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Abstract 

 
The paper describes a set of experiments aimed at 
identifying and evaluating context features and 
machine learning methods to identify medical 
semantic relations in texts. We use manually 
constructed lists of pairs of MeSH-classes that 
represent specific relations, and a linguistically and 
semantically annotated corpus of medical abstracts 
to explore the contextual features of relations. 
Using hierarchical clustering we compare and 
evaluate linguistic aspects of relation context and 
different data representations. Through feature 
selection on a small data set we also show that 
relations are characterized by typical context 
words, and by isolating these we can construct a 
more robust language model representing the 
target relation. Finally, we present graph 
visualization as an alternative and promising way 
of data representation facilitating feature selection.   
 
1. Introduction 
 
Finding previously unknown information in large 
text collections is undoubtedly the greatest 
challenge of Text Mining, and biomedicine remains 
one of its most interesting domains of application. 
This is primarily due to the potentially very broad 
impact of biomedical findings, but also to the 
extensiveness of electronic knowledge sources (e.g. 
UMLS and Medline), “waiting” to be exploited in 
an innovative way integrating natural language 
processing and machine learning techniques. 
  
Using linguistic analysis and medical thesauri, we 
introduce multiple levels of semantic annotation 
which help us narrow our search to selected 
medical concepts or semantic types.  Despite all 
this explicitly or implicitly available knowledge, 
the identification of semantic relations, such as 
substance A treats disease B, remains a non-trivial 
task. Of course, the Semantic Network of the 
Unified Medical Language System (UMLS) already 
defines 54 domain-specific relations between the 
134 available semantic types, which enables us to 
identify instances of UMLS relations in texts. 
However, applying the Semantic Network relations 
to medical abstracts shows that those relations are 

often too generic, ambiguous or incomplete. Also, 
for many knowledge modelling or information 
extraction tasks 54 different relations are too much, 
as the boundaries between, say, associated_with 
and interacts_with tend to be blurred. We therefore 
seek for better ways of identifying selected domain-
specific relations in medical texts, and since we 
believe that meaningful relations between concepts 
are verbalized in some way or another, the aim is to 
identify the context features that most reliably point 
to a certain semantic relation and learn the most 
effective way of representing them. By context 
features we mean in particular the linguistic 
environment of a pair of concepts, which we 
explore at different levels, including pure tokens, 
selected part-of-speech classes and semantic 
classes.   
 
The first indicator of a possible semantic relation is 
when two concepts co-occur more frequently than 
would be expected by chance. We use a corpus of 
medical abstracts obtained from Springer (a subset 
of Medline) to extract pairs of co-occurring 
concepts, which we generalize according to MeSH-
tree membership at level 0. In order to explore 
context features in a controlled environment we use 
manually compiled lists of pairs of MeSH-tree 
leaves, which according to the medical expert very 
probably represent a specific semantic relation. 
Thus, for the relation treats the medical expert 
provided a list of over 100 pairs, such as D13|C23. 
Similar lists were compiled for 3 other relations, 
location_of, causes and analyzes.  
 
Using these data sets and the semantically 
annotated corpus, we seek to answer the following 
two questions: Firstly, which context features most 
reliably characterize a relation or help us 
distinguish between possible relations, and 
secondly, which data representation and mining 
algorithm works best in grouping MeSH-pairs 
according to the relation they represent. 
 
2. Related work 

 
We are aware of several approaches to mining 
semantic relations from text for various 
applications, e.g. ontology construction, 
information retrieval and knowledge discovery, 



much of the latter in the biomedical domain. 
Approaches to ontology construction are primarily 
focused on discovering taxonomic or non-
taxonomic relations between concepts, for example 
by learning association rules [12] or by concept 
clustering combined with grammatical relations [2]. 
In contrast to a typical ontology building scenario, 
we exploit an already existing ontology (UMLS) to 
identify our concepts and semantic classes and then 
focus on specific (i.e. labelled) medical relations for 
potential ontology enrichment.  
 
A more supervised line of research aims to find 
relations via lexico-syntactic patterns, e.g. {NP}, 
especially {NP}, which would match pairs of 
hypernyms as in European countries, especially 
France [10], [9], [6], [1].  
  
For the purposes of knowledge discovery in 
medicine even unlabelled associations or statistical 
correlations may prove useful for hypothesis 
generation, as Swanson’s experiments show [15]. 
Later work by Weeber et al. [16] proposes a more 
sophisticated model of automatic hypothesis 
generation from a medical corpus, which already 
integrates some linguistic processing and semantic 
annotation. Finding specific medical relations, such 
as X causes Y, was initially attempted through 
tables of pattern-matching rules based on co-
occurrences of MeSH-classes [4]. Rosario et al. 
[13] use MeSH in a similar way to determine 
semantic relations within noun compounds. Our 
approach also uses pairs of co-occurring MeSH-
classes, however instead of providing patterns or 
rules we try to learn the context that determines a 
particular relation.  
 
