
Considering Inter-Case Dependencies During Similarity-Based
Retrieval in Process-Oriented Case-Based Reasoning

Rahol Kumar1, Alexander Schultheis1, Lukas Malburg1,2, Maximilian Hoffmann1,2, Ralph Bergmann1,2
1 Artificial Intelligence and Intelligent Information Systems, University of Trier, 54296 Trier, Germany

{s4rakuma,s4axschu,malburgl,hoffmannm,bergmann}@uni-trier.de,
http://www.wi2.uni-trier.de

2 German Research Center for Artificial Intelligence (DFKI)
Branch University of Trier, Behringstraße 21, 54296 Trier, Germany
{lukas.malburg,maximilian.hoffmann,ralph.bergmann}@dfki.de

Abstract
In Case-Based Reasoning (CBR), knowledge gained
from previously experienced problem-solving situations
is stored as cases that can be used to solve similar up-
coming problems. Although these cases act as indepen-
dent knowledge entities, dependencies between cases
are common in real-world scenarios, despite being only
rarely considered during case retrieval or other CBR
phases. In this paper, we introduce so-called inter-case
dependencies, which are considered in the context of
Process-Oriented CBR (POCBR). Therefore, we 1) de-
rive requirements that must be satisfied for consider-
ing dependencies during the retrieval phase, 2) analyze
which knowledge representations are suitable for rep-
resenting dependencies between cases, and, 3) present
our approach for Dependency-Guided Retrieval (DGR)
that considers these dependencies between cases during
the retrieval phase. In the experimental evaluation, the
proposed DGR approach is compared to a regular CBR
approach in case retrieval scenarios from the cooking
domain. The results demonstrate that the use of the
DGR approach leads to significantly reduced times for
human problem-solving compared to regular CBR.

1 Introduction
Workflow management is increasingly used in several
domains such as in companies, in e-Science, or in smart
environments. For this reason, reusing procedural ex-
periential knowledge is gaining importance in workflow
and knowledge management (Bergmann et al. 2019).
In Workflow Management Systems (WfMSs) (Dumas
et al. 2018), several workflows, e. g., from different
departments in a company, are executed in parallel.
These workflows are often interrelated with each other,
e. g., tasks are executed in the same or in a similar way
or a workflow partially influences tasks in another work-
flow. For example, multiple recipes in a kitchen sce-
nario can be represented as workflows. These recipes
often have dependencies or relations among each other,
e. g., some dish is recommended as a starter for some
other main dish. This knowledge should consequently
be used to improve the selection of workflows for ex-
ecution. For instance, the exemplary relation can help
for recommending pairs of starters and main dish.
Copyright © 2022 for this paper by its authors.

A discipline from artificial intelligence that can be
used to support workflow and knowledge management
is Process-Oriented Case-Based Reasoning (POCBR)
(Minor, Montani, and Recio-Garćıa 2014; Bergmann
and Gil 2014). POCBR combines Case-Based Reason-
ing (CBR) (Aamodt and Plaza 1994) with Process-
Aware Information Systems (PAISs) such as WfMSs
(Dumas et al. 2018) and enables the reuse of best-
practice procedural experiential knowledge, i. e., cases
represented as a semantic workflow graphs. A key fea-
ture of (PO-)CBR is similarity-based retrieval, where
problems and their respective solutions – bundled as
cases in a case base – are used to solve upcoming prob-
lems (queries). This process relies on similarity com-
putations that are harnessed to find the best-matching
case w. r. t. a given user query. However, these similarity
computations do not sufficiently consider dependencies
between workflows (cases) in existing POCBR applica-
tions which restricts the utility of the similarity-based
retrieval and limits the reuse of experiential knowledge
in certain scenarios.

In this paper, we introduce so-called inter-case depen-
dencies between different workflow cases. Such a depen-
dency, similar to (Sell et al. 2009), describes a relation-
ship between two entities that can either be a workflow
or an element of a workflow. Each dependency has spe-
cific features that describe the characteristics of the re-
lationship between the workflows or workflow elements.
As a first step to consider inter-case dependencies in
POCBR, we present a generic approach that allows to
define dependencies within the query definition and the
cases of the case base. We derive requirements from
literature and investigate which knowledge structures
are suitable for the representation of inter-case depen-
dencies based on the requirements. Additionally, our
approach covers a novel way of similarity assessment
where the defined dependency information is used to
find matching cases regarding a query.

