 LTE platform IP set up . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3 CPU state setup result in i7z . . . . . . . . . . . . . . . . . . . . . 29
3.4 IP configuration status of computer runs EPC . . . . . . . . . . . . 34
3.5 SIM card Info in database . . . . . . . . . . . . . . . . . . . . . . . 38
3.6 Idmmeidentity of hostname . . . . . . . . . . . . . . . . . . . . . . 39
3.7 APN setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.8 pgw setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.9 pdn setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.10 The running status of Home Subscriber Server (HSS) . . . . . . . 41
3.11 The running status of Mobility Management Entity (MME) . . . . . 42
3.12 The additional status of HSS with connected MME . . . . . . . . . 42
3.13 The running status of SPGW . . . . . . . . . . . . . . . . . . . . . 43
3.14 LTE softmodem monitor and event selector without UE connected . 45
3.15 LTE softmodem monitor with UE connected . . . . . . . . . . . . . 46
3.16 The screenshots for displaying the LTE connection status . . . . . 46

xv



4.1 PHY folder catalogue structure . . . . . . . . . . . . . . . . . . . . 50
4.2 Single Instruction Single Data structure . . . . . . . . . . . . . . . 54
4.3 Mutiple Instruction Single Data structure . . . . . . . . . . . . . . . 54
4.4 Single Instruction Multiple Data structure . . . . . . . . . . . . . . 55
4.5 Multiple Instruction Multiple Data structure . . . . . . . . . . . . . . 55
4.6 Storage format of 128 bit data stream . . . . . . . . . . . . . . . . 56
4.7 Outputs of channel estimates . . . . . . . . . . . . . . . . . . . . . 63
4.8 Estimated channel spectrum . . . . . . . . . . . . . . . . . . . . . 64
4.9 Estimated channel spectrum of a single subcarrier . . . . . . . . . 64
4.10 Estimated channel spectrum after having changed the scheduling . 68
4.11 Estimated channel spectrum of a single subcarrier after having

changed the scheduling . . . . . . . . . . . . . . . . . . . . . . . . 68

5.1 Schematic diagram of a recurrent neural network [19] . . . . . . . . 73
5.2 Channel prediction on the symbol continuous envelope of simulated

channel estimates[19] . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.3 Channel prediction on the envelope of measured channel estimates 77
5.4 Channel prediction algorithm training progress . . . . . . . . . . . 78
5.5 Channel prediction on the envelope of measured channel estimated

using adam solver . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

xvi



List of Tables

3.1 Key parameters of SIM card . . . . . . . . . . . . . . . . . . . . . 47

xvii





Chapter 1

Introduction

1.1 Background

As we all know, it’s been a decade in the making, but 5G is finally becoming a
reality. Carriers started rolling out fixed 5G to select cities a few years ago, and
mobiles 5G has already made an appearance in cities around the world. Rapidly
growing mobile data traffic fuelled by the wide adoption of internet-connected
mobile devices (smartphones, tablets, etc.) and expected great increase in the
number of connected devices with different traffic patterns from personal communi-
cation devices has created a wide field for innovation in terms of mobile broadband
protocols, algorithms, architecture, and services. Thus, while 4G LTE networks are
globally popularized, research for the next-generation mobile networks has already
begun with the examination and evaluation of candidate technologies and archi-
tectures [5, 4]. Paralleled to those contributions, A large number of researches are
done, which utilize artificial intelligent methods, that process the outdated Channel
State Information (CSI) to forecast the future CSI, so that the channel predictor can
achieve a very high prediction accuracy in a simulated fast fading channel without
any prior knowledge [18, 19, 20]. However, performance assessment of candidate
innovations over wireless transmission technologies requires strict evaluation and
real-world validation before deployment. While software for over-the-air simulation
has evolved significantly over the years, it still cannot capture the complex real-
world environment completely, and real-world experimentation is still considered
essential, especially at the later stages of technology development. Real-world
evaluation over platforms with commercial LTE equipment, however, restrict individ-
ual configuration capabilities, flexible deployment and extension to a certain extent
due to constraints imposed by operators and large vendors, mainly because of
commercial considerations. This has resulted in the need for an open and flexible
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wireless (LTE, 5G) experimentation platform with a high degree of flexibility that
the researchers can commonly use for understanding the complexities associated
with real-world settings while at the same time obtain reproducible and verifiable
results, all with the same ultimate aim of developing effective and future-oriented
system architectures and technologies.

1.2 Motivation

All those needs above are satisfied until the SDR was well developed. SDR sys-
tem has a great advantage in simulating and verifying the new communication
technologies attributed to its striking advantage in flexibility and reconfigurability.
The key idea of SDR is to construct a universal hardware platform, which is open,
standardized and modularized. All sorts of communications modules are defined
and realized by software, i.e., frequency band selection, modulation & demodula-
tion, encoding & decoding, amplifier, filter, and communications protocol. To make
the SDR system more flexible, the A/D and D/A converters must be close to the an-
tenna to reduce the analog modules [1]. Thus, technology upgrading will only need
to update the software rather than the hardware, which can save the research time
and cost. The SDR systems can be developed on different hardware platforms, i.e.,
the Field Programmable Gate Array (FPGA), Digital Signal Processor (DSP), GPP
[34]. Compared to FPGA and DSP solutions, the GPP-based SDR system has
advantages in flexibility and reconfigurability, because it’s easy to develop and up-
grade on the GPP using high-level programming languages, rather than hardware
description languages. Compared to DSP solutions, the GPP-based system is
more powerful in processing wide-band signals. A typical GPP-based SDR system
consists of a single piece of peripheral equipment connecting to the GPP. The
peripheral equipment, e.g., USRP, is mainly responsible for frequency conversion
and digitization and the GPP is responsible for baseband signal processing [37].
Building upon open-source software development, open-source SDR is being
developed rapidly with the support of the open-source developer community.

With the evolution from 4G towards 5G wireless communications, some existing
SDR-based LTE implementations can be utilized for the performance assess-
ment of 5G candidate techniques, e.g., AmarisoftLTE, OpenLTE , OAI. Currently,
AmarisoftLTE is the most complete SDR-based implementation of the LTE base
station and core network, which can interoperate with commercial UE. However,
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AmarisoftLTE is a closed-source commercial LTE system. OpenLTE is an open-
source-based partial implementation of the 3rd Generation Partnership Project
(3GPPP) LTE specifications based on GNU Radio https://www.gnuradio.
org/ . By contrast, OAI is fully open-source and provides a complete software
implementation of the entire LTE system architecture, which is more appealing and
appropriate for developing and evaluating our proposed algorithm. OAI is a flexible
platform created by the Mobile Communications Department at EURECOM, with
the purpose of innovations in the area of wireless networking and communications
[27]. As an excellent over-the-air experiment platform, OAI can verify various new
communication technologies by changing some code but not the hardware.

While up to now, the New Radio (NR)(5G) part in OAI hasn’t provided a stable
S1 interface for the internet connection. In consideration of the present way of
5G deployment, most of the approaches inherit the LTE network structure and
combine with the multi-antenna technologies, such as MIMO [12, 22]. To verify and
optimize the Artificial Intelligent (AI) algorithms proposed through the simulated
wireless transmission channel [18, 19], a real LTE daily connection scenario
between the LTE base station and UE(smartphone) is implemented, so that we
can perform wireless channel measurement based on stable data transmission
(Single-Input and Single-Output (SISO)) between the UE and base station. That is,
we implement an SDR platform, which is based on the LTE part of OAI and USRP.
Besides, a smartphone is configured to connect the based station. Successful
platform construction is that the smartphone can connect to the radio signal from
the base station and surf the internet stably. Because of this setup, we have
only built the eNB and EPC of LTE using the OAI source code. So our work
will focus on altering the source code of uplink channel processing, e.g.,uplink
channel estimation, uplink channel demodulation, uplink channel decoding, and
uplink scheduling. By doing those works above, we can achieve a stable and
constant channel measurement every 0.5 ms through the uplink procedure. Last
but not least, the extracted complex-valued channel estimates from the channel
measurement are then used for algorithm verification and optimization. The testing
results prove the feasibility of the real-world channel measurement method based
on SDR. By learning and testing on more complex channel state information
from the real world, the proposed AI algorithms can be much more robust and
convincing.

3
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1.3 Organization of Thesis

The rest of this paper is organized as follows: in chapter 2, we will introduce some
basic concepts and principles that are important for understanding most parts of
our thesis, including the SDR technology, OAI architecture, channel estimation and
channel/frame structure of LTE. Based on those principles, the implementation of
the LTE access platform will be presented in chapter 3, where we will introduce
the configuration and installation of OAI eNB, EPC, EPC database, USRP, and
commercial UE. After we have implemented the experimentation platform of the
LTE-access, we will then perform the real-time channel measurement motivated
by the AI-based channel prediction algorithms, which is illustrated in chapter 4. For
the final purpose of the channel measurement, we will then form and normalize
the measured data for the testing of the algorithms, the RNN for channel prediction
and the final results are depicted in chapter 5. At last, all our works in this thesis
will be concluded in chapter 6, in addition, the future works are also conceived in
this chapter.

4



Chapter 2

State Of The Art

In this chapter, the relevant current technology and basic knowledge of this thesis
will be introduced in detail. The goal of this thesis is to implement a software-
defined radio platform by using OAI and USRP B210 for LTE access. Configured
smartphone with SIM card can connect to this generated LTE network and surf
the internet without any problem. By altering the source code of the eNB part of
OAI with reference of the 3GPPP TS 36.211 [3], TS 36.212 [2] and TS 36.213
[10], we can achieve a constant uplink channel measurement on every slot of
the subframes, if the UE (smartphone) upload files with big data size. The output
from channel measurement will be learned from the RNN-based channel predictor
at the end. Those works involve SDR, OAI hardware network configuration, OAI
software structure, channel demodulation, channel estimation, uplink channel
scheduling, channel prediction and RNN.

This chapter will first introduce SDR technology in section 2.1. Section 2.2 presents
the architecture of the OAI system. Some basic knowledge and details of channel
estimation for channel prediction is explained in section 2.3, including channel
estimation method, uplink frame structure, and uplink transmission scheduling.

2.1 Software Defined Radio (SDR)

SDR is a radio technology first formulated by Joseph Mitola III in 1991. The
main idea of SDR is to use software applications, which can implement radio
communication tasks on the computing platform, and to replace the traditional idea
of designing a communication system by using hardware [34]. In other words, SDR
uses a single hardware frontend but can flexibly change its frequency of operation,
allocated bandwidth, and implementation of wireless transmission standards by
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invoking software algorithms. The evolution towards SDR systems has been driven
in part by the evolution of the enabling technologies, first and foremost the D/A
and A/D converters and the DSPs, but also that of the GPPs and FPGAs.In [7],
the hardware architectures of SDR are grouped into five categories, i.e., the GPP,
co-processor, processor-centric, configurable units, and programmable blocks.
Some hardware platforms in each category are introduced in detail, such as the
USRP, Kansas University Agile Radio (KUAR), Wireless open-Access Research
Platform (WARP), etc. A software framework provides an adaptive programming
environment when developing SDR applications. Most existing SDR software
frameworks are developed based on the Software Communications Architecture
(SCA), which is a dataflow-based framework commissioned by the US Department
of Defense via The Joint Tactical Radio System project (JTRS). Some typical
software frameworks are introduced in [29, 7], such as GNU Radio, open-source
SCA implementation, etc.

With various technical challenges, SDR has been evolved in multiple steps. Firstly,
let’s look into the general structure of a Radio Communication Device (RCD). It
would be illustrated as shown in Figure 2.1. As we see, it is a pretty complicated
hardware structure and relatively small portions of the software at the very end.

Figure 2.1: General Architecture of Radio Transceiver
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The evolution of RCD has been done to simply these structures. Which part of the
hardware can be replaced by Software? The ideal solution that we may want to get
would be as follows. Basically, this is for replacing almost all the hardware except
the antenna, the A/D converter and the D/A converter. This would be the goal of
the current SDR. Even though we have such a goal, as shown above, it will be
tricky to implement this kind of SDR unless we have A/D and D/A converter with
a super wide dynamic range and extremely high resolution. In addition, the A/D
and D/A converter sampling rate should be extremely high if the radio frequency is
very high.

The first stage of SDR has been as follows in Figure 2.2. At this stage, AD/DA
converter is done at Intermediate Frequency (IF) stage and removes the most
of hardware (downconvert/upconvert for IF to baseband and various filters) for
baseband processing.

Figure 2.2: The First Evolution of SDR

The next stage of evolution would look as shown in Figure 2.3. The A/D and D/A
converters are done directly at the Radio Frequency (RF) stage, but a couple of
Amplifiers are still remaining at the hardware stage. As of now, we would see SDR
in both as in Figure 2.2 and Figure 2.3 depending on the application.
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Figure 2.3: The Second Evolution of SDR

At present, most of the powerful products are at the first stage of SDR evolution.
The most common hardware platform used by the GPP approach is the USRP fam-
ily of devices from Ettus Research https://www.ettus.com/, which includes
an inexpensive hardware frontend and an acquisition board with open designs
and free schematics. Considering the compatibility with the LTE system and the
practicability, we select USRP B210 as the peripheral equipment. With continuous
frequency coverage from 70MHz to 6GHz, all LTE frequency bands can be used.
Besides, its 61.44 MS/s sampling rate is a multiplier of all the sampling rates
defined in 3GPPP LTE specifications, which benefits the reduction of complexity
of baseband signal processing in the GPP. The USRP consists of four key com-
ponents as illustrated in Figure 2.4 in [37], i.e., the radio frequency frontend, A/D
converter, D/A converter, FPGA, and an interface (USB 3.0).

The RF frontend is mainly responsible for frequency conversion and band selection,
which operates in the analog domain. The RF signal received at the antenna is
selected by a bandpass filter and amplified by a Low-Noise Amplifier (LNA). It is
then down-converted to baseband or IF by a mixer and a Local Oscillator (LO).
The A/D converter plays a significant role in digitization. The baseband or IF signal
is converted to the digital domain, where it is further processed using digital signal
processing methods. Since only a discrete set of frequencies can be generated by
the LO synthesizer, the baseband signal cannot be tuned to the zero frequency
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Figure 2.4: The open-source USRP-based SDR system architecture

precisely at the previous mixing stage. Considering the IF architecture of the RF
frontend, a second mixing stage is necessary, which is realized with FPGA using
a Digital Down Converter (DDC). The DDC removes any residual frequency offset
and shifts the signal digitally. Moreover, decimation is conducted in the DDC to
reduce the sample rate without violating the Nyquist criterion, which helps satisfy
the data transfer capability of the interfaces, and meets easier further processing
of the signal of interest. Finally, the digital baseband signal is transferred to the
GPP via the interface. The transmitting path operates in a reverse manner as the
receiving path. The GPP converts the sampled digital signal into a waveform, and
then sends it to the USRP via the interface. After digital frequency conversion and
interpolation using a Digital Up Converter (DUC), the digital signal is converted
to an analog signal by the D/A converter, and then up-converted to the target RF
signal.

The hardware part of the SDR is discussed above. After the baseband signal is
transmitted via the interface to the GPP, all the baseband signal are processed
only in the GPP. An operating system is necessary in GPP, which manages all
the hardware resources, such as the Central Processing Unit (CPU), memory
card, hard disk, interfaces, etc. The widest used open-source operating system is
GNU/Linux, where a wide range of software libraries are available for free. This
helps to accelerate the development speed as well as reducing development costs.
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The USRP Hardware driver (UHD) is the hardware driver for all USRP devices,
which provides a series of Application Program Interfaces (APIs) for program-
mers or engineers to control USRPs. These APIs provide numerous functions,
such as frequency tuning, RF bandwidth setting, data transmit/receive, etc. This
demonstrates the flexible and reconfigurable capabilities of SDR technology.

