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Abstract

Power outages and fluctuations represent serious
crisis situations in energy-intensive process industry
like glass and paper production, where substances such
as oil, gas, wood fibers or chemicals are processed.
Power disruptions can interrupt chemical reactions and
produce tons of waste as well as damage of machine
parts. But, despite of the obvious criticality, handling of
outages in manufacturing focuses on commissioning of
expensive proprietary power plants to protect against
power outages and implicit gut feeling in anticipating
potential disruptions. With AISOP, we introduce a
model for Al-based scenario planning for predicting
crisis situations. AISOP uses conceptual, well-defined
scenario patterns to capture entities of crisis situations.
Data streams are mapped onto these patterns for
determining historic crisis scenarios and predicting
future crisis scenarios by using inductive knowledge
and machine learning. The model was exemplified
within a proof of concept for energy-driven disruption
prediction. We were able to evaluate the proposed
approach by means of a set of data streams on weather
and outages in Germany in terms of performance in
predicting potential outages for manufacturers of paper
industry with promising results.

1. Introduction

The manufacturing industry fears power outages
“like the devil fears holy water” [1, 2, 3]. When
manufacturing sensitive products by highly automated
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processes, restarting production lines takes a long time
and results in high costs. This is especially critical in
energy-intensive process industry, e.g., glass and paper
production, where substances such as oil, gas, wood
fibers, chemicals or beverages are processed. Power
failures can interrupt chemical reactions and produce
tons of waste as well as damage of machine parts
[2, 4]. It take months, to shut down and raise a glass
melting tank; immediate energy stops inducing a quick
shutdown would render the tank completely unusable.
Also short-term, regionally limited power disruptions
represent crisis situations for industrial plants. Due
to the reduction of nuclear power plants and the
reliance on renewable energy sources with partially
strong weather dependency, e.g., wind turbines, solar
panels, there are strong fluctuations in the grid [5, 6].
The European power grid is designed to cope with
fluctuations between 49.8 and 50.2 hertz, but in case
of larger fluctuations, i.e., below 49.8 or above 50.2
hertz for a few tenths of a second, frequency-sensitive
machines like in paper industry switch off automatically.
In fully automated production processes, consequences
of these uncontrolled shutdowns of production lines are
serious. The film of water and pulp on a paper machine
tears, scrap has been removed completely before starting
again causing unplanned downtime, destruction of parts,
need for spare parts, additional manpower and loss of
production.

However, despite of the criticality of these energy-driven
crises for process industry, handling of outages in
manufacturing focuses on commissioning of expensive
proprietary power plants to protect against power
outages and implicit gut feeling in anticipating potential
disruptions [3, 7]. On network operator side, dispatch



and redispatch measures more respectively curtailment
are used as an intervention to adjust the power input of
power plants with the aim of avoiding or eliminating
regional overloads or fluctuations in the transmission
system. Power network operators started to consolidate
redispatch measures via central platforms' but these
are still in their infancies. In research, related work
on anticipating energy-driven disruptions in process
industry focuses on linear programming models for
estimation of energy disruptions from earth quakes
[8], organizational learning approaches for adaption to
climate changes [9] as well as knowledge management
in energy data spaces [10]. In addition to that, there
is related work focusing on the energy industry itself,
considering probabilistic risk assessment for preventing
safety related disruptions [11, 12], anticipation of power
generation and outages [13, 14] as well as outage
management approaches [15].

Objective of our research is the anticipation of
such energy-driven crises in process industry by
Al-based scenario planning for improving resilience in
manufacturing. Focusing on responsibility and decision
space of manufacturers, anticipation of aforementioned
outages enables proactive adjustments of production
planning and controlled shutdowns of production lines
with rescheduling of maintenance times or planned
downtimes.