The remainder of the paper is structured as follows:
In Sect. 2, we present foundations on our semantic
graph format and discuss related literature on existing
definitions of dependencies in CBR and Business Pro-
cess Management (BPM). We present our approach for
similarity-based retrieval in CBR by considering inter-

case dependencies in Sect. 3. The proposed approach
is evaluated by using an application scenario from the
cooking domain (see Sect. 4). In Sect. 5, the paper is
concluded and future work is discussed.

2 Foundations
The integration of dependencies in our approach con-
cerns the case base and the queries that are used dur-
ing a similarity-based retrieval. The cases and the query
are both represented in a semantic workflow represen-
tation that is described in this section. Furthermore, we
discuss related work on integrating dependencies from
the research fields of Case-Based Reasoning (CBR) and
Business Process Management (BPM).

Semantic Workflow Representation
The approach of representing cases in Process-Oriented
Case-Based Reasoning (POCBR) considered within the
scope of this contribution is that of NEST graphs,
which are specific representations of a workflow or pro-
cess (Bergmann et al. 2019). A NEST graph is a se-
mantically labeled directed graph (Bergmann and Gil
2014) represented as a quadruple W = (N, E, S, T),
whereby N is a set of nodes and E ⊆ N × N a set of
edges. T : N ∪ E → Ω assigns a type from Ω to each
node and each edge. S : N ∪ E → Σ assigns a seman-
tic description from a semantic metadata language Σ to
each node and edge and annotates the graph structure
with semantic knowledge. Each NEST graph is part of
a case base which is denoted as W ∈ CB. An exem-
plary NEST graph that represents a cooking recipe is
shown in Fig. 1. The figure shows different node and
edge types and an exemplary semantic description.

cut dice

task node data node control-flow dataflow part-of

cut

Duration: 2 (Integer)

Auxiliaries: Knife, Board (List)
tomato

cucumber

Example
Recipe

workflow
node edge edge edge

Figure 1: Exemplary Cooking Recipe represented as
NEST Graph

Related Work on Workflow Dependencies
Besides CBR literature, related work can also be found
in the research area of BPM. That is due to the focus of
BPM on Process-Aware Information Systems (PAISs),
which overlaps with the focus of POCBR. We present
approaches that deal with the application of dependen-
cies, as well as approaches that discuss different repre-
sentation formats. Weber et al. (2006) address the chal-
lenge of case-based maintenance in conversational CBR
systems. They build up dependencies between cases of
the case base during the progression of a conversation

in order to find cases that can be merged. Reuss et al.
(2017) use dependencies to represent relationships be-
tween different types of knowledge in CBR. This aims
at a different application scope than the definition of
dependencies between cases. There is also work in CBR
regarding the representation of dependencies. A Mem-
ory Organization Packet (MOP) (Kolodner 1993, pp.
108) is a type of dynamic memory that describes a gen-
eralized episode. Organizing dependent cases in a MOP,
however, restricts the representation to a single depen-
dency between two cases. Müller and Bergmann (2014)
use clusters of cases that are created prior to a retrieval.
Although the clustering is originally performed accord-
ing to the similarity assessment, this could be applied to
case dependencies such that dependent cases are orga-
nized in clusters. Furthermore, the case retrieval net in-
troduced by Lenz and Burkhard (1996) is a graph struc-
ture consisting of nodes (cases) connected by an edge
according to their degree of mutual influence. Repre-
senting dependencies with case retrieval nets has not yet
been explored in the context of POCBR. The represen-
tation of dependencies is also discussed in the research
area of BPM. Sell et al. (2009) discuss requirements
and suitable representations for dependencies between
different components of processes. The candidate rep-
resentations are an OWL ontology and an XML docu-
ment. Dumas et al. (2018, pp. 428) use a graph format
for representing dependencies in the context of auto-
mated process discovery based on event data. Thereby,
each node represents an event (e. g., a task) from the
process and the edges model relationships that indicate
the order of events. However, dependencies are only
modeled as a temporal observation rather than on a
semantic level.