3. Linguistic and semantic processing 
 
To obtain concept co-occurrence data and 
contextual features we use two corpora of medical 
abstracts: the MuchMore Springer bilingual corpus1 
of ca. 9,000 abstracts in German and English and a 
subpart of the Ohsumed corpus of 22,000 abstracts 
in English. Both corpora were linguistically and 
semantically processed using tools developed 
within the MuchMore2 projecton cross-lingual 
information retrieval in the medical domain. 
Linguistic processing plays an important role in the 
accuracy of semantic annotation, where we identify 
medical terms and map them to UMLS concepts. 
Linguistic processing included tokenization, part-
of-speech tagging and lemmatization; for the latter 
the morphological lexicon was extended to include 
medical terminology.  

                                                 
                                                1 http://muchmore.dfki.de/resources1.htm 

2 http://muchmore.dfki.de 

The main semantic resource for the medical domain 
is UMLS (Unified Medical Language System)3, a 
multilingual database of medical terms, concepts, 
definitions and semantic relations. UMLS consists 
of 3 major parts: Metathesaurus, Semantic Network 
and Specialist Lexicon. The Metathesaurus is 
essentially a large termbank listing medical terms 
and expressions and assigning a language 
independent code to each term (CUI – Concept 
Unique Identifier). Since UMLS is being developed 
as an integrated system unifying various medical 
thesauri and sources, it also includes the mappings 
of CUIs to some of these more specific thesauri. 
Thus, one of such core sources is MeSH (Medical 
Subject Headings), a thesaurus organizing medical 
knowledge into 15 top tree nodes, each of which is 
marked with a letter and subdivided into branches. 
For example, A stands for Anatomy, B for 
Organisms, C for Diseases etc.  
 
In our semantic annotation we identify medical 
terms and label them with codes (CUIs) from the 
UMLS Metathesaurus. These are mapped further to 
semantic types (TUI – Type Unique Identifier) as 
well as to MeSH codes corresponding to the nodes 
in the MeSH tree hierarchy. Although the 134 
semantic types defined by the UMLS are also 
hierarchically ordered, we opted for using MeSH 
descriptors instead, because these transparently 
show the position of a certain concept within the 
MeSH tree structure. They also allow us to choose 
the desired level of abstraction simply by climbing 
to higher-level tree nodes. Thus, if a text contains 
the medical term anorexia nervosa, it will be 
assigned the concept code C0003125 and the MeSH 
descriptor F03.375.100, which can then be 
abstracted to F03 – Mental Disorders. 
 
4. Text Mining methods 
 
4.1 Hierarchical clustering 
Clustering is an unsupervised learning method [15]. 
Given data about a set of instances, a clustering 
algorithm creates groups of objects following two 
criteria. Firstly, instances are close (or similar) to 
the other instances from the same group (internal 
cohesion) and secondly, they are distant (or 
dissimilar) from instances in the other groups 
(external isolation). 
 
A particular class of clustering methods, studied 
and widely used in statistical data analysis are 
hierarchical clustering methods [15]. The 
hierarchical clustering algorithm starts with 
assigning each instance to its own cluster, and 
iteratively joins together the two closest (most 
similar) clusters. The distances between instances 
are provided as input to the clustering algorithm. 

 
3 http://www.nlm.nih.gov/research/umls/ 



The iteration continues until all instances are 
clustered into a single cluster. The output of the 
hierarchical clustering algorithm is a hierarchical 
tree of clusters or dendrogram that illustrates the 
order in which instances are joined together in 
clusters. In the final step of the hierarchical 
clustering algorithm, clusters are obtained by 
cutting the dedrogram into sub-trees: elements in 
each sub-tree form a cluster. Cutting the same 
dendrogram at different heights produces different 
number of clusters. The optimal “cut point” that 
produces clusters with maximal internal 
cohesiveness and minimal external isolation from a 
given dendrogram is where the difference between 
heights of two successive nodes in the tree is 
maximal. 
 
4.2 Data representation and distance measures 
In our experiments, instances are MeSH-pairs. Each 
MeSH-pair (e.g. A1|C23) is described by 300 most 
frequent contextual features, which were observed 
to be nouns and verbs. Two different data 
representation were used to represent the feature 
vectors. The first data representation is relative 
frequency, i.e., frequency of context words relative 
to the frequency of the observed instance in the 
corpora.  The second is simple binary true/false 
representation where only presence/absence of 
words in the context of the observed MeSH-pair is 
considered. 
 