In this work, we propose AISOP - a model for Al-based
scenario planning for predicting crisis situations.
AISOP uses conceptual, well-defined scenario patterns
to capture entities of crisis situations in history
and future, e.g., location and dates of outages,
effects like downtimes. Data streams are mapped
onto scenario patterns for determining historic crisis
scenarios and predicting future crisis scenarios by using
inductive knowledge and machine learning. Following
the concept of linked data, scenario patterns are
operationalized in JSON-LD leading to a knowledge
graph of crisis scenarios. A special feature of the model
is the applicability of semantically enhanced scenario
patterns for explanation of predictive analytics to
decision makers (Explainable AI [16]). The model was
exemplified within a proof of concept for energy-driven
disruption prediction in process industry. We were able
to evaluate the proposed approach by means of a set
of data streams on weather and outages in Germany in
terms of performance in predicting potential outages for
manufacturers of paper industry in Bavaria (N=7) with
promising results.

Uhttps://www.dare-plattform.de/, https://www.openkonsequenz.de

2. Crisis and Resilience in Process
Industry

Crisis can be defined as the “perception of
an unpredictable event that threatens important
expectancies of stakeholders and can seriously impact
an organization’s performance and generate negative
outcomes” [17, p. 2]. Decision makers are confronted
with uncertainty, competing goals, changing conditions
and time stress [18]. Behavioral economics can be
used to explain that intuitive decisions can be biased
by heuristics, resulting in sub optimal decisions being
made ”in the heat of the moment” [19, 20]. Systematic
crisis management is characterized by four successive
phases:  mitigation, preparedness, response and
recovery [21]. Identification of the crisis type is defined
as elementary in a first step. The objective is to assess
the organization’s ability to control the event (personal
control) and the extent of the organization’s culpability
for the event (crisis responsibility). Crises take many
forms. Several crisis taxonomies have been proposed
in literature; according to [22] energy-driven crises in
process industry are characterized as predictable but
hardly influencable, as industrial accidents (cf. [23])
as well as accidental crises respective technical error
accidents (cf. [24]).

3. Al-based Scenario Planning

Theories of crisis handling define variables,
assumptions and relationships that should be considered
when selecting crisis response strategies, e.g., crisis
management with scenario planning processes [25].
Their work combines crisis management with scenario
planning processes to provide a mechanism for
designing, evaluating and managing future crises,
especially in a strategic context. Florez et al. [26]
propose an approach to define realistic scenarios based
on historical data. Also storytelling is applied to design
scenarios, more precisely “storifying” real life events
based on a computational model [27, 28]. De Nicola
et al. [29] present a framework to support the creative
design of emergency management scenarios, i.e., the
process of imagining situations and describing them
through models and stories. They support the task of
gathering knowledge about emergency management
situations by the automatic generation of conceptual
models linked to fragments of emergency scenarios
with the objective of defining use case scenarios for
analysis and simulation.

We present AISOP, a model for Al-based scenario
planning for predicting crisis situations based on
the Resilience Analysis Grid (RAG) [30] as well as
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Figure 1: Al-based scenario planning for predicting crisis situations (AISOP)

the Functional Resonance Accident Model (FRAM)
[31, 32]. Focusing on preparedness and response in
crisis management [21], AISOP defines components
for four abilities that make up a resilient system [33]:
learning, anticipating, monitoring and responding
(cf. Fig. 1). On the one hand, AISOP operates on
semantically enhanced scenario patterns that describe
the conceptual structure of crisis situations in terms
of context, actors, resources, effects, reason, source,
measures and history. Thus, scenario patterns enable
a kind of highlighting of relevant information sources
(priority areas [30]) within or in expectation of
crises. On the other hand, AISOP uses streams of
historic data that are mapped on scenario patterns for
deriving historic crisis scenarios emerging to a scenario
knowledge graph. Both, the later as well as scenario
patterns are processed under consideration of actual
data for predicting potential crisis scenarios in future
(cf. Fig. 1).