3 Inter-Case Dependencies in
Similarity-Based Retrieval

The integration of inter-case dependencies into POCBR
requires several extensions. In order to model depen-
dencies between cases of the case base, a suitable rep-
resentation has to be defined. We raise requirements on
the representation format and present a suitable format
for our purpose, both assisted by analyzing existing lit-
erature. Given the dependency representation format,
the regular similarity-based retrieval of POCBR is ex-
tended to support dependencies in the query definition,
the case definition, and the similarity assessment.

Requirements of Dependencies
The following requirements are imposed on the rep-
resentation format for integrating dependencies into
POCBR applications. They are identified by conduct-
ing a literature study regarding applications and use
cases of POCBR and Business Process Management
(BPM). In particular, several requirements are based
on the work of Sell et al. (2009) who also raise require-
ments on a dependency representation format.
1. Different types of dependencies belonging to the

corresponding domain must be distinguished (cf. Sell
et al. 2009).

2. Two cases can have multiple dependencies be-
tween each other. These dependencies can be of
different types (among others, cf. Sell et al. 2009).

3. Dependencies can be modeled at different levels of
granularity. For instance, a complete case can have
a relation to another case in the case base. In addi-
tion, it is also possible that only parts of a workflow
case are related to parts of another workflow case,
i. e., one node is dependent on a node from a differ-
ent workflow.

4. In order to simplify the dependency specification,
presentation, and integration in legacy systems, de-
pendencies should be represented using a well-
known and standardized modeling format (cf.
Sell et al. 2009).

5. To allow a seamless integration of dependencies into
a POCBR application, it should be possible to add
the dependencies without changes to the exist-
ing case representation. The dependency repre-
sentation format is intended as a separate component
built on top of an existing case base, which ensures
that it is applicable to different case representation
formats (e. g., XML or relational databases).

6. Automatically generated dependencies
(e. g., with machine learning methods) should
be represented analogously to manually-modeled de-
pendencies by an expert. The representation format
should therefore be interpretable by machines as well
as understandable and easily readable by humans.

Knowledge Structure for Representation of
Dependencies
Based on a literature study, two candidate dependency
representation formats are identified and further de-
scribed in the following: an OWL-based ontology (Sell
et al. 2009) and a dependency graph based on a meta-
XML (Dumas et al. 2018). Sell et al. represent Cases as
individuals in an OWL ontology. Dependencies can ei-
ther be modeled as properties or as instances (see Sell et
al. 2009 for more details). Different types of dependen-
cies can be modeled in a class structure. However, mod-
eling dependencies in an OWL ontology requires the in-
tegration of the case base with the ontology in order to
take full advantage of some ontology-specific features
such as automatic reasoning. The dependency graph
proposed by Dumas et al. is based on a meta-XML.
It is very generic and can be configured to individual
needs. A node represents a reference to a case from the
case base, and an edge between these nodes specifies a
dependency. There is a separate edge for each type of
dependency and additional meta-information that is re-
quired for some types. Both approaches are suitable for
representing dependencies in POCBR and meet most
of the raised requirements. An exception is the fifth re-
quirement that is not fully met by the ontology-based

approach, as it might require a transformation of the
cases and their case representation into an ontological
representation. This results in a large effort for existing
application domain models. Common Case-Based Rea-
soning (CBR) frameworks like ProCAKE (Bergmann
et al. 2019), jColibri (Bello-Tomás, González-Calero,
and Dı́az-Agudo 2004), myCBR (Bach et al. 2014),
and eXiT*CBR (López et al. 2011) currently do not
support case representations based on ontologies. The
dependency graph is a more generic representation for
any kind of case representation (e. g., XML or relational
database). Therefore, the dependency graph is eventu-
ally chosen.