Actually, it is not easy to build an SDR application by using an independent UHD.
Various programming techniques should be used for efficient signal processing.
The open-source GNU radio is developed and compatible with the UHD, which is
regarded as the most widespread real-time signal processing framework. GNU
Radio has a set of signal processing tools and provides a library of signal process-
ing blocks. These blocks are written in C and C++, while the signal flow graphs
and visualization tools are mainly constructed using Python to connect the signal
processing blocks. Aided by the signal processing framework, the development of
SDR applications is streamlined. The GNU project is also strongly supported by
the developer community all over the world. Based on those stable and efficient
baseband signal processing, some applications are implemented for building 5G
wireless transmission standard based networks. As is already introduced in chap-
ter 1, compared to Amarisoft and OpenLTE, OAI is fully open-source and provides
a complete software implementation of the entire LTE system architecture, which
is more appealing and appropriate for developing and evaluating our proposed
algorithm. So in this thesis, we will take the advantages of OAI, and build an USRP
and OAI based LTE access. The system architecture of OAI will be introduced in
the next section.

2.2 System Architecture of OAI

OAI is an open-source platform for software/hardware development for the core
network (EPC) and access-network (EUTRAN) of the 3GPPP cellular network,
which implements the entire LTE protocol stack and provides all elements of the
4G LTE system architecture [26]. There are mainly two directions of usage of the
OAI platform, real-time RAN experimentation and emulation [36]. In this thesis, we
focus on the real-time RAN feature of OAI.

There are some features at the Physical layer provided by OAI in [26] at the time
of the publication of this paper:
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• LTE release 8.6 compliant, with a subset of release 10;

• Frequency Domain Division (FDD) and Time Domain Division (TDD) config-
uration in 5, 10, and 20 MHz bandwidth;

• Transmission mode: 1 (SISO), and 2, 4, 5, and 6 (MIMO);

• Channel Quality Index (CQI)/Precoding Matrix Indicator (PMI) reporting ;

• All Downlink channels are supported: Primary Synchronization Signal (PSS),
Secondary Synchronization Signal (SSS), Physical Broadcast Channel
(PBCH), Physical Control Format Indicator Channel (PCFICH), Physical
channel HybridARQ Indicator Channel (PHICH), Physical Downlink Control
Channel (PDCCH), Physical Downlink Shared Channel (PDSCH), Physical
Multicast Channel (PMCH);

• All Uplink channels are supported: Physical Random Access Channel
(PRACH), Physical Uplink Shared Channel (PUSCH), Physical Uplink Con-
trol Channel (PUCCH), Sounding Reference Signal (SRS), Demodulation
Reference Signal (DRS);

At present, the OAI has followed the LTE release to the release 14 and provided
up to 100MHz bandwidth. The new radio (5G) is also implemented in the OAI, but
only for downlink transmission. In our case, we still focus on the LTE application
structure. Figure 2.5 shows a schematic of the implemented LTE protocol stack in
OAI.

Figure 2.5: OpenAirInterface LTE software stack [26]

On the right of Figure 2.5 is the EPC. It consists of 4 main parts, respectively
are MME, HSS, Serving Gateway (SGW), Public Data Network (PDN) Gateway
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(PGW). MME can be seen as a center for all signaling message, which has
following functionalities:

• Idle mode UE tracking Process

• Paging Process

• Bearer activation/deactivation process

• Choosing the SGW for a UE at the initial attach

• Core Network (CN) node relocation at time of intra-LTE handover

• Authenticating the user (by interacting with the HSS)

• Destination of Non-Access Stratum (NAS) message

• Generation and allocation of temporary identities to UEs

• Authorization of the UE to camp on the service provider’s Public Land Mobile
Network (PLMN)

• Enforces UE roaming restrictions

• Termination Point for Ciphering/Integrity for NAS signaling

• Security key management

• Lawful interception of signaling is also supported by the MME

HSS is a central database that contains user-related and subscription-related
information. Some functionalities are listed below:

• Mobility management

• Call and session establishment support

• User authentification and access authorization

SGW is a center for all user data (packet data), which:

• Routes and forwards user data packets

• Act as the mobility anchor for the user plane during inter-eNB handovers

• Act as the anchor for mobility between LTE and other 3GPPP technologies

• Terminates the downlink data path and triggers paging when downlink data
arrives for the UE when UE is in Idle mode
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• Manages and stores UE contexts, e.g. parameters of the IP bearer service,
network internal routing information

• Performs replication of the user traffic in case of lawful interception

PGW:

• Provides connectivity from the UE to external packet data networks

• Performs policy enforcement, packet filtering for each user, charging support,
lawful Interception and packet screening

In our system, the EPC serves only as an application tool for authentication and
registration of commercial UE, so that the UE can be searched and connected
to the LTE RAN and then surf the internet through allocated IP from EPC. Thus,
we will only care about the configuration files of EPC for a successful Internet
connection.

On the left of Figure 2.5 is the UE part, which consists of functions of Physical layer
(PHY), Media Access Control Layer (MAC), Radio Link Control (RLC), Packet Data
Convergence Protocol (PDCP), Radio Resource Control Protocol (RRC) and NAS.
In this thesis, we will use commercial UE (smartphone) instead, so we will not look
deep inside this UE part structure. We will focus on the eNB part in the middle of
this image, which is also called the RAN part. The EPC part is also important for
UE management and IP arrangement. When we look into the system directory
structure of the OAI RAN part in Figure 2.6, we can find that OAI uses CMAKE
tool to generate makefiles, and then compile the system. Because there are too
many files in OAI, CMAKE is a very efficient tool for compiling such a big system.
Some mathematics/data structure tools are defined in the folder called common.
Based on 3GPPP LTE standards TS 36.211 [3], TS 36.212 [2] and TS 36.213
[10], there are some functions, which are designed in the folder of openair1 (PHY),
openair2 (L2) and openair3 (L3) respectively. Some main files and configuration
files are stored in the folder named target. At present, OAI is managed by Git.

When we face such a big system, we should not pay attention to all the files in detail.
Actually, only some parts of the source codes should be noticed. OAI platform can
be used in several different configurations involving commercial components to
varying degrees:

• OAI EPC + OAI eNB + OAI UE

• Commercial EPC + OAI eNB + OAI UE
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Figure 2.6: OpenAirInterface LTE RAN system directory

• OAI EPC + commercial eNB + OAI UE

• Commercial EPC + commercial eNB + OAI UE

• OAI EPC + commercial eNB + commercial UE

• Commercial EPC + OAI eNB + commercial UE

• OAI EPC + OAI eNB + commercial UE

For stable and real-time processing, OAI eNB and OAI UE should be individually
installed on two powerful computers. OAI EPC doesn’t have a high requirement of
the GPP computation power. In order to build the system as simple as possible,
we have chosen the last way of configuration from the list above. That is, we
build the OAI EPC on a mini PC for an individual core network and a flexible IP
configuration. In addition, OAI eNB is installed on a powerful computer for real-time
signal processing and network management. We use an Android Smartphone as
a commercial UE so that we can build a daily user scenario. Moreover, the use of
commercial UE can save an extra USRP and a powerful GPP.

Based on this setup, we will only focus on the uplink channel information. Because
only the code of OAI eNB part can be changed and the channel measurement
will also be performed on eNB. To keep a real-time data processing, especially for
the LTE, which requires time slot alignment, it is necessary, that OAI utilize the
multi-thread processing method to improve the computation ability of the computer.
There are mainly 3 threads included in the OAI eNB, respectively are eNB_thread,
eNB_thread_tx and eNB_thread_rx. The eNB_thread is mainly responsible for
managing the data interaction with the external hardware devices, such as USRP.
That is, eNB_thread writes the sending data to the USRP and transforming the
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received radio frequency signal to the GPP. Apparently, the eNB_thread_tx is a
thread for sending data, ranging from RRC layer to PHY layer. Correspondingly,
the eNB_thread_rx is designed for receiving signals.

A successful uplink channel measurement from our set up will then be used for
the verification of the new proposed channel prediction algorithm empowered by
artificial intelligence. In the next section, we will introduce the principle of channel
estimation and channel prediction.

2.3 Channel Estimation for Channel Prediction

Nowadays, an increasing number of researches [18, 19, 20] are focusing on dealing
with the outdated CSI in a fast fading channel to accurately forecast the future CSIs,
which can optimize the performance of a wide variety of wireless techniques, such
as antenna selection [38], MIMO [31], Massive MIMO [33], cooperative relaying
[35], physical layer security [17] and mobility management [32], etc.

Channel prediction helps to improve the performance of an operation on both sides
of the transceiver and receiver, such as adaptive coding and modulation, decoding,
channel equalization, and beamforming. Here we take a basic CSI prediction block
diagram of a simple MIMO system as an example, see Figure 2.7.

As we can see from the figure, the channel prediction acts as a middleware for
processing the channel estimates, so that the channel can be better decoded. The
core idea of channel prediction is to combine the present and past CSIs to predict
future CSIs. The channel prediction relies on a model to represent the fading
channel, so after receiving the channel estimates from the channel estimation, the
channel predictor can predict future CSI with the help of the estimated channel
parameters. Thus, firstly, we should know the principle of channel estimation for
extracting channel estimates from the uplink channel.

2.3.1 Channel Estimation

In all communications, the signal goes through a medium (called channel) and
the signal gets distorted or various noise is added to the signal while the signal
goes through the channel. To properly decode the received signal without errors

15



Institute for Internal Combustion 
Engines and Automotive Engineering

Figure 2.7: Block diagram of a simple MIMO system channel prediction

to remove the distortion and noise applied by the channel from the received signal.
To do this, the first step is to figure out the characteristics of the channel that
the signal has gone through. The process to characterize the channel is called
channel estimation.

There are many different ways for channel estimation, but fundamental concepts
are similar. The process is done as follows:

• Set a mathematical model to correlate transmitted signal and received signal
using channel matrix.

• Transmit a known signal (we normally called this as reference signal or pilot
signal) and detect the received signal.

• By comparing the transmitted signal and the received signal, we can figure
out each elements of channel matrix.

As an example of this process, the channel estimation process in LTE is briefly
described. A general algorithm of the channel estimation is illustrated as below in
a very high level view (See Figure 2.8) [28]:

1. A set of predefined signal (This is called a reference signal) is embedded in
both transmitted and received signals.
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2. As the reference signal go through the channel h, it gets distorted (attenu-
ated, phase-shifted, noised) along with other signals.

3. We detect/decode the received reference signal at the receiver.

4. Compare the transmitted reference signal and the received reference signal
and find correlation between them.

Figure 2.8: Channel estimation by comparing transmitted and received reference
signal

Now let’s think of the case of LTE SISO for the estimation of channel coefficient and
noise. Reference signals are embedded onto only one antenna port. The vertical
line in the downlink resource grid map in Figure 2.8 represents the frequency
domain. The reference signals are indexed with f1, f2, f3...fn. Each reference
symbol can be a complex number (In-phase and Quadrature (I/Q) data) that can
be plotted as shown in Figure 2.8 (red and blue arrows). Each complex number
(Reference Symbol) on the left (transmission side) is modified (distorted) to each
corresponding symbol on the right (received symbol). Channel Estimation is the
process of finding a correlation between the array of complex numbers on the
left and the array of complex numbers on the right. The detailed method of the
channel estimation can very depending on the implementation. Since our platform
will firstly use SISO, system model for each transmitted reference signal and
received reference signal can be represented as follows. y() represents the array
of received reference signal, x() represents the array of the transmitted reference
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signal, and h() represents the array of channel coefficient. fn is the indice.

y(fn) = h(fn) · x(fn) (2.1)

We know what x() is because it is given from the transmitted signals. And the
y() is also known, because it is measured/detected from the receiver. With this
information, we can calculate the channel coefficient array as shown in equation
2.2, where H is a symbol, which represents Hermitian of a matrix.

h(fn) = y(fn) · xH(fn) (2.2)

Now we have all the channel coefficient for the location where reference signals are
located. But we need channel coefficient at all the location including those points
where there is no reference signal. It means that we need to figure out the channel
coefficient for those location with no reference signal. The most common way to do
this is to interpolate the measured coefficient array. Normally, we do a averaging
of the channel coeffcients first and the do interpolation over the averaged channel
coefficient.

After getting the channel coefficients, we can estimate the noise properties. Theo-
retically, the noise can be calculated as below, where h̄() is the averaged channel
estimate and n() is the estimated noise.

n(fn) = y(fn)− h̄(fn) · x(fn) (2.3)

However, what we need is the statistical properties of the noise, not the exact
noise value. we can estimate the noise using only measured channel coefficient
and averaged channel as shown below in equation 2.4. (Actually exact noise value
does not have much meaning because the noise value keep changes and it is of
no use to use those specific noise value).

n(fn) = h(fn)− h̄(fn) (2.4)

Through those methods above, we can preliminary calculate the channel estimates
and noise estimates. Correspondingly, the estimation of uplink channel coefficient
utilize the same method as above, but there are some differences, which will be
introduced in the next subsection.
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2.3.2 Uplink frame structure

While many of the requirements for the design of the LTE uplink physical layer and
multiple-access scheme are similar to those of the downlink, the uplink also poses
some unique characteristics. The multiple-access scheme selected for the LTE
uplink so as to fulfill these principle characteristics is SC-FDMA, which achieves
intra-cell orthogonality even in frequency-selective channels and avoids the high
level of intra-cell interference. More details about SC-FDMA can be referred to
the third part of the book [28]. As in the downlink, the LTE SC-FDMA uplink
incorporates Reference Signal (RS) for data demodulation and channel sounding.
In this subsection, the principles behind the RS are explained.

Firstly, the uplink frame structure looks as follows in Figure 2.9. In our case, we will
use the FDD LTE. Figure 2.9 is an FDD frame structure that shows one frame in
the time domain. It does not show any structure in the frequency domain. The time
duration for one frame TS is 10ms. This means that we have 100 radio frames per
second. The number of samples in one frame is 307200 samples. So the number
of samples per second is 307200× 100 = 30.72M . There are 10 subframes in one
frame, and the number of slots in one subframe is 2. This means that we have
20 slots within one frame. Thus, the duration of one subframe Ts is 1ms and the
duration of a slot Tslot is 0.5ms.

Figure 2.9: Uplink frame structure

We can see from Figure 2.9 that one slot is made up of 7 small blocks called
a symbol. One symbol is a certain time span of signal that carries one spot in
the I/Q constellation. And we see even smaller structures within a symbol. At the
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beginning of a symbol, you see a very small span called ’Cyclic Prefix’ and the
remaining part is the real symbol data. There are two different type of Cyclic Prefix.
One is ’normal Cyclic Prefix’ and the other is ’Extended Cyclic Prefix’ which is
longer than the ’Normal Cyclic Prefix’. Since the length of one slot is fixed and
cannot be changed, if we use ’Extended Cyclic Prefix’, the number of symbols that
can be accommodated within a slot should be decreased. So we can have only 6

symbols if we use ’Extended Cyclic Prefix’.

Following shows the overall subframe structure from "LTE Resource Grid" in Figure
2.10.