Another parameter that may influence the success 
of clustering is the measure of distance between 
instances. Apart from the standard Euclidean and 
Manhattan distances, which can be used with both 
the relative frequency and binary data 
representation, we also tested a distance measure 
based on the Jaccard coefficient (1) for measuring 
similarity between binary vectors interpreted as sets 
of words (X and Y): 
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4.3 Evaluation of clustering 
We used a metric for evaluation of clustering that is 
based on comparison of the set of clusters, obtained 
in the experiments (candidate clustering), with the 
reference clustering, provided by human expert.  
Namely, for each instance in the dataset human 
expert provides the relation represented by the pair 
(e.g., treats or location_of). Then, let 
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where ikki CRO ∩=  measures the overlap 
between clusters and N is the number of instances 
in the data set. The quality measure assesses the 
classification accuracy of the classifier that assigns 
semantic relations to MeSH-pair instances based on 
the obtained clustering C. The range of the quality 
measure is [0,1]. The quality of 1 is obtained when 
the candidate clustering C is identical to the 
reference R. 
 
5. Identifying context features for relation 

mining 
 
5.1 Evaluation of context features 
Starting from the hypothesis that a frequently co-
occurring pair of MeSH classes indicates the 
existence of a semantic relation and that this 
relation is somehow expressed through language, 
we wish to determine the context features that help 
us identify and label the relation. Many 
linguistically motivated approaches to relations 
have focussed on verbs as vehicles of relationships 
between syntactic elements, however in medical 
texts we observe that nominalizations are 
frequently used instead of verbal forms, as in The 
treatment of [disease X] through [substance Y] 
proved successful.  We therefore tested the 
following possible features occurring within the 
same sentence: 

• all tokens (tokens), 
• all verbs (verbs), 
• all nouns (nouns), 
• all other concepts (cuis). 

 
Context tl_old tl_new 
tokens 0.5454 0.5642 
nouns 0.6591 0.6703 
verbs 0.6363 0.6872 
cuis 0.5681 0.5195 

Table 1: Selecting context 

 
For each of the above, frequency data was collected 
from the corpus for our sets of manually labelled 
pairs and used for hierarchical clustering. Table 1 
shows a comparison of clustering accuracy for all 
of these settings on two different data sets (tl_old 
and tl_new); the data representation selected for the 
above comparison was binary.  
 
It is clear from the above that among these settings, 
nouns and verbs perform best, we therefore used 
nouns and verbs as context for all further 
experiments. We also experimented with the 
number of attributes used to describe each pair, 

                                                 
4 In this paper we deal with the task of 
distinguishing between two relations only, so the 
reference clustering consists of two clusters only. 



which resulted in an optimal cut-off point of 300 
for most frequent verbs and nouns.  
 
5.2 Data representation and distance measure 
Table 2 shows the evaluation of data representation 
and distance measures for three different data sets: 

• tl_old: 49 MeSH-pairs representing the 
relations treats and location_of, 

• tl_new: 287 additional MeSH-pairs 
representing the relations treats and 
location_of, 

• ac: 89 MeSH-pairs representing the 
relations analyzes and causes. 

 
The distance measures tested were Euclidean (euc), 
Manhattan (man) and Jaccard (jacc). 
 
Data 
set 

Data 
representation 

Distance 
measure Score 

euc/man 0.5227 binary jacc 0.4318 
euc 0.5454 tl_old relative 

frequency man 0.5682 
euc/man 0.5225 binary jacc 0.7528 
euc 0.6910 tl_new relative 

frequency man 0.7303 
euc/man 0.7368 binary jacc 0.5131 
euc 0.6973 ac relative 

frequency man 0.6578 

Table 2: Data representation and distance 
measures 

 
5.3 Learning typical contexts 
 
For some purposes, for example information 
retrieval, the results as given by Table 2 might be 
sufficient to distinguish between two or more 
relations on the basis of context. However, in all 
above scenarios the clusters are still very fuzzy. 
Using the optimal split into clusters indeed 
produces two clusters most of the time, but the 
quality of the clusters remains between 70 and 
80%. Therefore, in order to obtain a clearer view of 
which features best function as distinctive and 
whether it was possible to generalize these findings, 
an experiment involving supervised feature 
selection was performed. For the data set tl_old of 
49 manually selected MeSH-pairs representing the 
relations treats and location_of, the context words 
were automatically weighted according to their 
occurrence with either treats-pairs or location_of-
pairs. Then, only words that were found to occur 
with one of the relations significantly more often 
than with the other were kept as context words, 
others were omitted. Recursively testing this 
controlled context on the same data set left us with 
4% of the initial context words, a list of 290 

distinctive context words for the selected relation 
pair. Table 3 lists the results obtained with 40%, 
20% and 4% of the context words respectively.  
 