Definition of Inter-Case Dependencies
The dependencies between components, i. e., either a
case or a workflow fragment, are represented by a de-
pendency graph1 G = (Nd, Ed, lG). Here, Nd ∈ CB ∪
N ∪ E represents the nodes of the dependency graphs
that can be a workflow from the case base or a workflow
fragment, i. e., a node or an edge. Ed ⊆ Nd ×Nd is the
edge set. An edge from Ed represents a dependency be-
tween two components where the function lG : Ed → D
labels the edge with a dependency type (which can be
domain dependent) from the set of types D.

Dependency-Guided Retrieval
In CBR, retrieval is important because it acts as the
initial phase of the CBR cycle and has a strong in-
fluence on all subsequent phases (Aamodt and Plaza
1994). Thus, it is important to properly integrate inter-
case dependencies into the similarity assessment of the
retrieval phase. Our approach, which takes dependen-
cies into account during query creation and during the
similarity assessment, is called Dependency-Guided Re-
trieval (DGR). It can be divided into three parts: First,
the query is defined, which contains several traditional
queries and the knowledge about dependencies between
them. In the second step, the case base is searched for
candidate cases that fulfill the dependency requirements
defined in the query. This step can be seen as a prepro-
cessing step prior to the semantic similarity assessment.
Finally, the similarity between the query and the candi-
date cases is computed in order to find the best-fitting
retrieval results.

The query definition in a DGR (see Fig. 2, item
1) is an extension of conventional retrieval queries
(Bergmann 2003, pp. 188). A dependency query Q =
(QQ, QD) is a tuple of m conventional queries QQ rep-
resented as NEST graphs and the dependencies between
those queries QD. QD is a dependency graph itself,
containing all dependency knowledge among the query
components in QQ.

Since the newly defined query contains several tradi-
tional queries, a simple similarity computation between
a single case and the query is not applicable and, thus,

1 The dependency graph is a pseudodigraph that allows
multiple edges between two nodes.

Query-Object

Set of
Dependent Cases
(each of size m)

Case 1Case 1Case 1

Overall Similarity
(Aggregate)

Background
Knowledge

Cases

Dependency
Knowledge

(1)

Query 1

Querym

∙
∙
∙

(2)

Set of (k most) Similar
Dependent Cases

Case 1

Case m

Case 1

Case m

Case 1

Case m

Similarity
Computa�on

Query 1 Querym

Case 1 Casem

(3)

∙ ∙ ∙

∙ ∙ ∙

D
e

sire
d

D
e

p
e

n
d

e
n

cie
s

∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙

∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙

Case m Case m Case m

Figure 2: Process of Dependency-Guided Retrieval

the cases must be converted into a compatible struc-
ture. Therefore, a set of dependent cases DC of size
m is created. This set is computed by performing a
search in the case base (see Fig. 2, item 2). Each entry
in DC is a tuple (dc, simD), consisting of a dependent
case dc = (c1, ..., cm) that contains several cases from
the case base and a similarity of the dependency simD.
Algorithm 1 illustrates the search process. The depen-
dency query, the case base, and the dependency graph
are given as input. We generally differentiate between
full matches and partial matches of dependent cases re-
garding the query Q. A full match (see loop in lines
3 – 8) exists if a dependent case contains exactly the
required dependencies from QD. This means that, for
instance, a dependency which points from qi to qj of
type d ∈ D must be mapped to a dependency of the
same type d, which points from ci to cj . The minimum
number of full matches to retrieve can be set by the
parameter ms. DC is populated by full matches with
priority. If there are less than ms full matches, partial
matches are also considered. A partial match (see loop
in lines 10 – 14) exists if a dependent case contains at
least as many dependencies as the query, but not all
of them are of the required types. For this purpose,
dependency similarities can be defined in the similar-
ity model, which indicate how similar dependencies of
different types d ∈ D are. The dependency similarity
of a full match is 1 and the one of a partial match
is usually below 1. For a partial match, the similarity
value is computed by the function calcMappingMaxSim
that matches the dependency graph of the query onto
the dependent case, similar to similarity assessment via
graph matching (Bergmann and Gil 2014). This can be
done using a brute force approach but heuristic search
algorithms can also be used.

After determining the set DC, the final similarity
calculation between the case tuples and the de-
pendency query Q (see Fig. 2, item 3) is performed.