Figure 2.10: LTE uplink channel resouce grid in a slot [3]
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As shown in the Figure 2.10, if we expand a single slot in direction of vertical
(frequency domain) and horizontal (time domain), we can get a source grid map,
which consists of a lot of resource grids with the location index (k, l), where k in
the range of 0 ≤ k ≤ NUL

RBN
RB
SC − 1 is the index of RE in the frequency domain

and l in the range of 0 ≤ l ≤ NUL
symb − 1 is the index of SC-FDMA symbols in

the time domain. The NUL
RB is the number of RB in the frequency domain, where

6 ≤ NUL
RB ≤ 110. The NRB

SC is the number of subcarriers in a RB. And the NUL
symb is

the number of SC-FDMA symbols in an uplink slot in the time domain [3].

Now we will take a single subframe with a single RB as an example. As is shown
in Figure 2.11, a few differences we would notice would be the location of each
channel. Normally in the downlink case, a channel tends to lie across the whole
bandwidth, but the channels in the uplink slot seem to be more localized. For
example, PUCCH is located only at the lowest and highest end in the frequency
domain and reference signals also localized in the time domain or both time domain
and frequency domain.

Figure 2.11: Reference signal distribution in a subframe

In this figure, we can see the RSs that are located in the region marked with
grey. The roles of the uplink RSs include enabling channel estimation to aid
coherent demodulation, channel quality estimation for uplink scheduling, power
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control, timing estimation and direction-of-arrival estimation to support downlink
beam-forming. Two types of RS are supported on the uplink:

• DeModulation RS (DRS), associated with transmissions of uplink data on
the PUSCH and control signalling on the PUCCH. These RSs are primarily
used for channel estimation for coherent demodulation.

• Sounding RS (SRS), not associated with uplink data and control trans-
missions, and primarily used for channel quality determination to enable
frequency-selective scheduling on the uplink.

The uplink RSs are time-multiplexed with the data symbols. The DRSs of a given
UE occupy the same bandwidth (i.e. the same RBs) as its PUSCH/PUCCH data
transmission. Thus, the allocation of orthogonal (in frequency) sets of RBs to
different UEs for data transmission automatically ensures that their DRSs are also
orthogonal to each other. The uplink reference signals in LTE are mostly based on
Zadoff–Chu (ZC) sequences [6, 30].These sequences satisfy the desirable prop-
erties for RS, such as ideal cyclic autocorrelation, and optimal cross-correlation.
The cross-correlation property results in the impact of an interfering signal being
spread evenly in the time domain after time-domain correlation of the received
signal with the desired sequence, this results in more reliable detection of the sig-
nificant channel taps. By comparing the received reference signal and transmitted
reference signal as in equation 2.2, we can get the estimated channel coefficients.
However, for a channel estimation constant in every slot, that is, forcing the uplink
channel demodulation to happen every 0.5 ms, the uplink scheduling needs to be
configured.

2.3.3 Uplink Data Transmission Scheduling

There are a couple of Data Transmission Scheduling Schemes in LTE. The most
simple in terms of algorithm would be the persistent scheduling. According to
Figure 2.12, in this scheduling mode, the network sends ’Grant’ in Downlink Control
Indicator (DCI) Format 0 for every subframe. DCI carries the information about
uplink resource allocation and descriptions about downlink data transmitted to the
UE. The network sends the first data on downlink PDSCH and PDCCH which has
DCI format 1 for Downlink Data Decoding and DCI format 0 for uplink Grant. If
there is no downlink data to be transmitted, the network transmits only PDCCH
with DCI format 0 without any PDSCH data. UE will decode the PCFICH to figure
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Control Format Indicator (CFI) value, which tells how many OFDM symbols are
used for carrying control channels at each subframe. In addition, UE will decode
the PDCCH and gets the information on DCI format 1. Based on DCI format
1, UE can decode the downlink data. Then, UE sends Uplink Control Indicator
(UCI) to the network, which is carried by PUCCH or PUSCH. The information
carried out by UCI is mainly Scheduling Request (SR), Hybrid Automatic Repeat
Request (HARQ) Acknowledgement (ACK)/Negative Acknowledgement (NAK)
and CQI/PMI/Rank Indicator (RI). UE transmits a certain combination of this three
information depending on the situation. Sometimes it carries only Scheduling
Request, or Scheduling Request and HARQ ACK/NAK together, etc. There are
two channels that can carry the UCI. When UE transmits the user data and it has
to use PUSCH. In this case, PUCCH is not allowed to be transmitted, in this case,
PUSCH carries UCI. When there is no user data to be transmitted, PUCCH is
transmitted carrying UCI in it. Look back to the uplink schedule, If Grand is allowed
by the UE, the UE then transmits the uplink data through PUSCH. The Network
will decode the PUSCH data and send ACK/NAK back via PHICH.

In the case of SISO or MIMO communication, to transmit data always through
the channel with the best quality, the uplink channels are estimated and ranked
by the receiver eNB. The CSI in uplink plays an important role. It is a kind of
indicator of how good or bad the channel is at a specific time. The CSI has three
major components, respectively are CQI, PMI, RI. Not all of these indicators are
measured for every CSI report. In many applications, including OAI, the uplink CQI
is calculated from the Signal to Noise Ratio (SNR), which is the estimated value
from channel estimation in section 2.3.1. In our case, we only have a single UE
and single eNB, after the uplink channel is estimated, the CQI is the information
that eNB sends to the UE. In an LTE cell, the uplink channels will be estimated and
compared by the eNB through random access, and then the UEs will be informed
with the CSI to transmit data in order. The final goal of designing the concept of
CQI and implementing it in such a complicated way is to achieve the least amount
of error and the best possible rate of throughput. Many factors are influencing the
throughput and each of the factors would have some kind of correlations with other
factors. In Lab test, it is relatively easy to figure out those correlations since we
can control those factors as fitting the best for analysis, but in a live network, it is
not always that easy to figure out those correlations because most of those factors
change dynamically. The general rule of thumb for the correlation between CQI
and throughput can be summarized as follows [13].

• High throughput does not necessarily mean high CQI.High throughput de-
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Figure 2.12: Uplink transmission under persistent scheduling

pends not only on CQI, but also on transport block size. For example, number
of RB. Even when CQI is high, eNB may assign small resources due to vari-
ous other factors.

• Low throughput does not necessarily mean low CQI.

• With low CQI, it is for sure that we cannot achieve the maximum throughput.
So, it is very likely that we would see low CQI when we see throughput drop
in live network test.

Our goal is to extract the uplink channel estimates with constant Bandwidth
assigned from the eNB. Also, the uplink channel estimation must exist in every
uplink subframe from a single eNB. So, more works need to be down according to
the OAI system procedure, which will be introduced in the implementation later.
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Chapter 3

Implementation of LTE Access Platform

In this chapter, the process of building a mini LTE base station based on the USRP
and OAI on two GPPs will be introduced. As is presented in chapter 2, we have an
overview of an SDR system. In our case, we take the advantage of OAI, which is
open source and easy configurable, to build an OAI LTE eNB connected with OAI
EPC using S1 interface. Firstly, section 3.1 introduces the hardware setup and
IP setup of the platform. In section 3.2, the detailed process of eNB installation
will be presented. And then, the process of EPC installation will be explained in
section 3.3. The configuration of SIMCard and the EPC database are depicted
later in section 3.4. Finally, the instructions of running the system by using the
eNB configuration file, the UE attach procedure and the system running status are
shown in section 3.5

3.1 Software and IP Setup

When we get to know the OAI for the first time, it is difficult to know how to set it
up with some concrete objects. For example, the number of GPP should be used,
the connection between the GPPs and the connection between the GPP and
USRP. After some research on the official OAI tutorial, we have found a suggested
hardware setup. That is, there are two computers for running OAI eNB and OAI
EPC respectively, the two computers are connected through an Ethernet cable and
can ping to each other. The computer, which runs OAI EPC, should have another
Ethernet port for connecting to the Ethernet switch or router. The computer, which
runs OAI eNB, should have an USB 3.0 port for the communication with USRP. In
addition, when there is a need for the computer with eNB installed to access the
Internet, it should also have another Ethernet port available.
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According to our working environment, we have simplified the suggested set up
a little bit. In our case, we connect the computers to the switch, so that, the
computer needs only one Ethernet port for each of them. One thing should be
paid attention, that is we should not use the Dynamic Host Configuration Protocol
(DHCP) from the switch to allocate IP addresses, we assigned static IP for the
computers instead. The hardware set up can be seen in Figure 3.1. The computers
with static IP addresses can ping to each other through the switch, at the same
time have access to the Internet through the switch, which connects to a router.
The USRP receives the signal from the eNB through a USB 3.0 interface and
broadcast the signal to the air. The configured smartphone can then access the
signal and connect to this network.

Figure 3.1: LTE platform hardware set up

Referred to the OAI architecture, which is introduced in the last chapter, we will
combine the hardware setup and the OAI interior architecture and interfaces to
assign the IP address to each interface, which will then be used in the configuration
file from installation. In Figure 3.2, the IP assignments for the interfaces are
depicted. There are two planes of the S1 interface between the OAI eNB and
OAI EPC, respectively are S1-U and S1-C. The S1 interface in LTE is used
between eNBs and the EPC: specifically, the MME and SGW. In the user plane
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(S1-U), this interface will be based on GPRS Tunnelling Protocol (GTP) User Data
Tunnelling, where GPRS is the General Packet Radio Service, for the transfer
of user data. In the control plane (S1-C), the interface is more similar to Radio
Access Network Application Part, with some simplifications and changes due to
the different functional split and mobility within Evolved Packet System (EPS).
So the MME and SGW will share the IP address of EPC to connect to the eNB
and then connect with each other through the S11 interface, which is based on
GTP-control with some additional functions for paging coordinating. This interface
is designed from the OAI internal default. We can also find an interface called
S6a between the MME and HSS. The S6a used for the transfer of subscription,
authentication, and authorization of users, so that the UE can legally connect
to the EPC after a successful authentification by the HSS. There is an interface
called SGi, which is used between PGW and the internet (also external PDN). This
interface is based on the IP packet, also enabling the exchange of signaling. Both
S6a and SGi interfaces are also designed in the OAI EPC as default.

Figure 3.2: LTE platform IP set up

3.2 Installation of eNB

Current OAI software requires Intel architecture based PCs for the eNB or UE
targets. This requirement is due to optimized DSP functions which make heavy use
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of integer Single Instruction Multiple Data (SIMD) instructions (SSE, SSE2, SSE3,
SSE4, and Advanced Vector Extensions (AVX)2). The software is suggested to be
tested on the following processor families:

• Generation 3/4/5/6 Intel Core i5, i7

• Generation 2/3/4 Intel Xeon

• Intel Atom Rangeley, E38xx, x5-z8300

Based on the hardware requirements, we use the PC equipped with Intel(R)
Xeon(R) CPU E3-1245 v6 @ 3.70GHz. The operating system is also suggested
Ubuntu 14.04 LTS or higher (64-bit). In our case, we use the Ubuntu 16.04 LTS,
which is the most widely used by the researcher and developer. Before installing
the eNB, it is also necessary to care about the Kernel Setup. Firstly, we should
disable the C-states from the BIOS. Secondly, make sure that the CPU frequency
scaling is deactivated. Then, we can restart the operating system and install the
low-latency kernel. Some Ubuntu Terminal commands are listed below.

1 ~$ sudo apt -get update
2 ~$ sudo apt -get install linux -image -4.4.0 -166 - lowlatency
3 ~$ sudo apt -get install linux -headers -4.4.0 -166 - lowlatency
4 ~$ shutdown -r now

After the system restart, check the kernel version by typing uname -a in the
terminal. We can also use the Grub-Customizer to set the low-latency kernel as
default. To ensure that the CPU runs with the highest performance, we also need
to change the power management settings.

1 # open the grub configuration file by vim
2 ~$ sudo vim /etc/ default /grub
3 # Add two lines in this file , then save and exit
4 GRUB_CMDLINE_LINUX_DEFAULT =" quiet intel_pstate = disable ";
5 GRUB_CMDLINE_LINUX_DEFAULT =" processor . max_cstate =1 intel_idle .

�

max_cstate =0 idle=poll ";
6

7 # Open the blacklist configuration file by vim
8 ~$ sudo vim /etc/ modprobe .d/ blacklist .conf
9 # Add a line at the end of this file , then save and exit

10 blacklist intel_powerclam
11 # Restart
12 ~$ shutdown -r now
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After finishing all these settings, we can type sudo i7z to check the C0, which has
100% occupancy on all the 4 cores. We should also check, that Hyper-Threading
is OFF. A correct setup is shown by i7z can be referred to Figure 3.3. After we have

Figure 3.3: CPU state setup result in i7z

correctly set the operating system and CPU, we have then downloaded the source
code of OAI eNB part by git. Before we compile the eNB, the drive and interface of
USRP should be done. In our case, we use the USRP B210, which is powered by
a USB 3.0 cable. The USB 3.0 cable is also responsible for the baseband signal
transmission. On Linux, udev handles USB plug and unplug events. The following
commands install a udev rule so that non-root users may access the device. This
step is only necessary for devices that use USB to connect to the host computer,
such as the B200, B210, and B200mini. This setting should take effect immediately
and does not require a reboot or logout/login.

1 ~$ cd $HOME / workarea /uhd/host/ utils
2 ~$ sudo cp uhd -usrp. rules /etc/udev/ rules .d/
3 ~$ sudo udevadm control --reload - rules
4 ~$ sudo udevadm trigger
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Be sure that no USRP device is connected via USB when running these commands.
Sometimes, if we only use the UHD and the USRP for doing development and
prototyping, it is always suggested to build the UHD from source code. However,
the OAI is developed and released only based on some specific version of the
UHD. There is already some installation API, which installs the correspond UHD
version. Then we can compile the eNB application using CMAKE. Some relevant
commands are listed below.

1 # Download / clone source file
2 ~$ sudo apt -get install git
3 ~$ git clone https :// gitlab . eurecom .fr/oai/ openairinterface5g .

�

git
4

5 # Compile eNB
6 ~$ cd openairinterface5g
7 ~$ source oaienv
8 ~$ cd cmake_targets
9 ~$ sudo ./ build_oai -I -w USRP

10 ~$ ./ build_oai --eNB -c -w USRP

The -I option will automatically download and install all the relevant or essential
software packages to build the UHD for USRP. There are also a lot of other options
for compiling the eNB project. For example, when we have other SDR frontend
hardware, we can give the corresponding hardware after the -w option. Now the
installation of UHD and OAI eNB. At this point, connect the USRP to the host
computer. Because the interface is USB. We can open a terminal window and run
lsusb. We would see the USRP listed on the USB bus with the VID of 2500 and
PID of 0021 for B210. For testing the UHD drive, we can run uhd_find_devices
and uhd_usrp_probe. If there aren’t some warnings that occur, we have a correct
setup.

3.3 Installation of EPC

In this section, we will introduce the process of installing OAI EPC. We have
built the OAI EPC and OAI eNB on different hosts. The OAI EPC doesn’t need a
powerful processor. So we have chosen a mini PC equipped with Intel(R) i5-5300U
2.30GHz. In the same way, we have installed the OAI eNB on the Ubuntu 16.04
LTS. Because of a real-time requirement, we also need to change the kernel to be
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a low-latency kernel. Besides, the configuration of CPU state, power management,
and hyper-threading are not necessary.