The learning component takes care for generating
crisis scenarios out of historic data according to scenario
patterns. Historic crisis scenarios are arranged into a
knowledge graph and provided as lessons learned to
the anticipating component that applies predictive
analytics to determine a model to forecast potential
crisis situations in the future (cf. Fig. 1). The ability
to monitor refers to actual conditions. Based on the
scenario pattern that serves as a marker template, the
monitoring component enables an observation of
what is happening in the surrounding environment of
manufacturers by applying the model to actual data
streams. In case of a detected potential crisis that could
impact the power supply and lead to outages, slots of

the scenario pattern are filled with derived data and
an alert is given. The responding component assures
fast and effective responses by users according to the
predicted crisis scenario (cf. Fig. 1). By showing the
scenario as a graph with additional evidence-based
explanations like time horizon and probability as well
as potential measures applied in historic scenarios, users
are supported in decision-making. Last, the predicted
crisis scenario including applied measures if any is
forwarded to the learning component to be integrated
into the scenario knowledge graph (cf. Fig. 1).

3.1. Scenario Patterns

Scenario patterns represent the core concept of
AISOP. They demonstrate a conceptual representation
of historical or future crisis situations. Related work on
scenario patterns stems from requirements engineering
[34, 35, 36], cognition [37, 38, 39], software engineering
[40, 41], knowledge representation [42] and crisis
communication [43]. According to the state of the art
and especially the work by Leite et al. [44], Hoekstra et
al. [42], Rolland et al. [34], Tsai et al. [41] and Xie et
al. [43], our scenario pattern model is composed of the
entities Identifier, Context, Source, Location, Reason,
Effect, Actors, Measures, Resources, and History (cf.
Tab. 1).

Each scenario pattern has an Identifier, that includes
unique information of the scenario such as a specific
title [44], ID and timestamp (cf. Tab. 1). The Context
Entity elaborates on further background information of
the scenario [44, 34] by providing a description, data
the scenario is based on and further influencing factors



(cf. Tab. 1). [43] identify the information source
as an important facet in order to describe the origin
and reliability of crisis information. So, the Source
entity includes information regarding the organization
acting as the source for data and information with
respect to the scenario (cf. Tab. 1). Furthermore,
[43] introduce the importance of dividing between a
local crisis, and a crisis that can have a general impact
and that is not bound to one specific location. We
adopted this division to our specific context within the
attributes of the Location entity (cf. Tab. 1). According
to [34, 41, 40, 35, 43], scenarios are described by
cause and effect relationships, that include pre- and
post-conditions leading to or resulting from the scenario.
The entities Reason and Effect therefore include these
attributes (cf. Tab. 1). In order to measure the
likeliness of the scenario, the attribute probability was
added while the attribute complexity was introduced to
measure the impact of the effect. We also integrated
Actors that can take certain Measures to react on a
scenario [42, 38, 44]. Actors are described by their
specific role and their acquired skill set that is needed to
take certain measures (cf. Tab. 1). Measures are based
on expert feedback and include action steps, that can
be categorized as precautionary or sudden. Resources
include equipment such as instruments, tools and aids
used to do action steps (cf. Tab. 1). Lastly, as
[34] point out, information about scenarios evolve over
time. Therefore, the History entity was included in
order to capture information on historical scenarios by
referencing to their ID.

3.2. Algorithm and Example Course

For introducing the proposed approach, we will
give an example course of anticipating energy-driven
crisis scenarios starting with the generation of historic
crisis scenarios and ending with an alert of a potential
crisis scenario. The description of the process will
be supported by the model view marked with step
numbers in Fig. 1. In the example, we apply AISOP on
domain-specific data streams on weather and outages
in Germany. The outage data is obtained from publicly
available data sets of German Federal Network Agency
(GFNA)? between 2012 and 2020, which contain
features such as network operator number, timestamp,
duration, type and occasion of the outage and further
features regarding power measurement. Weather data
is obtained from the NCEI database * which is an

’https://www.bundesnetzagentur.de/
DE/Fachthemen/ElektrizitaetundGas/

Versorgungssicherheit/Versorgungsunterbrechungen/

Auswertung_Strom/start.html
3https://www.noaa.gov/

integrated database of daily climate summaries from
land surface stations across the globe. The data set
contains numerous weather-related features such as
maximum and minimum temperature, wind speed, wind
gust, total daily precipitation, snowfall, dew point, and
indication of thunder or rainfall. For the following,
imagine a manufacturer in paper industry using a
service based on the AISOP model that wants to be
pro-actively alerted in case of upcoming, unplanned
outages to be able to adjust production planning with
respect to controlled shutdowns, maintenance and
planned downtimes.