Algorithm 1 Algorithm to calculate a set of dependent
cases with its dependency similarities
Input: dependency query Q = (QQ, QD), case base
CB, dependency graph of the case base G, required
minimum size of the set of dependent cases ms
Output: Set of dependent cases DC

1: DC ← ∅
2: DQ ← getDependencies(QG, QQ)
3: for all (c1, ..., cm) ∈ CBm do
4: DDC ← getDependencies(DG, (c1, ..., cm))
5: if isFullmatch(DQ, DDC) then
6: DC.add(((c1, ..., cm), 1.0))
7: end if
8: end for
9: if |DC| ≤ ms then

10: for all (c1, ..., cm) ∈ (CBm \DC) do
11: DDC ← getDependencies(DG, (c1, ..., cm))
12: simD ← calcMappingMaxSim(DQ, DDC)
13: DC.add(((c1, ..., cm), simD))
14: end for
15: end if

The similarity function for the query QQ = (q1, ..., qm)
and for each dependent case dc = (c1, ..., cm) ∈ DC is
defined as follows:

sim(QQ, dc) = α·simD(QQ, dc)+(1−α)·
m∑

i=1
sim(qi, ci)

The dependency similarity of the dependency query and
the dependent case (simD(QQ, dc)) is first calculated. If
the found case combination is a full match, then simD is
1.0. This value is then added to the aggregated similari-
ties between the items of the query and the items of the
dependent case (sim(qi, ci)). Σ represents an aggrega-
tion function of the individual similarities, e. g., mean,
max, min etc. The similarity values of these items are
computed with the graph-matching similarity measure
presented by Bergmann and Gil (2014). Overall, this
results in a similarity value that assesses the dependen-
cies in the query and the cases and the similarities of
individual cases. We also include the weighting factor
α that enables adjusting both parts of the similarity
computation to individual needs of the use case.

4 Experimental Evaluation
In our evaluation, we want to examine the suitability
of the Dependency-Guided Retrieval (DGR) approach
regarding the retrieval quality and modeling time in a
user study. For this purpose, a usability test of a proto-
typical implementation of this approach is performed as
a comparison to the traditional Case-Based Reasoning
(CBR) approach. The three usability components effec-
tiveness, efficiency, and satisfaction according to ISO
9241-11 (The International Organization for Standard-
ization 2018) are determined. The evaluation is per-
formed using the domain of cooking recipes that is in-

tomato

cut dice

paprika

Example
Recipe

tomato
cut

Example
Recipe 2

CommonTask ParallelExecution AlternativeRecipeCommonIngredient

Figure 3: A simple example of dependencies between
two workflows represented as NEST graphs (Analogous
to the representation in Fig. 1)

troduced together with the experimental setup. After-
wards, the results are presented.

Application Scenario and Experimental
Setup
In related work, e. g., Müller and Bergmann (2015),
Process-Oriented Case-Based Reasoning (POCBR) is
applied to the cooking domain where recipes are mod-
eled as semantic graphs. We use this domain, extended
by dependencies, as an application scenario of our eval-
uation (see Fig. 3). Consider the following scenario: A
person wants to prepare several dishes and needs cor-
responding recipes: a starter recipe and a main dish
recipe. In addition, several cooking steps should be per-
formed in parallel to save time during cooking. To per-
form a retrieval with this exemplary query, the integra-
tion of dependencies in the retrieval process and the
case base is required. This includes an inter-case de-
pendency that represents combinable starter and main
dish recipes, as well as dependencies between cooking
steps that specify them as executable in parallel. Be-
sides these two, there are many other dependencies that
can be applied in the given domain, e. g., an inter-case
dependency for the selection of alternative recipes or a
dependency between common tasks in different recipes
(see Fig. 3).