First, we have downloaded the source code using git. The OAI EPC has an
independent repository as the eNB. In the terminal of ubuntu, we typed:

1 # Install git
2 ~$ sudo apt -get update
3 ~$ sudo apt -get install subversion git
4

5 # Download source code of EPC
6 ~$ git clone https :// gitlab . eurecom .fr/oai/openair -cn.git

Before we compile the OAI EPC, we should do some configurations for server
and account management. We configured fist the Fully Qualified Domain Name
(FQDN), which is a domain name that specifies its exact location in the tree
hierarchy of the Domain Name System (DNS) [25]. It specifies all domain levels,
including the top-level domain and the root zone. A fully qualified domain name
is distinguished by its lack of ambiguity: it can be interpreted only in one way.
It usually consists of a hostname and at least one higher-level domain (label)
separated by the symbol "." and always ends in the top-level domain. The correct
way to change the hostname is that, we edit the host file with the defined hostname
in the root environment. Commands are listed below.

1 # change the host name in the root environment
2 ~$ su root
3 hostname
4 vim /etc/ hosts
5 # Type information like below :
6 127.0.0.1 localhost
7 127.0.1.1 edge. openair4G .eur edge #edge is your defined

�

host name
8 127.0.1.1 hss. openair4G .eur hss
9 # After editing , save and exit

We ran hostname -f to check whether we have changed the hostname. In our
case, the terminal showed us edge.openair4G.eur.

The next step is to install the mysql-server, which is responsible for starting and
closing the mysql service. Correspondingly, we also need to install the mysql-client.
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The mysql server package will install the mysql database server which we can
interact with using a mysql client. We can use the mysql client to send commands
to any mysql server on a remote computer or our own. The mysql server is used
to persist the data and provide a query interface for it (SQL). The mysql-client’s
purpose is to allow us to use that query interface. The client package also comes
with utilities that allow us to easily backup/restore data and administer the server.

1 ~$ sudo apt -get install mysql - server
2 # By installing , remember to set the user name and password , and

�

keep the password in mind. Here we set the ’root ’ as user

�

name and set the password the same as the ubuntu system

�

password .
3 ~$ sudo apt -get install mysql - client

Then, we install the apache2, which is a web server with two main functionalities.
The first function is parsing the web language like HTML, PHP, JSP, etc. The
second is receiving the request from web clients and give some response. The
command is given below. After the installation, for testing the apache2, we can
type localhost or 127.0.0.1 into the address bar of a web explorer. The explorer
will show us the main page of the apache2.

1 ~$ sudo apt -get install apache2

Next, we need to install the PHP. The PHP is a general-purpose programming
language originally designed for web development. Here, the PHP will be called by
the Apache2 to parse the received PHP program and return a string to the client.
The commands are listed below.

1 ~$ sudo apt -get install php7 .0
2 ~$ sudo apt -get install libapache2 -mod -php7 .0
3 ~$ sudo service apache2 restart
4 # We can test the php done as below
5 # We can create a new file
6 ~$ sudo vim /var/www/html/info.php
7 # In this file we can type:
8 <?php
9 echo "<P> Hello World !</P> "?>

10 # Save and exit.
11 # Then in the web explorer visit localhost /info.php
12 # We can see a web page with a sentence " Hello World !"
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The last essential package is the phpmyadmin, which is an administration tool
for mysql’s web hosting service. Some commands are listed below. After the
installation, if we visit the localhost/phpmyadmin or 127.0.0.1/phpmyadmin in
a web browser, we can see a login page of the database.

1 ~$ sudo apt -get install phpmyadmin
2 ~$ sudo ln -s /usr/ share / phpmyadmin /var/www/html

All those works above are done for serving the OAI EPC user database manage-
ment, which stores the SIM card information and operator keys for authentication.
Then, we started to build the OAI EPC.

1 # firstly , We open the EPC source file path
2 ~$ cd openair -cn
3 # Secondly , we switch the EPC release version to ’develop ’
4 ~$ git checkout develop
5 ~$ git pull
6 # Thirdly , we open the folder called scripts
7 ~$ cd scripts
8 # By running these three commands with option -i below , the

�

system will automatically download the essential packages

�

from building the three part of EPC
9 ~$ ./ build_mme -i

10 ~$ ./ build_hss -i
11 ~$ ./ build_spgw -i
12 # When no error occurs , means everything ok.

Then, like the process of building the OAI eNB, we also need to configure the
system files before compiling. First of all, we need to create a new folder called
freeDiameter. After that, we need to copy all the configuration files of MME, HSS,
SGW and PGW to the new created local user path for OAI. Here the SGW and
PGW are combined together into SPGW. Moreover, the EPC system free diameter
configuration files of MME, HSS, SGW and PGW will also be copied to the new
created local user path for freeDiameter. The detailed commands for the copy of
the files are listed below.

33



Institute for Internal Combustion 
Engines and Automotive Engineering

1 ~$ sudo mkdir -p /usr/ local /etc/oai/ freeDiameter
2 ~$ sudo cp ~/openair -cn/etc/mme.conf /usr/ local /etc/oai
3 ~$ sudo cp ~/openair -cn/etc/hss.conf /usr/ local /etc/oai
4 ~$ sudo cp ~/openair -cn/etc/spgw.conf /usr/ local /etc/oai
5 ~$ sudo cp ~/openair -cn/etc/acl.conf /usr/ local /etc/oai/

�

freeDiameter
6 ~$ sudo cp ~/openair -cn/etc/ mme_fd .conf /usr/ local /etc/oai/

�

freeDiameter
7 ~$ sudo cp ~/openair -cn/etc/ hss_fd .conf /usr/ local /etc/oai/

�

freeDiameter

Before we altering the parameter in the configuration file, we have typed the
command ifconfig in the terminal to check the IP configurations, which is already
done and introduced in section 3.1. As is shown in Figure 3.4, we mentioned the
Ethernet card name, IP address, mask and DNS, which will be used later in the
configuration file.

Figure 3.4: IP configuration status of computer runs EPC

Now let’s configure MME, SPGW and HSS one by one, which is listed through the
terminal operation commands below in detail.

1 # Configure MME
2 ~$ sudo vim /usr/ local /etc/oai/mme.conf
3 # Check and change following information using our own IP

�

configuration information in this file
4 MME_INTERFACE_NAME_FOR_S1_MME = " enp0s25 ";
5 MME_IPV4_ADDRESS_FOR_S1_MME = "192.168.53.203/24";
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6

7 # Configure SPGW
8 ~$ sudo vim /usr/ local /etc/oai/spgw.conf
9 # Pay attention to these lines in this file

10 SGW_INTERFACE_NAME_FOR_S1U_S12_S4_UP = " enp0s25 ";
11 SGW_IPV4_ADDRESS_FOR_S1U_S12_S4_UP = "192.168.53.203/24";
12

13 PGW_INTERFACE_NAME_FOR_SGI = " enp0s25 ";
14 PGW_MASQUERADE_SGI = "yes "; #add this line after the line

�

above
15

16 # Configure HSS freeDiameter
17 ~$ sudo vim /usr/ local /etc/oai/ freeDiameter / hss_fd .conf
18 # Check these information :
19 Identity = "hss. openair4G .eur ";
20 Realm = " openair4G .eur ";
21

22 # Configure MME freeDiameter
23 ~$ sudo vim /usr/ local /etc/oai/ freeDiameter / mme_fd .conf
24 # Check the following information :
25 Identity = "edge. openair4G .eur "; #same as our hostname
26 Realm = " openair4G .eur ";
27 ConnectPeer = "hss. openair4G .eur" { ConnectTo = "127.0.0.1";

�

No_SCTP ; No_IPv6 ; Prefer_TCP ; No_TLS ; port = 3868; realm

�

= " openair4G .eur ";};
28

29 # Configure HSS
30 ~$ sudo vim /usr/ local /etc/oai/hss.conf
31 # Check the informations below :
32 mysql_user = "root "; # Set by the installation of mysql
33 mysql_pass = "******"; # Put here the root password of mysql

�

database that was provided during installation
34 OPERATOR_key = "111111111111111111111111111111111"; # OP key

�

for oai_db .sql , Must match to that of UE Sim card , OP_Key .
35

36 # Register certification
37 ~$ cd ~/openair -cn/ scripts
38 ~$ ./ check_hss_s6a_certificate /usr/ local /etc/oai/ freeDiameter /

�

hss. openair4G .eur
39 ~$ ./ check_mme_s6a_certificate /usr/ local /etc/oai/ freeDiameter /

�

edge. openair4G .eur #our hostname setup

Great attention should be paid to that information, even a small detail that we
didn’t notice will lead to a failure by compiling. Then, we continued to build the
HSS, MME and SPGW one by one separately.

1 # Build HSS
2 ~$ cd ~/openair -cn/ scripts
3 ~$ sudo ./ build_hss -c # here the -c delete the previous

�

generated files from compiling
4 # run the hss for the first time and load the oai_db .sql to the

�

database server
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5 ~$ ./ run_hss -i ~/openair -cn/src/ oai_hss /db/ oai_db .sql #only

�

at the first time , otherwise just run ./ run_hss -i
6

7 # Build MME , in a new terminal
8 ~$ cd ~/openair -cn/ scripts
9 ~$ sudo ./ build_mme -c

10

11 # Build SPGW
12 ~$ cd ~/openair -cn/ scripts
13 ~$ sudo ./ build_spgw -c

Here we didn’t have any problem by compiling, then we continued to configure
the EPC database with the programmed SIM card data, which is introduced in the
next section.

3.4 User database configuration

Now, the eNB, EPC and HSS can work properly. We may move to the next stage.
The SIM card that we used is a programmed SIM card with the original data in Table
3.1, which is programmed with the OPERATOR KEY from manufacturer Sysmocom
(http://shop.sysmocom.de/products/sysmousim-sjs1). So, we can
not use all the default information of the SIM card directly. Since we don’t know the
OPERATOR KEY from the manufacturer, we should use the OPERATOR KEY in
the configuration file of HSS in the last section to re-encrypt the SIM card with the
default Ki value of the SIM card. We have programmed the SIM card with Mileage
support using open-cells.com reader/writer. We have first compiled the Open
Cells program, which can be downloaded from https://open-cells.com/
d5138782a8739209ec5760865b1e53b0/uicc-v1.6.tgz.. Then, we have
inserted the SIM card into the reader/writer and used the Open Cells program to
encrypt the SIM card. Here is the information we needed to program the SIM card
for OAI.

• Algorithm: Milenage

• Ki: 1854073054080694900C418F06A169DA (from Table 3.1 at the end of
this chapter)

• OP: 11111111111111111111111111111111 (from hss.conf)
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• C1:00, C2: 01, C3: 02, C4: 04, C5: 08, R1: 40, R2: 00, R3: 20, R4: 40, R5:
60 all in hex.

• SPN (service provider Name): OpenAirInterface

• Mobile Country Code (MCC): 262 (DE)

• Mobile Network Code (MNC): 70 (research)

• IMSI: 262700000008960 (MCC|MNC|id), from Table 3.1, where id is incre-
mented. Note that here the PLMN (26270) is 5 digit, which is why the id 10
digits. Otherwise, for 6 digit PLMN, you only have 9 digit for id.

After finishing the SIM card programming, we turned to the OAI EPC host computer.
We visited the localhost/phpadmin in a web browser, sign in with the username
"root" and password. So, we accessed the HSS database. We can check out
the existing users in the database via phpmyadmin. However, we are not able to
insert a user record on phpmyadmin, because the Key (as well as OPc) is stored
as binary in the database. We used the following commands as a guide. These
commands are executed in the root environment.

1 shell > mysql -u root -p
2 # The password is the phpmyadmin login password
3 mysql > use oai_db ;
4 # show all tables
5 mysql > show tables ;
6 # show all entries in mmeidentity
7 mysql > select * from mmeidentity ;
8 mysql > INSERT INTO users (’imsi ’, ’msisdn ’, ’imei ’, ’imei_sv ’,

�

’ms_ps_status ’, ’rau_tau_timer ’, ’ue_ambr_ul ’, ’ue_ambr_dl

�

’, ’access_restriction ’, ’mme_cap ’, ’

�

mmeidentity_idmmeidentity ’, ’key ’, ’RFSP -Index ’, ’urrp\_mme

�

’, ’sqn ’, ’rand ’, ’OPc ’) VALUES ( ’262700000008960 ’ ,

�

’88211008960 ’ , ’354198065175626 ’ , ’02’, ’PURGED ’, ’120’,

�

’50000000 ’ , ’100000000 ’ , ’47’, ’0000000000 ’ , ’1’,

�

1854073054080694900 C418F06A169DA , ’1’, ’0’, ’’, 0

�

x00000000000000000000000000000000 , ’’);

There are a couple of things to note:

• msisdn: even though it is optional, we have not leaved it blank since OAI will
check its presence.

• OPc: OPc is computed from OP_KEY and Ki. We have leaved it NULL, since
HSS will compute it for us.
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We can check the result on the phpmyadmin. Select the path oai_db->users,
we can find and open the correspond imsi in the user list. See Figure 3.5. The

Figure 3.5: SIM card Info in database

EPC hostname is edge.openair4G.eur, so we have changed the mmehost in the
mmeidentity to the hostname of EPC, and remember the idmmeidentity. See in
Figure 3.6 , here the idmmeidentity is 1.

In addition, we have added a new APN under the oai_db option list, which will be
later used in the smartphone APN setting. See in Figure 3.7, where the id is also
set to 1 with the APN name oai.ipv4.

The next step is to set the pgw in the oai_db option list. Here we set the ipv4 value
to be the IP of EPC for id=3. The ipv6 is not important. As is shown in Figure 3.8.
It is to be noticed, that this id is the id of pgw, not the id of mmeidentity.

The last one is the pdn in the oai_db option list. We located the id=1 of mmeidentity
and pgw_id=3, and then changed the users_imsi with the imsi of the programmed
SIM card. It can be seen in figure 3.9. After finishing the database settings, we can
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Figure 3.6: Idmmeidentity of hostname

Figure 3.7: APN setting

start the OAI EPC and OAI eNB separately and attach the smartphone to the OAI
LTE network.
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Figure 3.8: pgw setting

Figure 3.9: pdn setting

3.5 Process OAI system startup and UE attachment

In this section, the startup of the OAI EPC and OAI eNB are first introduced. After
the OAI LTE successfully works, we will configure the smartphone and attach to
the OAI LTE network. Although we have built the MME in section 3.4, before we
run the MME in EPC, we have to update some information in the mme.conf like
below:

1 # We should set the MCC , MNC and TAC the same as the programmed

�

SIM card
2 # Check these two lines below
3 GUMMEI_LIST = ({ MCC ="262" ; MNC ="70"; MME_GID ="4" ; MME_CODE

�

="1"; });
4 TAI_LIST = ({ MCC ="262" ; MNC ="70"; TAC = "1"; });
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Then, we build the MME again. We should start the OAI EPC in this order, that we
first run the HSS in the first Ubuntu Terminal window, we can see the output of the
HSS running status in Figure 3.10, where we can see that the S6A interface and
the oai_db are successfully initialized.

Figure 3.10: The running status of HSS

Then we run the MME in another Terminal window. The status of MME is shown
in Figure 3.11, in which we can see a Table, which shows the number of attached/-
connected UEs and connected eNBs. Moreover, the status of the HSS database
service is opened. And in the first Terminal window, it shows an additional status
for the database service in Figure 3.12.

Last but not least, we open a Terminal to run the SPGW, which will build a bridge
for the HSS networking and allocate IP for UE by using the GTP kernel. The S11
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Figure 3.11: The running status of MME

Figure 3.12: The additional status of HSS with connected MME

interface is also initialized for connecting to the MME. The output is shown in
Figure 3.13. All the commands are listed below.