Generating historic crisis scenarios: As a first step,
the learning component fills empty scenario patterns
(cf. step 1, Fig. 1) with provided data and information
by the user (cf. step 2, Fig. 1). Scenario patterns
are operationalized in JSON-LD* which enables
representing semantic relations within a network of
linked data. Fig. 2 shows a JSON instantiation of
an exemplary pattern, without contextual JSON-LD
specific syntax details. We use a semi-automated
approach for mapping data features of historical
weather and outage data as well as additional user
input onto the scenario pattern blueprint. This means,
that the user needs to supervise this step, i.e. revise
the output, in order to achieve correctness of assigned
attributes. Certain attributes, like ID and timestamp of
the entity Identifier are generated automatically (cf.
Fig. 2). The features and data entries (e.g. wind speed,
maximum wind speed, wind gust) of the provided input
data sets are inserted within the data attribute of the
Context entity (cf. Fig. 2). Furthermore, attributes
within Effect, Reason and Location entities can be
filled by using Natural Language Processing tools in
combination with the semantic network Babelnet’ on
the data sets’ features, i.e., assigning data features
directly to the pattern’s attributes (e.g., City) or finding
related synonyms in order to assign these features
(cf. Fig. 2). Further information regarding Actors or
Measures can be given as input by the user (cf. step 9,
Fig. 1). As scenario patterns are now filled with historic
crises, step 3 of AISOP includes executing a cypher
script to transform semantic relations and linked data
within the JSON-LD code (cf. right side of Fig. 2) into
a respective instance of a Knowledge Graph (KG) (cf.
Fig. 2). The resulting scenario KG is then forwarded as
lessons learned to the anticipating component (cf. step 4
in Fig. 1) that applies predictive analytics to determine
a forecasting model on energy specific crisis situations
(cf. Fig. 1).

“https://json-1d.org/spec/latest/json-1d/
Shttps://babelnet.org/
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Entity Description Attributes Example

Identifier [44] Identifier of scenario Title, ID, Timestamp Title:’Outage’,
ID:’Outage 987,
Timestamp:’2020-09-13T22:23:05+00:00”

Context [44, 34] Background information ScenarioDescription, ScenarioDescription:
and details Data, InfluentialFactors ’Outage based on shutdown windturbines’
Data: *wdsp,mxpsd,gust,4.0,7.0,26.66..,
InfluentialFactors: *Autumn Season’

Source [43] Origin and reliability Organization Organization: ’German Federal Network
of the scenario Agency’ NCEI’
ScenarioLocation Location of City, Address, City: "Munich’
[43] occurence of the scenario Region, Country Region: ’Bavaria’
Country: ’Germany’
ImpactLocation Location City, Address, City: °~’
[43] influenced by the scenario Region, Country Region: ’Bavaria’
Country: ’Germany’
Reason Conditions leading to and Precondition, Precondition: *Wind speed’,
[34, 40, 35,41] explaining the crisis Probability Probability: "0.78’
Effect Impact of a scenario and Postcondition, Postcondition: ’Machine downtime’
[34,35,43,41] resulting conditions Complexity Complexity: "Low’
Actor [44, 38, 42]People, groups, departments  ActorRole, Skillset ActorRole: *Worker’,
taking action Skillset: ’Maintenance work,..’
Measure [38, 42] Actions taken to resolve the  Actionstep, Category Category: ’Precautionary’,
scenario Actionstep: ’Plan downtime,..’
Resource [44, 38]Involved aids and tools Equipment Equipment: ’None’
History [34] Related historical scenarios  Identifier.ID Identifier.ID: *Outage 913’