For the experiments, the presented approach was
implemented in the ProCAKE framework (Bergmann
et al. 2019) that enables the development of process-
oriented CBR applications. Cases are represented as se-
mantic NEST graphs (see Sect. 2). A case base with 20
suitable recipes of main and starter dishes has been cre-
ated and is used as the test domain. The dependencies
already described in the application scenario are speci-
fied in the case base. We asked experts for the evalua-
tion who already had knowledge in CBR as well as in
the use of ProCAKE. The experts are divided into two
groups: the first group used ProCAKE without the new
approach but with externally provided knowledge about
dependencies in tabular form. The second group used
ProCAKE with DGR and a given dependency graph

containing all required dependency knowledge. There
are a total of eight experts that were randomly assigned
to the groups. After a short introduction to the topic,
we present two retrieval scenarios for the evaluation.
In both scenarios, two queries are given, for which the
best possible case pair has to be found w. r. t. the given
dependencies. In addition, the second group that used
our proposed approach also had to add dependencies to
the dependency graph. Finally, the experts were inter-
viewed by means of questionnaires using Likert scales.
In addition to specific questions about the proposed ap-
proach, general questions such as the level of knowledge
in CBR have been asked. The questionnaire is used for
assessing user satisfaction. Effectiveness is calculated as
the product of quantity and quality. Since all experts
were able to complete the assignments and found the
best possible solutions, quantity and quality are always
fully satisfied, i. e., 1, and in turn also the effectiveness.
Therefore, it is omitted below.

Experimental Results
Efficiency is determined by measuring the times re-
quired for the assignments. Overall, some outliers were
observed, as some experts solved assignments signifi-
cantly faster or took significantly longer. The first group
using CBR without dependency integration took an av-
erage of approx. 31 minutes for both retrieval tasks. In
the second group that used DGR, it took an average of
approx. 19 minutes for both tasks. However, the execu-
tion of the retrieval leads to an increase in time of ap-
prox. 10 seconds compared to the traditional retrieval,
in which only a few milliseconds are needed. It can be
seen that the group using the new approach required
less training time and was thus able to complete the
first task significantly faster. In addition, the experts
needed less time to model the dependencies in the query
compared to the time needed to manually compare two
cases in the other group.

When measuring satisfaction using the questionnaire,
all experts indicated that their knowledge of CBR is ba-
sic or advanced. In the group that did not use our pro-
posed approach, the experts were all satisfied with their
found results and their quality. The representation was
judged to be appropriate for the scale of the task. How-
ever, opinions differ widely whether this manually cre-
ated representation is appropriate for larger case bases.
Nevertheless, experts agree that representing dependen-
cies in a separate knowledge structure in CBR is useful
and also suggest to automatically include them during
the retrieval. Half of the experts also formulated sug-
gestions for improvements such as a machine-readable
representation and storage of dependencies, as well as
queries that contain dependency information. These
recommendations can be found in this form in our pro-
posed approach. The second group, which used the new
approach of DGR, determined that modeling the de-
pendency graph in the current form is appropriate and
preferred to store it as XML. This question was asked to
learn about user preferences because, as described, both

XML and an ontology are appropriate representations
of the dependency graph. When asked if an ontology
would be better suited for storage, half of the experts
disagreed, and only one agreed. The approach of DGR
was also evaluated positively by the experts. However,
the experts were unsure whether their results are opti-
mal, which is probably due to the low consideration of
the individual retrieval results. Experts rated the inte-
gration of dependencies in the query as a good option
and did not find it too complex or incomprehensible.
They all considered query construction with multiple
problem descriptions to be a good and useful extension
of conventional CBR systems. Overall, the experts were
able to retrieve the same qualitative results in less time
with the new approach of DGR.

5 Conclusions and Future Work
This paper presents an approach for integrating depen-
dency knowledge into the retrieval phase of Case-Based
Reasoning (CBR). The dependency graph has been
identified as a useful knowledge structure for inter-case
dependencies compared to an ontology-based approach.
In order to include dependencies in the retrieval phase,
changes to the retrieval process with the underlying
query definition and similarity measures are proposed.
The concept of Dependency-Guided Retrieval (DGR)
has been tested with respect to suitability and acces-
sibility in comparison to traditional CBR by means of
a user evaluation and a usability test. The experts that
used the dependency-guided approach considered it as
suitable for solving the given problem and considered it
as a useful extension of traditional CBR systems.