1 # First open a terminal
2 # Then locate to the HSS build file
3 ~$ cd ~/openair -cn/ scripts
4 ~$ ./ run_hss #this is the second time that we run the hss.
5

6 # Open another terminal
7 # Then locate to the MME build file
8 ~$ cd ~/openair -cn/ scripts
9 # Build the MME again , bacause we have updated the mme.conf

10 ~$ sudo ./ build_mme -c
11 ~$ ./ run_mme
12
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13 # Open another terminal
14 # Then locate to the MME build file
15 ~$ cd ~/openair -cn/ scripts
16 ~$ ./ run_spgw

Figure 3.13: The running status of SPGW

Now the OAI EPC is successfully booted. Then, we turn to the computer, which
has OAI eNB installed. In section 3.2, we have installed the driver of the USRP. For
initializing the eNB, OAI has already provided some configuration files for different
hardware platforms for software radio, different wireless communication bands and
various bandwidths. In our implementation, we take the configuration file of the
USRP b210 with 25 RBs in the frequency domain of band 7. The configuration
file can be found in this path: /openairinterface5g/targets/PROJECTS/GENERIC-
LTE-EPC/CONF/enb.band7.tm1.25PRB.usrpb210.conf. We have changed some
information in the configuration referred to our system’s setup, which is listed
below:

1 # Open the configuration file
2 ~$ sudo vim ~/ openairinterface5g / targets / PROJECTS /GENERIC -LTE -

�

EPC/CONF/enb. band7 .tm1 .50 PRB. usrpb210 .conf
3 # Change some information from these lines below
4 tracking_area_code = "1";
5 mobile_country_code = "262";
6 mobile_network_code = "70";
7 mme_ip_address = ( { ipv4 = "192.168.53.203";
8

9

10 ENB_INTERFACE_NAME_FOR_S1_MME = " enp5s0 ";
11 ENB_IPV4_ADDRESS_FOR_S1_MME = "192.168.53.204/24";
12

13

14 ENB_INTERFACE_NAME_FOR_S1U = " enp5s0 ";
15 ENB_IPV4_ADDRESS_FOR_S1U = "192.168.53.204/24";
16

17 parallel_config = " PARALLEL_SINGLE_THREAD ";
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where mme_ip_address is the IP address of our EPC, and the last four lines about
ENB_INTERFACE is our eNB related network interface information. We have also
built the OAI eNB in section 3.2. The OAI eNB will generate a application binary file
called lte-softmodem, which is a main function for the eNB. There are also many
tools that can be compiled at the same time when the eNB is built. For example,
the T tracer, which is sort of a framework to debug and monitor the softmodem and
made of two main parts. One part is an events’ collector integrated into real-time
processing. Another part is a separate set of programs to receive, record, display
and analyze the events sent by the collector. In order to visualize the softmodem,
we should start the lte-softmodem with additional command T_stdout 0, and after
the eNB is initialized, it will wait for a tracer to connect to it before processing,
which brings convenience for the work of channel measurement later. Then, we
can go into the directory of the T tracer to start it. All those processes are listed
below.

1 # Open a Terminal for running the eNB
2 # Go into the directory of lte -softmodem , which is generated

�

after the compilation
3 ~$ cd openairinterface5g / cmake_targets / lte_build_lte / build
4 # run the lte - softmodem with visualization option
5 ~$ sudo -E ./lte - softmodem -O $OPENAIR_DIR / targets / PROJECTS /

�
GENERIC -LTE -EPC/CONF/nb. band7 .tm1 .25 PRB. usrpb210 .conf --

�

T_stdout 0
6 # The system will start to initialization and waiting for the T

�

tracer
7

8 # Open another Terminal for running T tracer
9 # Go into the directory of T tracer

10 ~$ cd openairinterface5g / common / utils /T/ tracer
11 ~$ ./ enb -d ../ T_messages .txt

After having executed those command above, two GUI windows will pop up. One is
the main softmodem monitor, the other is the selector of the event options. We can
see the softmodem monitor like in Figure 3.14, means that, we have successfully
started the OAI eNB, which broadcasts the LTE network signal.

In the next step, we will insert the programmed SIM card to the smartphone. In
our experiment, we use the LG-D802 with the Android operating system. We type
the hidden code *#*#4636#*#* on the Dial Pad of the phone, we can open the
interface of the phone information setting. Here we find the option of network and
select LTE_ONLY. Actually, the different smartphone has a different way of settings.

44



Institute for Internal Combustion 
Engines and Automotive Engineering

Figure 3.14: LTE softmodem monitor and event selector without UE connected

Then, we need to reboot the phone and find the Network settings page and do
something like the following steps:

• Add a new APN, name is at will. And the APN is oai.ipv4, the same as in the
database. Others can be blank.

• Open data roaming

• Change the option of automatic selecting in the Carrier option to manual
selecting. After few seconds, we can see a network called 26270, then we
can select and register onto this network.

After we have connected the smartphone to the network, we can see more infor-
mation shown on the monitor of the lte-softmodem, see Figure 3.15. So we have
successfully built an LTE network by using the OAI EPC and eNB. Moreover, we
have connected the smartphone to this LTE network, which can surf the internet
for uploading/downloading without any problem 3.16. Based on the stable wireless
communication network, we can perform further channel measurements with the
help of the eNB source code, which will be introduced in the next section.
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Figure 3.15: LTE softmodem monitor with UE connected

Figure 3.16: The screenshots for displaying the LTE connection status
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Parameter Value
imsi 262700000008960
iccid 8988211000000089600
pin1 9937
puk1 16302637
pin2 1358
puk2 87946054
ki 1854073054080694900C418F06A169DA
adm1 87544677
kic1 395A419A450293D548FE667A34B4B26B
kid1 B76DE94EDBDCE589B5E0C5302A8E0AD4
kik1 1E151D814886590AAACC574EE85C4978
msisdn 88211008960
acc 0001
opc 68ac1dc9320c5bf91a83d56e19eec0eb

Table 3.1: Key parameters of SIM card
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Chapter 4

Implementation of Channel Measurement

In the previous sections, we have introduced the fundamental concepts of our
SDR platform, the channel estimation and the scheduling of the OAI LTE uplink
channel. We have also implemented an SDR platform based LTE access and
successfully connected the smartphone to this network with a programmed SIM
card. The network is proved to be very stable by watching some online videos and
taking video phone calls. Based on the steady LTE communication between the
OAI eNB and smartphone, we can perform uplink channel measurement on the
uplink channel receiving side. In our case is the eNB side. With a specific purpose,
we mainly focus on the part of uplink physical transmission and procedure.

In this chapter, we will present the method we have taken to achieve a bandwidth-
stable channel estimation in every time slots of every uplink subframes. In the
section 4.1, we will first analyse the source codes of OAI eNB. Some special
methods for computing in the channel estimation part are depicted in section 4.2.
Methods for rapid data read and output is also introduced in this section. The
implemented C code for data formatting and the deficient channel estimates are
shown in section 4.3. For solving the problem of the deficient channel estimates,
we will change the uplink channel scheduling, so that we can get the right output as
we expect. Those works and better output of channel estimates will be presented
in section 4.4.

4.1 OAI eNB source code analysis

As is introduced in section 2.2, the functionalities are hierarchically designed in the
three folders of OAI referred to the LTE standards. We have directly located the
physical layer functions in the folder called OpenAir1. In this folder, the functions
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for baseband signal processing and some physical layer functional modules, like
OFDM, modulation/demodulation, coding/decoding, channel estimation are fully
implemented for both uplink and downlink channel in the folder called PHY. Be-
sides, some physical layer scheduling functions for controlling the procedures are
also provided in folders named with SCHED. When we look into the PHY folder,
we can see the files defined as in Figure 4.1. In the folder called CODING, the
turbo decoder, the convolution coding/decoding and the cyclic redundancy check
(cyc) code generations are designed. The parameter initialization and memory
allocation are included in the INIT. Most of our concerns are the LTE_ESTIMATION,
LTE_REFSIG, LTE_TRANSPORT, and MODULATION, where the timing, reference
signals, channel estimation, channel compensation, and channel modulation/de-
modulation are implemented.

Figure 4.1: PHY folder catalogue structure

We have already introduced the principle of uplink channel estimation with the
help of embedded demodulation reference signals and sounding reference signals.
We can find the C code program file lte_ul_ref.c for the generation of the uplink
reference signal for both transceiver and receiver. Here we focus on the code
snippet for the receiver, because the eNB in the uplink channel works as a receiver.

1 void generate_ul_ref_sigs_rx (void) {
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2 ......
3 // These are the complex conjugated Zadoff -Chu sequences

�

quantized to QPSK stored in repeated format (for RB 3 -100)
4 for ( Msc_RS =2; Msc_RS <34; Msc_RS ++) {
5 for (u=0; u <30; u++) {
6 for (v=0; v <2; v++) {
7 qbar = ref_primes [ Msc_RS ] * (u+1) /( double )31;
8 ul_ref_sigs_rx [u][v][ Msc_RS ] = ( int16_t *) malloc16 (2*

�

sizeof ( int16_t )* dftsizes [ Msc_RS ]);
9

10 if (((( int) floor (2* qbar))&1) == 0)
11 q = (int)( floor (qbar +.5)) - v;
12 else
13 q = (int)( floor (qbar +.5)) + v;
14

15 ......
16 for (n=0; n< dftsizes [ Msc_RS ]; n++) {
17 m=n% ref_primes [ Msc_RS ];
18 phase = ( double )q*m*(m+1)/ ref_primes [ Msc_RS ];
19 ul_ref_sigs_rx [u][v][ Msc_RS ][n < <1] =( int16_t )( floor

�

(32767* cos(M_PI* phase )));
20 ul_ref_sigs_rx [u][v][ Msc_RS ][1+(n < <1)] =-( int16_t )(

�

floor (32767* sin(M_PI* phase ))); }
21 ......
22

23 }
24 }
25 }
26 }

In this code, the complex conjugated ZC sequence are mentioned, which has the
following properties [28]:

• A ZC sequence has constant amplitude, and its root index point DFT also
has constant amplitude. The constant amplitude property limits the Peak-
to-Average Power Ratio (PAPR) and generates bounded and time-flat inter-
ference to other users. It also simplifies the implementation as only phases
need to be computed and stored, not amplitudes.

• ZC sequence of any length have ideal cyclic autocorrelation. This property
is of major interest when the received signal is correlated with a reference
sequence and the received reference sequences are misaligned.

• The absolute value of the cyclic cross-correlation function between any two
ZC sequences is constant and equal to 1/

√
NZC , if |q1 − q2| (where q1 and

q2 are the sequence indices and NZC is the sequence length) is relatively
prime with respect to NZC (a condition that can be easily guaranteed if NZC
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is a prime number). The cross-correlation of 1/
√
NZC at all lags achieves

the theoretical minimum cross-correlation value for any two sequences that
have ideal autocorrelation.

Referred to the 3GPPP TS 36.211 [3], the reference signal sequence are divided
in groups, where u ∈ {0, 1, ..., 29} is the group number and v is the base se-
quence number within the group. The space of memory is firstly reserved through
malloc16. Some reference tables are already defined in this file according to
the TS 36.211 so that the root index q can be assigned and calculated with the
number of RB in a reference sequence m and the ref_primes value at the index
of sequence length MRS

sc so that we can return the phase of ZC. A phase can then
be split into a real part and an imaginary part through trigonometric function. The
developer of this code has additionally multiply 32767 for the real and imaginary
part to avoid loss of data.

The variable of reference signal defined in the C code above is then called in the C
code file for uplink shared channel demodulation and estimation. We can find the
demodulation file for the uplink shared channel in the folder LTE_TRANSPORT.
The main function of the ulsch_demodulation.c is called rx_ulsch, which has
also invoked the function for extracting the data in the RBs in the received signal.
The function for uplink channel estimation is also invoked after the received data
extraction.

1

2 void rx_ulsch ( PHY_VARS_eNB *eNB ,
3 L1_rxtx_proc_t *proc ,
4 uint8_t UE_id ) {
5

6 ......
7 for (l=0; l <( frame_parms -> symbols_per_tti - ulsch [ UE_id ]->

�

harq_processes [ harq_pid ]-> srs_active ); l++) {
8 if( LOG_DEBUGFLAG ( DEBUG_ULSCH )) {
9 LOG_I (PHY ," rx_ulsch : symbol %d ( first_rb %d, nb_rb %d),

�

rxdataF %p, rxdataF_ext %p\n",l,
10 ulsch [ UE_id ]-> harq_processes [ harq_pid ]->first_rb ,
11 ulsch [ UE_id ]-> harq_processes [ harq_pid ]->nb_rb ,
12 common_vars ->rxdataF ,
13 pusch_vars -> rxdataF_ext );
14 }
15

16 ulsch_extract_rbs_single ( common_vars ->rxdataF ,
17 pusch_vars -> rxdataF_ext ,
18 ulsch [ UE_id ]-> harq_processes [ harq_pid

�

]->first_rb ,
19 ulsch [ UE_id ]-> harq_processes [ harq_pid

�

]->nb_rb ,
20 l%( frame_parms -> symbols_per_tti /2) ,
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21 l/( frame_parms -> symbols_per_tti /2) ,
22 frame_parms );
23

24 lte_ul_channel_estimation (eNB ,proc ,
25 UE_id ,
26 l%( frame_parms -> symbols_per_tti /2) ,
27 l/( frame_parms -> symbols_per_tti /2));
28

29 ......
30 }
31 }

The input of the demodulation function is the pointer of the eNB variables, the
pointer of the time process variables and the ID of UE. As time goes forward, the
data on every symbol of the time shaft are extracted. The extracted data on the
location of the reference signal will be further calculated with the locally generated
reference signal for the channel estimation. The location of the reference signal
is already shown in Figure 2.11, normally the reference signal of uplink shared
channel exists at the fourth symbol of a slot. But if there are cyclic prefixes in the
slots, then we can find the reference signal at the third symbol position. We can
notice that the two invoked functions have two same input parameters, which are
related to the l. l is the index of the a symbol. So we can deduce that the division
operation returns the index of time slots in a subframe, and the modulus operation
returns the index of symbol in one of the time slot in a subframe. Moreover, the
HARQ process will also decide the span in the frequency domain, here is instructed
by the number of RBs.

With the knowledge of how the reference signal is generated and how we calcu-
lated the channel estimates using the generated reference signal and received
a reference signal, we can now analyze further the source code for the channel
estimation, which is implemented in the lte_ul_channel_estimation.c in the folder
LTE_ESTIMATION. Now in the program of channel estimation, the parameter l
represents the index of a symbol in the slot, ranges from 0 to 6. By using this
if sentence if (l == (3 - frame_parms->Ncp)), the symbol with refer-
ence signal will be then calculated, where the Ncp is 0 or 1 represents without or
with cyclic prefix respectively.

The calculation channel estimates is implemented for x86/64 and the arm platform
with the SSE method, which has obviously speed up the calculation and meet the
real-time requirement. We will introduce the SSE in the next section.
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4.2 SSE intrinsics and output data storage

Micheal Flynn has firstly classified the computer system structure according to the
controller instructions and the data stream. Respectively are SISD, SIMD, MISD
and MIMD.

SISD, is Single Instruction Single Data, the traditional von Neumann architecture
is included in this structure. The architecture is shown in Figure 4.2.

Figure 4.2: Single Instruction Single Data structure

MISD, is Mutiple Instruction Single Data, which process a single data stream with
multiple different instructions. It is suitable for classification tasks. The structure
can be seen in Figure 4.3.