Table 1: Description of scenario pattern model with entities, attributes and examples
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Figure 2: Instance of a crisis scenario pattern represented as conceptual knowledge graph and implemented in JSON (extract)



Observing potential scenarios: The monitoring
component monitors actual weather data within a
specific region (cf. step 6, Fig. 1). The forecasting
model provided by the anticipating component (cf.
step 5, Fig. 1) is applied on actual weather data (cf.
step 6, Fig. 1) in order to predict future outages. In
case of potential outages, the prediction features (e.g.,
model confidence) and entries are mapped onto the
data attribute within the Context entity (cf. Fig. 2).
All features and data entries of actual weather data
and outage data are mapped as stated in the previous
section. The timestamp attribute within the Identifier
entity, the probability attribute within Reason as well
as ImpactLocation are further derived from the outage
prediction (cf. Fig. 2). An inductive learning approach
is applied onto historical crisis scenario patterns as well
as the predicted outages for a specific time frame and
region (e.g., Bavaria) (cf. step 5, Fig. 1) in order to
explain results to the user. Inductive learning covers
inductive knowledge acquisition and prediction based
on generalized patterns of input observations, applying
numerical or symbolic approaches [45]. Based on
the structure of the scenario KG defined by scenario
patterns, we apply self-supervised symbolic learning
[45] in order to bridge the gap between symbolic
knowledge patterns and predictive analytical methods.
The application of symbolic learning enables to learn
from labels in natural language that explain information
within a KG. Considering predicted outages of the
forecasting model and attributes of entities of the
scenario pattern (e.g., Context entity with weather
features such as temperature, wind speed, wind gust
etc.) (cf. Fig. 2), rules can be derived. For instance,
based on the occurrence of an influential factor for a
certain outage reason, we could derive the rule:

IF Context.Influence = ’Autumn Season’

THEN Reason.Precondition = *Wind speed’;

This rule set is continuously revised and extended based
on the inserted information within the scenario KG.
Assuming a user inserts a list of feedback on possible
actions (Measure.actionSteps = ['plan downtime’, *plan
maintenance’, ’controlled shutdown’]) (cf. Fig. 2) for a
crisis scenario, the rule set could grow to:

IF Context.Influence = > Autumn Season’

THEN Reason.Precondition = *Wind speed’;

IF Reason.Precondition = *Wind speed’

THEN Measure.actionSteps=["plan downtime’, ’plan
maintenance’, ’controlled shutdown’];

Alerting crisis scenario: In case of a predicted
potential outage, an alert is triggered and results,
including the filled scenario patterns (cf. Fig. 2) and

inductive knowledge based explanations are given as
response to the user (cf. step 7, Fig. 1). The user can
provide feedback by adding input, e.g., on precautionary
action steps in the Measures entity (cf. step 8, Fig. 1).
The enriched scenario pattern is then forwarded and
reinserted as historic scenario pattern into the scenario
KG (cf. step 9, Fig. 1). This leads to a refinement
of further inductive knowledge rules enabling more
precise explanations of the predicted results.

4. Implementation and Evaluation

Based on the proposed model (cf. Fig. 1), we
implemented a proof of concept focusing on step 5 and
6 in AISOP, i.e., the observation of the surrounding
environment of manufacturers by applying scenario
patterns to actual data streams, i.e., weather data in this
case. If a potential crisis scenario is detected that could
impact the power supply and lead to outages, slots of the
scenario pattern are filled with derived data and an alert
is given. In order to be able to observe potential crisis
scenarios, we combined the semantic representation
of scenario patterns with self-supervised symbolic
learning and a supervised classification approach. The
proof of concept was implemented in Python, JSON
and JSON-LD. Having confirmed the location of a
manufacturer of the paper industry, slots of the scenario
pattern are used as a marker template that is filled
rule-based with results of analyzing actual weather data
streams with respect to a classification model. A
prerequisite for the implementation is the availability of
historic data on outages and weather data that can be
mapped onto scenario patterns as well as actual weather
data to observe.