In future work, we plan to optimize the search proce-
dure for the k-best case combinations that uses a slow
exhaustive search. Thus, approaches from the field of
informed search (see Hart et al. 1968) could be ex-
plored to achieve a fast computation of the best case
combinations. Furthermore, dependencies are currently
manually modeled by human experts. We want to ex-
amine the use of inductive learning methods to auto-
matically learn dependencies between cases and work-
flow fragments based on the vocabulary and the case
base of the CBR application. In addition, the integra-
tion of dependencies into other phases of the CBR cy-
cle (see Aamodt and Plaza 1994) offers potential for fu-
ture work. Our approach can enhance existing workflow
adaptation methods by exploiting dependency knowl-
edge for modifying the solution of the retrieved case in
the reuse phase.

References
Aamodt, A., and Plaza, E. 1994. Case-Based Rea-
soning: Foundational Issues, Methodological Variations,
and System Approaches. AI Commun. 7(1):39–59.
Bach, K.; Sauer, C.; Althoff, K.-D.; and Roth-
Berghofer, T. 2014. Knowledge Modeling with the
Open Source Tool myCBR. In CEUR Workshop Proc.,
volume 1289.

Bello-Tomás, J. J.; González-Calero, P. A.; and Dı́az-
Agudo, B. 2004. JColibri: An Object-Oriented Frame-
work for Building CBR Systems. In 7th ECCBR, vol-
ume 3155 of LNCS, 32–46. Springer.
Bergmann, R., and Gil, Y. 2014. Similarity assessment
and efficient retrieval of semantic workflows. Inf. Syst.
40:115–127.
Bergmann, R.; Grumbach, L.; Malburg, L.; and Zeyen,
C. 2019. ProCAKE: A Process-Oriented Case-Based
Reasoning Framework. In 27th ICCBR Workshop Proc.
Bergmann, R. 2003. Experience Management: Foun-
dations, Development Methodology, and Internet-Based
Applications, volume 2432 of LNCS. Springer.
Dumas, M.; La Rosa, M.; Mendling, J.; and Reijers,
H. A. 2018. Fundamentals of Business Process Man-
agement. Springer.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A For-
mal Basis for the Heuristic Determination of Minimum
Cost Paths. IEEE Trans. Syst. Sci. Cybern. 4(2):100–
107.
Kolodner, J. L. 1993. Case-Based Reasoning. Morgan
Kaufmann.
Lenz, M., and Burkhard, H.-D. 1996. Case retrieval
nets: Basic ideas and extensions. In KI-96: Adv. in AI,
227–239. Springer.
López, B.; Pous, C.; Gay, P.; Pla, A.; Sanz, J.; and
Brunet, J. 2011. eXiT*CBR: A framework for case-
based medical diagnosis development and experimenta-
tion. Artif. Intell. Medicine 51(2):81–91.
Minor, M.; Montani, S.; and Recio-Garćıa, J. A.
2014. Process-oriented case-based reasoning. Inf. Syst.
40:103–105.
Müller, G., and Bergmann, R. 2014. A Cluster-Based
Approach to Improve Similarity-Based Retrieval for
Process-Oriented Case-Based Reasoning. In 21st ECAI,
volume 263, 639–644. IOS Press.
Müller, G., and Bergmann, R. 2015. POQL: New Query
Language for Process-Oriented Case-Based Reasoning.
In Proc. LWA, volume 1458 of CEUR Workshop Proc.,
247–255.
Reuss, P.; Witzke, C.; and Althoff, K.-D. 2017. De-
pendency Modeling for Knowledge Maintenance in Dis-
tributed CBR Systems. In 25th ICCBR, volume 10339
of LNCS, 302–314. Springer.
Sell, C.; Winkler, M.; Springer, T.; and Schill, A. 2009.
Two Dependency Modeling Approaches for Business
Process Adaptation. In 3rd KSEM, volume 5914 of
LNCS, 418–429. Springer.
The International Organization for Standardization.
2018. Ergonomics of human-system interaction - Part
11: Usability: Definitions and concepts.
Weber, B.; Reichert, M.; and Wild, W. 2006. Case-Base
Maintenance for CCBR-Based Process Evolution. In
8th ECCBR, volume 4106 of LNCS, 106–120. Springer.