Figure 4.3: Mutiple Instruction Single Data structure

SIMD, is Single Instruction Multiple Data. In this structure, multiple different groups
of data stream are processed with the same instruction. It is suitable for implemen-
tation of parallel algorithm, and is also widely used in the voice and image signal
processing. The structure is depicted in Figure 4.4 below.
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Figure 4.4: Single Instruction Multiple Data structure

MIMD, is Multiple Instruction Multiple Data, which process multiple different data
streams from shared memory with different instructions. It can asynchronously
execute different operations. MIMD is the most powerful structure, which is also
difficult to be designed and implemented. The architecture is shown in Figure 4.5.

Figure 4.5: Multiple Instruction Multiple Data structure

SSE instruction is an extended instruction for SIMD provided by Intel. SSE has
some following advantages:

• Functions for image browsing and processing with higher resolution.

• Occupy less CPU resources.
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• Higher accuracy and quicker response speed.

To my understanding, the SIMD will enable the CPU to get an instruction from the
memory to the instruction register, then read the data stream from the memory to
the SIMD register. And the CPU will use this instruction parallel process this group
of structure. The new version after SSE2 can process 128-bit data every time of
operation. The possible storage format may be 16*8 bit, 8*16 bit, 4*32 bit, 2*64 bit
and 1*128 bit. This can be referred to Figure 4.6

Figure 4.6: Storage format of 128 bit data stream

The intrinsic functions of SSE can be referred in https://software.intel.
com/sites/landingpage/IntrinsicsGuide/#expand=0, which is an in-
teractive tool for intrinsic functions. A common usage of the SSE is the complex
value multiplication. In the c file of channel estimation, the channel estimates are
so calculated that the complex conjugate of the received signal at the symbol with
reference signals will be multiplied by the from the receiver generated reference
signal. The related C codes are listed here.

1 for (i=0; i< Msc_RS /12; i++) {
2 // multiply by conjugated channel
3 mmtmpU0 = _mm_madd_epi16 ( ul_ref128 [0] , rxdataF128 [0]);
4 // mmtmpU0 contains real part of 4 consecutive outputs

�

(32 - bit)
5 mmtmpU1 = _mm_shufflelo_epi16 ( ul_ref128 [0] , _MM_SHUFFLE

�

(2 ,3 ,0 ,1));
6 mmtmpU1 = _mm_shufflehi_epi16 (mmtmpU1 , _MM_SHUFFLE

�

(2 ,3 ,0 ,1));
7 mmtmpU1 = _mm_sign_epi16 (mmtmpU1 ,*( __m128i *)& conjugate

�

[0]);
8 mmtmpU1 = _mm_madd_epi16 (mmtmpU1 , rxdataF128 [0]);
9 // mmtmpU1 contains imag part of 4 consecutive outputs

�

(32 - bit)
10 mmtmpU0 = _mm_srai_epi32 (mmtmpU0 ,15);
11 mmtmpU1 = _mm_srai_epi32 (mmtmpU1 ,15);
12 mmtmpU2 = _mm_unpacklo_epi32 (mmtmpU0 , mmtmpU1 );
13 mmtmpU3 = _mm_unpackhi_epi32 (mmtmpU0 , mmtmpU1 );
14

15 ul_ch128 [0] = _mm_packs_epi32 (mmtmpU2 , mmtmpU3 );
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16 // multiply by conjugated channel
17 mmtmpU0 = _mm_madd_epi16 ( ul_ref128 [1] , rxdataF128 [1]);
18 // mmtmpU0 contains real part of 4 consecutive outputs

�

(32 - bit)
19 mmtmpU1 = _mm_shufflelo_epi16 ( ul_ref128 [1] , _MM_SHUFFLE

�

(2 ,3 ,0 ,1));
20 mmtmpU1 = _mm_shufflehi_epi16 (mmtmpU1 , _MM_SHUFFLE

�

(2 ,3 ,0 ,1));
21 mmtmpU1 = _mm_sign_epi16 (mmtmpU1 ,*( __m128i *) conjugate );
22 mmtmpU1 = _mm_madd_epi16 (mmtmpU1 , rxdataF128 [1]);
23 // mmtmpU1 contains imag part of 4 consecutive outputs

�

(32 - bit)
24 mmtmpU0 = _mm_srai_epi32 (mmtmpU0 ,15);
25 mmtmpU1 = _mm_srai_epi32 (mmtmpU1 ,15);
26 mmtmpU2 = _mm_unpacklo_epi32 (mmtmpU0 , mmtmpU1 );
27 mmtmpU3 = _mm_unpackhi_epi32 (mmtmpU0 , mmtmpU1 );
28

29 ul_ch128 [1] = _mm_packs_epi32 (mmtmpU2 , mmtmpU3 );
30

31 mmtmpU0 = _mm_madd_epi16 ( ul_ref128 [2] , rxdataF128 [2]);
32 // mmtmpU0 contains real part of 4 consecutive outputs

�

(32 - bit)
33 mmtmpU1 = _mm_shufflelo_epi16 ( ul_ref128 [2] , _MM_SHUFFLE

�

(2 ,3 ,0 ,1));
34 mmtmpU1 = _mm_shufflehi_epi16 (mmtmpU1 , _MM_SHUFFLE

�

(2 ,3 ,0 ,1));
35 mmtmpU1 = _mm_sign_epi16 (mmtmpU1 ,*( __m128i *) conjugate );
36 mmtmpU1 = _mm_madd_epi16 (mmtmpU1 , rxdataF128 [2]);
37 // mmtmpU1 contains imag part of 4 consecutive outputs

�
(32 - bit)

38 mmtmpU0 = _mm_srai_epi32 (mmtmpU0 ,15);
39 mmtmpU1 = _mm_srai_epi32 (mmtmpU1 ,15);
40 mmtmpU2 = _mm_unpacklo_epi32 (mmtmpU0 , mmtmpU1 );
41 mmtmpU3 = _mm_unpackhi_epi32 (mmtmpU0 , mmtmpU1 );
42

43 ul_ch128 [2] = _mm_packs_epi32 (mmtmpU2 , mmtmpU3 );
44

45 ul_ch128 +=3;
46 ul_ref128 +=3;
47 rxdataF128 +=3;
48 }

As is introduced in the frame structure, there are 12 resource elements (RE)
in a resource block RB, so the for-loop is indexed with the RB, where the total
number of resource elements in a symbol is represented with Msc_RS. The data of
reference signals are stored in the format of 16*8 bit, where each real or imaginary
part of the complex value are stored in 16-bit containers. So, each 128-bit data
stream contains 4 complex values with the real and imaginary parts. Thus, for
every time computation of the channel estimates in a RB, it needs 3 parts of
complex value multiplication. Here the outputs ul_ch128[0], ul_ch128[1],
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ul_ch128[2] have 128-bit data size, which are the results of original channel
estimates at the position of reference signal without any channel compensation.
Each output contains 8 values with 16-bit data size, respectively are the 4 complex
values’ real and imaginary parts. Along with the for-loop of RBs, the for-loop of
symbols and the input frame /subframe indices, we can calculate and read the
value of channel estimates, as long as the channel demodulation happens on a
subframe.

After we have located the output of the complex-valued channel estimates. We can
start to read and store the data for further researches. Because of the initialization
of the eNB configuration, that we have set the parellel_single_thread,
which means that all the TX and RX frames are transmitted in a single thread.
This initialization will alleviate the pressure of the processor for operation but
have a high restriction on real-time processing. For getting the channel estimates
continuously on every resource element of every symbol of every subframe, there
is a huge data size of output channel estimates within every 0.5 ms.

Here we have first tried a method that directly prints the data to a local text file.
That is, after each for-loop of RB, we will read the 12 complex values (24 integers
of real and imaginary value) and print it to a line of the text file. The problems are
that:

1. The estimation functions are called every slot (0.5 ms). So the duration of
the file open and close on a hard disk will have a negative impact on the
real-time processing. Then the eNB will get crashed.

2. Attempts are also taken, that we have defined a new variable in the variable
header file of eNB def_eNB.h for the file name pointer and moved the file
open/close function into the demodulation function or function in higher level.
So that the file open/close will not be called so frequently. However, because
of the exists of the buffer zone of the fprintf in the memory, if the buffer
size reaches the default size (1024 bytes), then the data in the buffer will
be flashed to the TXT file, which is stored in the hard disk. The duration of
writing the data onto the hard disk will lead to a crash of the system.

3. Then the method is further improved, that we have manually set the buffer
size to be 0 so that we can actively flush the buffer zone by using fflush

�(stdout). This method helps a lot to some extent if the UE only has
some download tasks and the uplink channel serves only for downlink
requests and slight uplink transmissions. Because, under this situation,
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the channel demodulation and estimation on the side of eNB don’t happen
in every subframe, and the resource elements are not occupied completely
on each symbol. However, for a continuous uplink channel estimation, we
should upload files with big data size, then the quantities of generated
channel estimates will be much more than before. In our case of SISO
communication, the uplink channel will be fully reserved for the single UE.
Due to the eNB initialization, we have set a bandwidth with 25 RBs. Thus,
the PUSCH reserves 20 RBs for the demodulation reference signal. So,
after channel estimation on a symbol, we should write 12 × 2 × 20 = 480

16 bit integers in 0.5ms× 6/7 ≈ 0.4ms before the next channel estimation
executes. There are still some symbols of latency warnings displayed on
the Terminal window. Because of those warnings, there are also errors that
appear on the corresponding uplink shared channel subframes reported
from the LEGACY.

We would say that the I/O between the hard disk and processor is not quick enough
for the read of real-time generated channel estimates. Faced to those problems,
we have reviewed the relevant codes of the OAI eNB, and have found that the OAI
has also used some printf in the functions like below in the code of channel
estimation:

1 LOG_E (PHY ," lte_ul_channel_estimation : index for Msc_RS =%d not

�

found \n",Msc_RS );
2 LOG_D (PHY ," subframe %d, Ns %d, l %d, Msc_RS = %d, Msc_RS_idx =

�

%d, u %d, v %d, cyclic_shift %d\n",subframe ,Ns ,l,Msc_RS ,

�

Msc_RS_idx ,u,v, cyclic_shift );
3 LOG_M (" drs_seq0 .m"," drsseq0 ",ul_ref_sigs_rx [u][v][ Msc_RS_idx

�

] ,2* Msc_RS ,2 ,1);

In those LOG functions, the inputs will then be printed to the monitor of the softmo-
dem. All those data transmissions are between the processor and memory, which
has a nano-second level I/O speed so that it can display various system status
information without any impact on the real-time computation.

We have then tried to directly display the channel estimates onto the Terminal
window since the printf function will flash the data at the end of every line
because of the line breaks. All those operations are executed on memory, which
doesn’t have any problem with the speed. In order to keep a clean Terminal
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Window for purely displaying the output of channel estimates, all the other system
statuses, which are shown additionally on the Terminal are deactivated.

According to the experiments done in the previous steps, we have concluded, that
the occupied RBs will be up to 2 if the uplink channel doesn’t transmit much data.
If there is a mass of data transmission, then there will be 20 RBs occupied. In
order to filter some useless output, we have also added a if function to get the
channel estimates only if the occupied RBs is more than 18, and only take 100
frames for testing. Some codes are listed below.

1 if (l == (3 - frame_parms ->Ncp)) {
2 symbol_offset = frame_parms -> N_RB_UL *12*( l+((7 - frame_parms ->

�

Ncp)*( Ns &1)));
3 for (aa =0; aa < nb_antennas_rx ; aa ++) {
4 ......
5

6 for(i= symbol_offset ; i< symbol_offset + Msc_RS ; i++) {
7 ul_ch_estimates_re = (( int16_t *) ul_ch_estimates [aa ])[i

�

< <1];
8 ul_ch_estimates_im = (( int16_t *) ul_ch_estimates [aa ]) [(i

�

< <1) +1];
9 if( N_rb_alloc >18 && frame >900 && frame <1000 && i<

�

symbol_offset +12){
10 printf (" frame %d subframe %d, slot %d, re %d, im %d\n",

�
frame , subframe , Ns , ul_ch_estimates_re ,

�

ul_ch_estimates_im );
11 }
12 }
13 }
14 }

Where the N_rb_alloc in this code is the allocated RBs for the symbol of the
reference signal. The variable aa is the index of antenna for receiving the uplink
data. The symbol_offset represents the start position of the reference signal
on the uplink frame structure. Because there are always 24 values in a RB, so
we can convert the output format by brutally simplifying the code like below. The
code is executed directly after each loop of the channel estimates computation in
a RB. So that we don’t need other several loops for the RB and symbol indices.
We can also display all the 24 values in a line on the Terminal window, which will
take benefits for the data formatting later. After having investigated some efforts,
we can finally read the channel estimates on continuous subframes.

1

2 ......
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3

4 mmtmpU0 = _mm_srai_epi32 (mmtmpU0 ,15);
5 mmtmpU1 = _mm_srai_epi32 (mmtmpU1 ,15);
6 mmtmpU2 = _mm_unpacklo_epi32 (mmtmpU0 , mmtmpU1 );
7 mmtmpU3 = _mm_unpackhi_epi32 (mmtmpU0 , mmtmpU1 );
8

9 ul_ch128 [2] = _mm_packs_epi32 (mmtmpU2 , mmtmpU3 );
10

11 if( N_rb_alloc >18 && frame >700 && frame <801) {
12 printf ("f %d s %d i %d ch:
13 %d %d %d
14 %d %d %d %d
15 %d %d %d %d
16 %d %d %d %d
17 %d %d %d %d
18 %d %d %d %d %d\n",
19 frame , subframe , i,
20 (( int16_t *) ul_ch128 )[0] ,(( int16_t *) ul_ch128 )[1] ,(( int16_t *)

�

ul_ch128 )[2] ,(( int16_t *) ul_ch128 )[3] ,
21 (( int16_t *) ul_ch128 )[4] ,(( int16_t *) ul_ch128 )[5] ,(( int16_t *)

�

ul_ch128 )[6] ,(( int16_t *) ul_ch128 )[7] , (( int16_t *) ul_ch128

�

)[8] ,(( int16_t *) ul_ch128 )[9] ,(( int16_t *) ul_ch128 )[10] ,((

�

int16_t *) ul_ch128 )[11] ,
22 (( int16_t *) ul_ch128 )[12] ,(( int16_t *) ul_ch128 )[13] ,(( int16_t *)

�

ul_ch128 )[14] ,(( int16_t *) ul_ch128 )[15] , (( int16_t *)

�

ul_ch128 )[16] ,(( int16_t *) ul_ch128 )[17] ,(( int16_t *)

�

ul_ch128 )[18] ,(( int16_t *) ul_ch128 )[19] ,
23 (( int16_t *) ul_ch128 )[20] ,(( int16_t *) ul_ch128 )[21] ,(( int16_t *)

�

ul_ch128 )[22] ,(( int16_t *) ul_ch128 ) [23]) ;
24 }

4.3 Channel estimates formatting and visualizing

In order to format the data to be readable from MATLAB, we need to convert the
data of massive integers to be like the complex values that are stored in the frame
structure. The output data stored in a TXT file is formed like in Figure 4.7. The
measurement for 100 frames will generate 100 × 10 × 2 × 20 = 40000 lines of
channel estimates outputs. The channel estimates in a single RB are displayed in
a line.

A C code program is written for reading and converting the outputs to our ex-
pected form. As listed below, we have first defined an array to be the final ex-
pected form, which has the data format of complexint, that is complex int

�subframe_ch_est[][], where the first index of the array is the total number
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of resource elements in the frequency domain and the second index is the number
of slots in the time domain. We have used the fgets(), and sscanf() to get
and read the data line by line. Those for data processing useless symbols will be
discarded by "*s", all the useful data are read by the "s" as a string and later must
be converted into integers through atoi(). The correspondent integers of real
and imaginary parts combined to be a complex value, in which the integers of the
imaginary part are multiplied by an imaginary symbol i.