4.1. Setting

To evaluate our approach, we conducted a run time
study with the implemented proof of concept. Goal of
this study was to assess the performance in predicting
potential outages caused by weather for manufacturers
of paper industry in Germany. For that purpose, we
applied a publicly available data set on power outages
published by German Federal Network Agency °. These
consist of 1.5 million power outages, that occurred in
Germany between 2012-2020. We noticed, that outages
occurred very unevenly in time. Furthermore, as shown
in Fig. 3, these outages are not evenly distributed
over Germany, as some cities show more outages than
others. Each outage is identified based on the network

Shttps://www.bundesnetzagentur.de/
DE/Fachthemen/ElektrizitaetundGas/

Versorgungssicherheit/Versorgungsunterbrechungen/
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operator id, date, city, reason, customers affected as
well as further outage-resulting features’. Tab. 2 lists
all the features of the applied data set. Furthermore,
only network operators that are still operational are
considered for this study and therefore only outages
caused through their respective network are included
within the analysis. For preprocessing, outages were

Figure 3: Distribution of outages in Germany 2012-2020
(Source: German Federal Network Agency) (left) and
distribution of weather stations across Germany (Source:
NCEI database) (right)

grouped based on date and city. Missing dates for each
city are filled with 0. After that, since this data set is
to be integrated with weather data, outage events that
are marked as planned or that are not related to weather
events were excluded. Finally, labels for a classification
problem are obtained where each row contains date, city
and outage-occurred which is a binary variable.
Weather data is obtained from the NCEI database®
which is an integrated database of daily climate
summaries from land surface stations across the globe.
The GHCN-daily data set provided by NCEI contains
records from over 100,000 stations in 180 countries.
The data set contains numerous weather-related features
such as maximum and minimum temperature, wind
speed, wind gust, total daily precipitation, snowfall, dew
point, and indication of thunder or rainfall. Tab. 2 lists
the weather features used in the evaluation. Each record
is uniquely identified by the weather station id and the
date. For preprocessing, weather stations were filtered
based on latitude and longitude to retain weather stations
in Germany (cf. Fig. 3).
Next step was to augment outages data with weather
data and to handle the imbalance of outages. Since
not all weather stations have complete historical data
in the NCEI data set, a set of weather stations (N=19)
was selected that contains all historical data from 2012
"Data are imbalanced as most of the dates do not contain details
for outages in a particular city. In particular, only 2% of the dates for
all cities are assigned to outages. This percentage is reduced to 1.5%

if cities have more than 1 outage in a day.
8nttps://www.noaa.gov/

Features of weather data | Features of outages data

Max Wind Speed Operator ID

Wind Gust Operator Name
Average Wind Speed Date

Average Temperature Time

Max Temperature Duration

Min Temperature City

Dew Point Planned/Unplanned
Visibility Max Voltage

Rain Mid Voltage

Snow Low Voltage

Ice Reason

Hail Interrupted active power [MW]
Thunder Customers Affected
Tornado -

Table 2: Overview of features of weather data (Source: NCEI)
(left) and outages data (Source: German Federal Network
Agency) (right)

until 2020. Then, to cater the unbalancedness problem,
K-means clustering with k¥ = 19 was applied to group
cities close to each other with the nearest weather
station. For our experiment, south-west part of Germany
was selected as it has shown the highest number of
outages (cf. Fig. 4). This resulted in increased
percentage of dates having outages for each cluster.
The final data set contains features such as cluster-id,
weather-station-id, date and weather-related features
while outage is used as a label to predict potential
outages °. Finally, data for each cluster was divided
into 80% for training, 10% for validation and 10% for
testing.