1 while ( fgets (line , sizeof (line), file)){
2 sscanf (line ,
3 "%*s %*s %*s %*s %*s %*s %*s
4 %s %s %s %s %s %s %s %s %s %s %s %s
5 %s %s %s %s %s %s %s %s %s %s %s %s",
6 re0 , im0 , re1 , im1 , re2 , im2 , re3 , im3 , re4 , im4 , re5 , im5 ,
7 re6 , im6 , re7 , im7 , re8 , im8 , re9 , im9 , re10 , im10 , re11 ,

�

im11);
8 // string to int
9 re_int0 = atoi(re0); re_int1 = atoi(re1);

10 re_int2 = atoi(re2); re_int3 = atoi(re3);
11 re_int4 = atoi(re4); re_int5 = atoi(re5);
12 re_int6 = atoi(re6); re_int7 = atoi(re7);
13 re_int8 = atoi(re8); re_int9 = atoi(re9);
14 re_int10 = atoi(re10); re_int11 = atoi(re11);
15 im_int0 = atoi(im0); im_int1 = atoi(im1);
16 im_int2 = atoi(im2); im_int3 = atoi(im3);
17 im_int4 = atoi(im4); im_int5 = atoi(im5);
18 im_int6 = atoi(im6); im_int7 = atoi(im7);
19 im_int8 = atoi(im8); im_int9 = atoi(im9);
20 im_int10 = atoi(im10); im_int11 = atoi(im11);
21

22 if(re ==36)
23 {
24 re=re -36;
25 coloumn ++;
26 }
27 subframe_ch_est [re +0][ coloumn ]= re_int0 + im_int0 * _Complex_I ;
28 subframe_ch_est [re +1][ coloumn ]= re_int1 + im_int1 * _Complex_I ;
29 subframe_ch_est [re +2][ coloumn ]= re_int2 + im_int2 * _Complex_I ;
30 subframe_ch_est [re +3][ coloumn ]= re_int3 + im_int3 * _Complex_I ;
31 subframe_ch_est [re +4][ coloumn ]= re_int4 + im_int4 * _Complex_I ;
32 subframe_ch_est [re +5][ coloumn ]= re_int5 + im_int5 * _Complex_I ;
33 subframe_ch_est [re +6][ coloumn ]= re_int6 + im_int6 * _Complex_I ;
34 subframe_ch_est [re +7][ coloumn ]= re_int7 + im_int7 * _Complex_I ;
35 subframe_ch_est [re +8][ coloumn ]= re_int8 + im_int8 * _Complex_I ;
36 subframe_ch_est [re +9][ coloumn ]= re_int9 + im_int9 * _Complex_I ;
37 subframe_ch_est [re +10][ coloumn ]= re_int10 + im_int10 *

�

_Complex_I ;
38 subframe_ch_est [re +11][ coloumn ]= re_int11 + im_int11 *

�

_Complex_I ;
39 // printf ("%d %d %d\n",row , re_int , im_int ); // check the value
40 re=re +12;
41 }
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Figure 4.7: Outputs of channel estimates

The converted data will be read and visualized in MATLAB so that we can macro-
scopically observe the time-frequency spectrum and check whether we have
extract the channel estimates correctly. Figure 4.8 has shown some samples
of the spectrum from our measurement. We can notice that the channel on the
same symbol of a different frequency is at the same magnitude level. So we can
randomly pick one subcarrier and plot it on the X-Z axis view.

Like in Figure 4.9, we have picked the first subcarrier, normalized and plotted
the estimated channel magnitude of the first 200 time samples. We can find an
apparent problem from this plot. Between the red ellipse marked waveform and the
green ellipse marked waveform, there should not be cliff-like changes like these
that exist. As expected, all the estimated channel magnitude should have a thread
like the green ellipse marked waveform on all the time samples. We notice that,
there are many envelopes that are continuous near zero, which won’t exist in a
normal continuous wireless transmission environment. Assumptions are that, that
the channel estimation is executed continuously on every time slot, but only the
noises are received instead of information. The uplink channel will automatically
allocate the bandwidth for an upload task, but because of the fairness of the UE
uplink channel quality competition, there might be some missing or ”waiting for
retransmission” instructions of the uplink signal, which will lead to the receiver
falsely estimate only the noise in the channel. Another reason might be the high
bandwidth on a single time sample. The computer should compute massive data
in around 0.07 ms, thus, there might be some latency for continuous demodulation,
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which causes the false transmission of channel quality information. So we have
further analyzed the OAI source code and focused on the uplink scheduling part.

Figure 4.8: Estimated channel spectrum

Figure 4.9: Estimated channel spectrum of a single subcarrier
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4.4 Changes of uplink Scheduling

We have already introduced some concepts and procedures of downlink and uplink
transmission in section 2.3.3. In a random access network, in order to dynamically
and flexibly arrange the best channel for active UEs, the uplink channels are
estimated and ranked by the receiver eNB. Commonly, the signal-noise ratio is
converted to be the channel quality index, and the ranked channel qualities are ref-
erenced from the scheduler so that the bandwidth in the frequency domain and the
subframes in the time domain can be allocated for a certain uplink channel demod-
ulation. OAI has implemented the procedure in the phy_procedures_lte_eNb

�.c in the file path openairinterface5g/openair1/SCHED. As the codes
of the pusch_procedures() are listed below, where some conditions are pre-
judged before the execution of channel demodulation function rx_ulsch(eNB,

�proc,i).

1 void pusch_procedures ( PHY_VARS_eNB *eNB , L1_rxtx_proc_t *proc){
2 ......
3 ......
4 if (( ulsch ) &&
5 (ulsch ->rnti >0) &&
6 ( ulsch_harq -> status == ACTIVE ) &&
7 ( ulsch_harq -> frame == frame ) &&
8 ( ulsch_harq -> subframe == subframe ) &&
9 ( ulsch_harq -> handled == 0)) {

10 ......
11 ......
12 start_meas (&eNB -> ulsch_demodulation_stats );
13 rx_ulsch (eNB ,proc , i);
14 stop_meas (&eNB -> ulsch_demodulation_stats );
15 start_meas (&eNB -> ulsch_decoding_stats );
16 ret = ulsch_decoding (eNB ,proc ,
17 i,
18 0, // control_only_flag
19 ulsch_harq ->V_UL_DAI ,
20 ulsch_harq ->nb_rb >20 ? 1 : 0);
21 stop_meas (&eNB -> ulsch_decoding_stats );
22 ......
23 ......
24 }
25 }

For example here the conditions ulsch and ulsch->rnti>0. When there is
an uplink shared channel, that is allowed to work, then the ulsch has the value
1, otherwise, it will be assigned to be 0. The rnti stands for the Radio Network
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Temporary Identifier, which is a kind of UE ID for the traffic between UE and eNB
lower layer. It would be more accurate to think of it as [UE ID] + UCI Type

�ID since each of UCI message is scrambled by a specific RNTI value. As is
introduced in section 2.3.3, the CQI is an important part of the UCI, which is
calculated by the value of SNR. In this file phy_procedures_lte_eNb.c, the
CQI is calculated under different application environment. Some related codes are
listed below.

1 ......
2 void fill_rx_indication ( PHY_VARS_eNB *eNB ,
3 int UE_id ,
4 int frame ,
5 int subframe ) {
6 ......
7 // estimate UL_CQI for MAC (from antenna port 0 only)
8 int SNRtimes10 = dB_fixed_times10 (eNB -> pusch_vars [ UE_id ]->

�

ulsch_power [0]) - 10 * eNB -> measurements .

�

n0_subband_power_dB [0][0];
9

10 if ( SNRtimes10 < -640)
11 pdu -> rx_indication_rel8 . ul_cqi = 0;
12 else if ( SNRtimes10 > 635)
13 pdu -> rx_indication_rel8 . ul_cqi = 255;
14 else
15 pdu -> rx_indication_rel8 . ul_cqi = (640 + SNRtimes10 ) / 5;
16 }
17

18 ......
19

20 void fill_uci_harq_indication ( PHY_VARS_eNB *eNB , LTE_eNB_UCI *

�

uci , int frame , int subframe , uint8_t *harq_ack , uint8_t

�

tdd_mapping_mode , uint16_t tdd_multiplexing_mask )
21 {
22 ......
23 // estimate UL_CQI for MAC (from antenna port 0 only)
24 pdu -> ul_cqi_information .tl.tag = NFAPI_UL_CQI_INFORMATION_TAG ;
25 int SNRtimes10 = dB_fixed_times10 (uci ->stat) - 10 * eNB ->

�

measurements . n0_subband_power_dB [0][0];
26

27 if ( SNRtimes10 < -100)
28 LOG_I (PHY , "uci ->stat %d \n", uci ->stat);
29

30 if ( SNRtimes10 < -640)
31 pdu -> ul_cqi_information . ul_cqi = 0;
32 else if ( SNRtimes10 > 635)
33 pdu -> ul_cqi_information . ul_cqi = 255;
34 else
35 pdu -> ul_cqi_information . ul_cqi = (640 + SNRtimes10 ) / 5;
36

37 pdu -> ul_cqi_information . channel = 0;
38 }
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The SNR is so converted, that ten times the SNR will be restraint in the ul_cqi
range from 0 to 255. The value, which is smaller than −640 db, will be assigned
to be 0 and is considered as poor channel quality. The value, which is bigger
than 635 db will be assigned to be 255, and is considered as transmission domi-
nated and high energy consumption. The other values will be then linearly con-
verted in the range from 0 to 255. The ul_cqi is then transferred to the MAC
layer in the eNB_scheduler_ulsch.cin the file path openairinterface5g

�/openair2/LAYER2/MAC for assuming the accumulated transmission power
control value (tpc). The ul_cqi, which is bigger than 200, will also be consid-
ered as too high energy pattern here for assuming the tpc. For a SISO channel
measurement, we actually don’t need the ability of scheduling, on the contrary,
we need a constant channel quality index for every subframe of the single uplink
channel. So, we have assigned all the values, which in the range from 0 to 255 to
be 150, like this pdu->ul_cqi_information.ul_cqi = 150 in the listed
codes above. Actually, there is also a function called fill_sr_indication

�(), which contains the ul_cqi computation operations like the listed codes
above. However, we didn’t activate the sounding reference signal by using the eNB
configuration file. So, this function can be ignored here.

Then we have rebuilt the eNB, and reboot the system. We have used the same
method for extracting the uplink channel estimates and visualized it in MATLAB,
which can be found in Figure 4.10. In this measurement, the allocated bandwidth
of the uplink channel is constrained to 3 RBs, which are 36 subcarriers. So, there
is much less pressure for the processor to calculate channel estimates in a time
symbol. We have chosen 240 symbols of the hole measurement and visualized,
we can see that the channel is now much better than the previous one in Figure 4.8.
With a more narrower bandwidth, for achieving the same transmission speed as
the wide-bandwidth channel, the powers or envelopes on each resource element
will have higher magnitude level.

Identically, we have chosen a random subcarrier of the frequency domain and plot
the magnitude of channel estimates from 200 symbols in the time domain, we
can see the output in Figure 4.11. Now the magnitude of each channel estimates
are not continuously near to zero and the cliff-like changes in Figure 4.9 has
disappeared. Empirically, we have extracted the correct channel estimates initially.
More tests should still be performed. Here we will check these measurements in a
channel prediction algorithm, to check whether the algorithms can well perform
on the real data from channel measurement. These works will be illustrated in the
next chapter.
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Figure 4.10: Estimated channel spectrum after having changed the scheduling

Figure 4.11: Estimated channel spectrum of a single subcarrier after having
changed the scheduling
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Chapter 5

Verification of Channel Prediction
Algorithm

The main motivation of this thesis is to provide a real LTE communication platform
so that some new proposed artificial intelligent next-generation wireless algorithms
can be tested on the real channel parameters. One of the algorithms is RNN
based channel prediction [19, 18, 20]. Outdated CSI between the transmitter
and receiver can badly deteriorate the performance of a wireless communication
system. The channel prediction provides an efficient approach by improving the
quality of CSI directly without spending extra wireless resources, and therefore
attracts much attention from researchers [9]. The wireless community started to
apply the techniques of AI to solve communication problems a long time ago.
Taking advantage of the functionality of time-series prediction of Neural Network
(NN), a predictor for narrow-band channel [24] and its extensions for the MIMO
channel [8] have been proposed. The main reason for using the NN structure
for channel prediction is that it is analogous to a time-varying infinite impulse
response (IIR) filter, which well suits the nonlinearity of the fading channel. Without
any prior knowledge or assumptions, only a number of past channel states can
train a NN-based predictor, which in turn eliminates the gap between modeling
and reality.

In the rest of this chapter, we will first discuss the RNN in section 5.1 to find the
superiority of RNN on the channel prediction. In section 5 we will briefly introduce
the RNN structure for channel prediction. In section 5.3 we will finally test the
algorithm on the data from the measurement on our implemented platform, and
some comparisons and evaluations will then depicted.
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5.1 RNN

A recurrent neural network (RNN) is a class of artificial intelligent neural net-
works where connections between nodes form a directed graph along a temporal
sequence. This allows it to exhibit temporal dynamic behavior. Derived from feed-
forward neural networks, RNNs can use their internal state (memory) to process
variable-length sequences of inputs. This makes them applicable to tasks such as
unsegmented, connected handwriting recognition or speech recognition. The term
"recurrent neural network" is used indiscriminately to refer to two broad classes of
networks with a similar general structure, where one is finite impulse and the other
is infinite impulse. Both classes of networks exhibit temporal dynamic behavior. A
finite impulse recurrent network is a directed acyclic graph that can be unrolled
and replaced with a strictly feedforward neural network, while an infinite impulse
recurrent network is a directed cyclic graph that can not be unrolled. Both finite
impulse and infinite impulse recurrent networks can have additional stored states,
and the storage can be under direct control by the neural network. The storage can
also be replaced by another network or graph if that incorporates time delays or
has feedback loops. Such controlled states are referred to as gated state or gated
memory and are part of long short-term memory networks and gated recurrent
units. This is also called Feedback Neural Network.

RNNs come in many variants. Basic RNNs are a network of neuron-like nodes
organized successive "layers." Each node in a given layer is connected with a
directed (one-way) connection to every other node in the next successive layer.
Each node (neuron) has a time-varying real-valued activation. Each connection
(synapse) has a modifiable real-valued weight. Nodes are either input nodes
(receiving data from outside the network), output nodes (yielding results), or
hidden nodes (that modify the data en route from input to output).

For supervised learning in discrete time settings, sequences of real-valued input
vectors arrive at the input nodes, one vector at a time. At any given time step, each
non-input unit computes its current activation (result) as a nonlinear function of
the weighted sum of the activations of all units that connect to it. Supervisor-given
target activations can be supplied for some output units at certain time steps. For
example, if the input sequence is a speech signal corresponding to a spoken digit,
the final target output at the end of the sequence may be a label classifying the
digit.
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In reinforcement learning settings, no teacher provides target signals. Instead,
a fitness function or reward function is occasionally used to evaluate the RNN’s
performance, which influences its input stream through output units connected to
actuators that affect the environment. This might be used to play a game in which
progress is measured with the number of points won.

Each sequence produces an error as the sum of the deviations of all target signals
from the corresponding activations computed by the network. For a training set
of numerous sequences, the total error is the sum of the errors of all individual
sequences.