4.2. Results

Outage predictions were modeled as a supervised
learning classification problem with power outage as
label and weather conditions as feature. We report
on results of different models trained on the cluster of
cities in the south-west of Germany as shown in Fig 4.
For evaluation, accuracy, sensitivity and specificity were
used. Tab. 3 shows classification results of different
models. XGBoost (XGB) outperforms other models
in terms of overall accuracy (0.812) and sensitivity
(0.700). In particular, sensitivity is the most important
metric since it evaluates out of all outage events, how
many the model could identify, which is crucial given
the aforementioned scarcity of outage events. In order to
analyse which features have the strongest contribution
to outage prediction, weights of features that XGB

9To handle different ranges for different features, we scale all

features to be in the range 0 to 1.


https://www.noaa.gov/

Metrics LR SVM RF NN XGB
ACC 0.634 0.759 0.784 0.806 0.812
SP 0.950 0.952 0.978 0.868 0.850
SN 0.290 0.270 0.218 0.618 0.700

Table 3: Classification results of different models on predicting outages in south-west Germany (ACC = accuracy, SP = specificity,
SN = sensitivity, LR = Logistic Regression, RF = Random Forest, NN = Neural Network)

Figure 4: City clusters (blue) and weather stations (red)

converged to are plotted in Fig. 5'. We see that
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Figure 5: Feature importance in weather data for predicting
outages

maximum wind speed, dew point, wind gust along
thunder indicators and temperature features had the most
contribution to the outage prediction. This is aligned
with several studies [46, 47] that show how storms pose
a challenge to power distribution operators in many
countries in Europe.

For evaluation, locations of paper industry within the

10Feature importance score is calculated for a single decision tree
in XGBoost by the amount that each attribute split point improves
the performance measure, weighted by the number of observations the
node is responsible for.

city cluster (cf. Fig. 4) were selected as published by the
German Paper Industry Association!!. For those paper
manufacturers in south-west Germany (N=7)'?, we were
able to predict outages in 2020 with the aforementioned
accuracy of 0.812. In case of a predicted outage for the
location of the paper manufacturer, relevant data were
mapped onto the scenario pattern structure, as specified
in (cf. Tab. 1). Features of both data sets as listed in
(cf. Tab. 2) and their respective data entries for the date
of the potential outage with affected region were filled
into the scenario pattern (Context. Data). Furthermore,
the date was inserted as Identifier.Timestamp into
the pattern. The City feature within the data set of
German Federal Network Agency (cf. Tab. 2) was
mapped onto ScenarioLocation.City similar to the
Reason feature that fills the slot Reason.Precondition.
As the applied classification model also captures the
level of confidence regarding its prediction, this value
is mapped onto Reason.Probability. The feature
of affected customers (cf. Tab. 2) was mapped
onto E f fect. Postconditions in the scenario pattern.
The History entity is automatically generated in each
newly generated scenario pattern for linking it with
historic crisis scenarios caused by outages at the same
location (Identifier.ID). In summary, completely
filled scenario patterns with explanatory information
on the predicted outages potentially affecting the
manufacturers (N=7) were generated. In a next step,
an alert would be given for presenting the predicted
scenarios to manufacturers for supporting decisions
on the pro-active initiation of measures in production
planning.

5. Conclusion

We considered energy-driven crises in process
industry. Despite of the criticality of power outages
and fluctuations for energy-intensive process industry
and serious consequences of uncontrolled shutdowns of
production lines, handling of outages in manufacturing
focuses on commissioning of expensive proprietary
power plants to protect against power outages and

https://www.papierindustrie.de/

12Cities: Raubling, Trostberg, Augsburg, Schrobenhausen, Fiirth,
Teisnach, Plattling



implicit gut feeling in anticipating potential disruptions.
Putting the emphasis on responsibility and decision
space of manufacturers, we introduced AISOP, a
model for Al-based scenario planning for predicting
crisis situations. AISOP uses conceptual, well-defined
scenario patterns to capture entities of crisis situations
in history and future, e.g., location and dates of
outages, effects like downtimes. Data streams, e.g.,
historic outages, weather data, are mapped onto scenario
patterns for determining historic crisis scenarios and
predicting future crisis scenarios by using inductive
knowledge and machine learning. The model was
exemplified within a proof of concept for energy-driven
disruption prediction in process industry. We were
able to evaluate the proposed approach by means
of a set of data streams on outages in Germany in
terms of performance in predicting potential outages for
manufacturers of paper industry with promising results.
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