The most important part of building an efficient deep learning architecture if the
parameter tuning in the training process. Gradient descent is a first-order iterative
optimization algorithm for finding the minimum of a function. In neural networks, it
can be used to minimize the error term by changing each weight in proportion to the
derivative of the error with respect to that weight, provided the non-linear activation
functions are differentiable. A major problem with gradient descent for standard
RNN architectures is that error gradients vanish exponentially quickly with the
size of the time lag between important events.[14, 15]. Long short-term memory
(LSTM) combined with backpropagation through time (BPTT)/real-time recurrent
learning (RTRL) hybrid learning method attempts to overcome these problems.
[16] This problem is also solved in the independently recurrent neural network
(IndRNN)[23] by reducing the context of a neuron to its own past state and the
cross-neuron information can then be explored in the following layers. Memories of
the different range including long-term memory can be learned without the gradient
vanishing and exploding problem.

Training the weights in a neural network can be modeled as a non-linear global
optimization problem. A target function can be formed to evaluate the fitness or
error of a particular weight vector as follows: First, the weights in the network
are set according to the weight vector. Next, the network is evaluated against the
training sequence. Typically, the sum-squared-difference between the predictions
and the target values specified in the training sequence is used to represent the
error of the current weight vector. Arbitrary global optimization techniques may
then be used to minimize this target function.
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5.2 RNN for Channel Prediction

RNN is a popular machine learning technique that has shown great potential in
time-series prediction tasks. The authors of these papers [24, 8] have proposed to
use a RNN to build a predictor for narrow-band and wide-band wireless commu-
nication channels. In [19, 18, 20], the authors of this paper proposed to apply a
real-valued RNN to implement a multi-step MIMO channel predictor and further
illustrated its achievable performance in a multi-antenna system. All those papers
has proved the outstanding performance of the proposed algorithms on simulated
communication data. However, none of them has tested the algorithms on a real
communication platform.

We will verify the algorithm proposed in [19] first as an ending of this thesis.
As is shown in Figure 5.1, the RNN consists of three layers: a hidden layer
with NL neurons, an output layer having No outputs, which is represented by
a vector yo = [y1, ..., yNo]

T , and an input layer with N neurons including NI

external inputs xe = [x1, ..., xNI
]T and No feedback inputs y(t + 1) = [y1(t +

1), ..., yNo(t+ 1)]. At the time instant of t, the external inputs are represented by
the vector xe = [x1(t), ..., xNI

(t)]T . So the total input vector can be combined by
the external input vector and delayed feedback vector y(t), which is written as
X = [x1(t), ...xNI

(t), y1(t), ..., yNo(t)]. Every connection between the neurons are
assigned with weights, which can determine the behaviour of a RNN. Here the wl,n
denotes the real-valued weight connecting the lth hidden neuron and the nthinput,
while cm,l is the weight for connecting output m and hidden neuron l.

The transfer function typically falls into one of three categories: linear, threshold
and sigmoid. To deal with the nonlinearity of a fading channel, the sigmoid function
is chosen in each hidden neuron, which is given by:

S(x) =
1

1 + e−x
(5.1)

Then we can get the output of the lth hidden neurons:

γl(t) = S(wl ·X) = S(

NI∑
n=1

wl,nxn(t) +
N∑

n=NI+1

wl,ny(n−NI)(t)), (5.2)

where wl · X is the dot product of the input vector X and the lth weight vector
wl = [wl,1, wl,2, ..., wl,N ]. Given the output neuron with a linear transfer function,
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Figure 5.1: Schematic diagram of a recurrent neural network [19]

the mth predicted output can be expressed as

ym(t+ 1) =

NL∑
l=1

cn,lγl(t). (5.3)

Based on the RNN structure, the channel prediction can be applied. In a MIMO
channel with Nt transmit antennas and Nr receiver antennas, the channel can be
modeled as

r(t) = H(t)s(t) + n(t), (5.4)

where r(t) represents theNr×1 received vector at time t, s(t) is theNt×1 transmit
symbol vector, n(t) stands for the vector of noise and H is the matrix of time-varying
channel coefficients. Here we take the channel estimates as the coefficients, which
is represented by a complex-valued variable hnrnt . Owing to the processing and
feedback delay, the CSI at the time of selecting transmission parameters may
substantially differ from the CSI at the instant of using the selected parameters
to transmit, i.e., H(t) 6= H(t + τ) where τ denotes the delay. The outdated CSI
imposes a severely negative impact on a wide variety of wireless techniques. The
task of channel prediction is to predict a channel state Ĥ(t+ τ) that is as close as
possible to the actual upcoming state H(t+ τ).

In the paper [19], the author has firstly used the single-antenna case to shed

73



Institute for Internal Combustion 
Engines and Automotive Engineering

light on how the RNN predicts envelope and real/imaginary parts of the channel
estimates, and at last, has extended to forecast the channel state multiple steps
ahead. In our implementation, we can also provide the same form of data, so that
the algorithm can first be trained and then tested on the rest data.

If we predict the envelope of a channel, in the time t, the channel envelope is
already known, while a number of d past values |h(t− 1)|, |h(t− 2)|, ..., |h(t− d)|
can be kept through a tapped delay line. So the external input xe(t) will be the
vector |h(t)|, |h(t− 1)|, |h(t− 2)|, ..., |h(t− d)|. Additionally, the delayed feedback
|ĥ(t)| will help the prediction of channel envelope |ĥ(t+ 1)|.

If we predict the complex-valued channel coefficients, the channel coefficient h(t)

can be written as
h(t) = hr(t) + ihi(t), (5.5)

where hr and hi are the real and imaginary parts. In this case, the external inputs
can be written as xe(t) = [hr(t), hi(t), ..., hr(t− d), hi(t− d)]. By combining the
predicted real and imaginary parts, the channel coefficient for the next time instant
can be obtained as ĥ(t+ 1) = ĥr(t+ 1) + iĥi(t+ 1).

For a multi-step prediction, the output of the channel prediction at time t is changed
from ĥ(t+ 1) to ĥ(t+D), where D stands for the number of steps being predicted
ahead.

5.3 Numerical results and evaluations

Now we can test the algorithm on our measured channel estimates. First of all, the
data should be normalized. In the field of machine learning, different evaluation
indicators (the different features in the feature vector are the different evaluation
indicators described) often have different dimensions and dimensional units. This
situation will affect the results of data analysis. To eliminate indicators’ dimensional
impact, we need to standardize the data to solve the comparability between
data indicators. After the standardization of the original data, all indicators are in
the same order of magnitude, which is suitable for comprehensive comparative
evaluation. Among them, the most typical is the normalization of data. In short,
the purpose of normalization is to limit the preprocessed data to a certain range,
thereby eliminating the adverse effects caused by the singular sample data.
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Some common normalization methods are

• Min-Max Normalization: maps the value in the range of [0, 1], the transfor-
mation function is x′ = x−min(x)

max(x)−min(x) . This normalization method is more
suitable for situations where the values are relatively concentrated. If max
and min are unstable, it is easy to make the normalization result unstable and
make the subsequent use effect unstable. In practice, empirical constants
can be used instead of max and min.

• Z-score: Processed data conforms to standard normal distribution. The
transformation function is x∗ = x−µ

σ
, where µ is the mean value of the data

and σ is the standard deviation. This method requires that the distribution of
the original data can be approximated as a Gaussian distribution, otherwise
the effect of normalization will become very bad.

• Nonlinear normalization: The method includes logarithmic, tangent, etc.,
and needs to determine the curve of the non-linear function according to
the data distribution. This normalization method is often used in scenarios
where data differentiation is relatively large. It maps the original values with
some mathematical functions.

In [19], the author has normalized the envelope and the real part of the complex
value of the channel estimates using Z-score normalization because the channel
is assumed to be a flat-fading Rayleigh channel with an average power gain of
0dB, where the channel coefficient h is zero-mean circularly-symmetric complex
Gaussian random variable with the variance of 1, i.e., h ∼ CN (0, 1). The results
of this paper have shown a great performance of the channel prediction algorithm.
For example in Figure 5.2, the channel prediction algorithm has predicted the
channel envelope marked by red dots quite match the actual values denoted by a
curve with high accuracy of Mean Square Error (MSE) σ2 = 4.97× 10−6. Some
other extensions like the real/imaginary part prediction, multi-antenna channel
prediction, multi-step channel prediction also have shown great results. In our case,
we have extracted the complex-valued channel estimates not on every symbol, but
on every symbol position of the reference signal. So we can predict the channel
estimates with an interval of 7 symbols. The channel estimates are normalized
into the range of [0, 1]. After we have performed the channel prediction algorithm,
the outputs can be seen in Figure 5.3, which has a accuracy of Mean Square
Error (MSE) σ2 = 0.0023. Although the result is much worse than the prediction
accuracy on simulated data, the accuracy of the prediction has verified that the
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real channel estimates can also be predicted by this algorithm. Some efforts of
optimizations are still essential for higher prediction accuracy.

Since the author of [19] has utilized the Levenberg-Marquardt [11] backpropagation
algorithm, the number of neurons in the hidden layer can be increased from 10 to
100, which increase the prediction accuracy to σ2 = 0.0131. The new release of
the MATLAB deep learning toolbox has provided various useful solver of neural
networks.

In this thesis, we have additionally tried the ’adam’ solver in the deep learning
toolbox, which helps the neural network training progress by flexibly setting the
number of learning epochs, iteration numbers, learning rate and the number of
neurons. Referred to the monitoring of the training progress like in Figure 5.4, we
can learn how the training is progressing. For example, we can determine if and
how quickly the network accuracy is improving, and whether the network is starting
to overfit the training data. By analyzing the curve of training progress, we can
alter the parameters of the neural network, mainly the number of epochs and the
learning rate.

After some tries, we have achieved an accuracy of the channel prediction with MSE
σ2 = 0.0023, by setting 500 learning epochs, the first 450 epochs with learning
rate η = 0.005 and the last 50 epochs with learning rate η = 0.001. The channel
prediction result is shown in Figure 5.5. In order to better visualize the fluctuation
trend, we have drawn the line-dot-line for depicting the predicted value. So, we can
see that the marked predicted value can already match the actual measured value
well with acceptable MSE. This sample prediction is equivalent to the 7 symbols
ahead prediction, which has a considerable accuracy compared to the 5 symbols
ahead prediction in [19]. All those outputs have verified that our experimentation
platform can be used for channel measurements and the measured channel
estimates can be predicted by this channel prediction algorithm. Now, we have
finally finished all the tasks of this thesis.

76



Institute for Internal Combustion 
Engines and Automotive Engineering

Figure 5.2: Channel prediction on the symbol continuous envelope of simulated
channel estimates[19]

Figure 5.3: Channel prediction on the envelope of measured channel estimates
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Figure 5.4: Channel prediction algorithm training progress

Figure 5.5: Channel prediction on the envelope of measured channel estimated
using adam solver
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Chapter 6

Conclusion and Future Works

6.1 Conclusion

Our thesis has aimed to build a real LTE-access experimentation platform for
performing the channel measurement, so that we can verify the AI-based next-
generation wireless transmission algorithms. All the set tasks have been perfectly
met. The OAI EPC and eNB are successfully installed on two independent GPPs.
The driver of USRP is configured on the GPP, which runs the OAI eNB. With a
correct configuration file, the eNB can successfully build the communication with
USRP and transfer the baseband signal to it for broadcasting. A for research pur-
pose configured SIM card is new encrypted for the commercial UE (smartphone).
After some configuration works of the EPC serving database and smartphone
network, the smartphone ID can be successfully authenticated by the EPC serving
database and can get the LTE access, which is broadcast by the USRP-based
eNB. Employing the routing bridge implemented in EPC, the smartphone can surf
the internet without any problem.

Motivated by the performance of the channel prediction algorithms on the channel
response collected on the simulated wireless channel, we have firstly oriented our
direction on real-timely measuring the channel estimates based on the LTE signal
transmission. In consideration of our platform setup, we have chosen the uplink
channel for research. That is, we got the channel estimates on the receiver side of
the uplink channel, in our case is the eNB side. After some theoretical researches
on the uplink frame structure, uplink shared channel and uplink channel scheduling
by having referred the 3GPPP standards and the LTE principles, we have known
the functionalities of the reference signal, which can be used for channel response
estimation and signal demodulation. By changing the uplink channel scheduling,
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the bandwidth of the uplink channel can be restrained and made constant. In our
implementation, channel estimation on a relative narrower bandwidth will relieve
the computation pressure of the processor, which computes the channel estimates
real-timely on the symbol positions of reference signals. Because the reference
signals only exist on one symbol of each time slot, so we can real-timely get
the complex values of channel estimated of all the allocated subcarriers in the
frequency domain on every 7 symbols in the time domain without any latency
problem.

The extracted channel estimates will be formed as the time-frequency format. Then
we have normalized the channel estimates into the range of [0, 1] for solving the
comparability between data indicators, which is appropriate for comprehensive
comparative evaluation. The normalized data was been directly tested on the
algorithm in [19], which has shown an acceptable accuracy on channel prediction,
but the performance has weakened itself a lot compared to the performance on
the simulated data. So we have further optimized the algorithm with more hidden
neurons and tried other solvers for the network training progress. Moreover, the
learning rate and the number of epochs are set regarding the MSE curve of training
progress for algorithm optimization. Through our efforts, we have improved the
prediction accuracy by the factor of 10 on the real measured channel estimates.
More importantly, the proposed predictor has the flexibility of conducting multi-step
prediction and is more robust against interpolation errors.

In conclusion, the SDR platform is a really powerful solution for wireless trans-
mission algorithm verification, which offers extensive advantages and features for
individual research purposes. With the aid of open-source code, we can easily
change the code for a certain task. Our implemented OAI and USRP-based exper-
imentation platform has been proved to be powerful enough for some research
and verification purposes, which can also be extended for other tasks. That will be
introduced in the next section.

6.2 Future Works

Concerning this work, some following approaches are possible in the future. Be-
cause the time is limited, we have only build a SISO communication for testing the
algorithm. We have utilized this SDR platform for the verification of SISO channel
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prediction. In [19], the channel prediction algorithm has also shown great perfor-
mance on the MIMO communication channel. OAI provides also the multi-antenna
ability, which needs another USRP connected to another GPP installed with OAI
UE instead of commercial UE.

Later, we will build a USRP-based OAI UE for connecting the USRP-based OAI
eNB. A single USRP device can provide 2 input and 2 output antenna ports. So
two USRPs on the eNB and UE sides can consist of a 2× 2 MIMO communication.
If more USRPs are put into use, the OAI at present can support up to 16 × 16

MIMO communication. Besides, OAI NR has been developed, which can provide
the 5G full network connection. Faced with such a wide-band channel, we have to
take deep researches on how to measure the channel estimates on a wide-band
channel, since we have only achieved a narrow-band channel measurement.

The improvements of the channel prediction accuracy on the real data have moti-
vated us to continue the research of this algorithm for a much preciser prediction
result. Other advanced AI techniques may provide a greater potential in channel
prediction, which is worth taking efforts to explore in the next step. It would be also
meaningful, that we transplant and embed this prediction algorithm in the source
code of the OAI platform to enhance communication efficiency, which is also a
contribution to the OAI developer community.

Another aspect is given, that we will not only focus on the proposed research
achievement on the physical layer but also look beyond on other algorithms like
the network management [21], time-sensitive networking on other communication
layers in the future works. Most of our works in this thesis are irrelevant to the other
OAI implemented communication layers out of the physical layer. The test-bed
experimented with in this thesis should make it possible to extend the solution to
those. Different types of setup can also be tried in the future.
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