To test whether this list was distinctive only for the 
data set it had been produced with or for all data 
sets representing the same relation pair, the new 
data set tl_new of 190 MeSH-pairs representing the 
relations treats and location_of was constructed. 
The context features were now no longer most 
frequent verbs and nouns but the list of 290 
distinctive words, for which data was obtained from 
the larger corpus, Ohsumed, and clustered. The last 
two lines of Table 3 show the results of this 
controlled-context experiment (tl_new 0.04) 
compared with the uncontrolled-context result 
given above (tl_new W/O 1.0). The improvement is 
significant, which shows that contextual features 
learned on a small data set can be generalized to a 
larger data set of the selected relation pair. 
 

Data set Filtering 
threshold Score 

0.40 0.6888 
0.20 0.6888 tl_old 
0.04 0.8889 
0.04 0.8212 tl_new W/O (1.0) 0.5225 

Table 3: Selecting context words 

 
6. Graphical representation 
 
The graphical representation is used for visualising 
the data and for inducing new data instance vectors 
that serve as alternative input for the ML 
algorithms. We provide a powerful data 
engineering facility while projecting the data onto a 
two-dimensional grid, since the 2D graph format 
visualises potentially interesting structures. The 
spatial co-ordinates form new input for learning 
schemes apart from those obtained using regular 
attribute selection and discretization methods in 
higher-dimensional attribute vector spaces. 
 
We use an information-preserving mapping from 
vector data attributes to graphical properties where 
all attribute values are reflected in the 
corresponding graph [3], [5]. Most of these 
properties represent input to a graph layout 
optimisation algorithm: We use an automatic graph 
layout with layout constraints and an objective 
function based on aesthetic criteria that serves well 
for displaying semantic proximity if the graph 
structure is well designed.  
 
Most of the global graph properties represent input 
to the graph layout optimisation algorithm. Every 
data instance is presented as an undirected graph 
with all data attributes as vertices. The target 



concept is a special vertex, with special shape, 
colour and size. The shape and the colour are 
perceptual attributes for better visual data 
inspection, while the size of the node reflects the 
special status of the target node as a special 
attribute. 
 
Each target node is connected with an edge to every 
attribute. The ratio of the target node size and 
attribute node accounts for the fact that one target 
node is always connected to several attribute nodes. 
The attribute value (e.g. relative frequency) is 
projected onto a discrete numerical value 
representing the preferred edge length that is also 
input to the layout algorithm. The algorithm accepts 
integer values between 80 and 400. The mapping 
function was defined in a way to map the attribute 
values inversely proportional on this interval. This 
means that a high attribute value sets a low 
preferred edge length on the edge between the 
target node and the attribute node reflecting high 
term/word weight as (semantic/spatial) proximity 
between attribute and target. 
 
When laying out a graph, nodes are considered to 
be physical objects with mutually repulsive forces, 
like protons or electrons. The connections between 
nodes also follow the physical analogy and are 
considered to be metal springs attached to the pair 
of nodes. These springs produce repulsive or 
attractive forces between their endpoints if they are 
too short or too long. The layouter simulates these 
physical forces and rearranges the positions of the 
nodes in such a way that the sum of the forces 
emitted by the nodes and the edges reaches a (local) 
minimum [7], [8]. 
 
6.1 Clustering coordinates 
Using graph objects and their visualization as an 
alternative way of representing our data and 
evoking an automatic layout algorithm (and tuning 
the layout parameters) now produces two-
dimensional vectors of co-ordinates, which can be 
clustered with the same algorithm as before and the 
Euclidean distance. Using the co-ordinates as new 
input vectors is a special kind of dimensionality 
reduction method inspired by visualisation 
techniques for analysing meaning [17]. Table 4 
shows the clustering results for all 3 data sets.  
 
In general, the performance of this method is 
roughly comparable to the statistical method, 
slightly better with some data sets and slightly 
worse with others. The visualisation shows that 
clusters can better be separated visually than 
automatic clustering reflects. 
 
It is clear however that any semi-automated or 
interactive approach to knowledge discovery would 
benefit from a graphical representation, both for 

data/parameter selection and evaluation. The 
graphical representation may act as additional view 
of the text data to reveal new data characteristics 
that can be visually explored by the domain expert 
and quantified by graph properties. In particular, to 
find relationships between term distribution models 
and graphical representations may help to 
characterize how informative a word is [11]. 
 

Data set Score 
ac_rf_ne_404 (4) 0.4473 
ac_rf_ne_smart (3) 0.5131 
tl_new_smart40 (4) 0.4213 
tl_old_smart400 (2) 0.5454 
tl_old_smart_rf (4) 0.5909 

Table 4: Visualization and clustering 
coordinates 

 
6.2 Feature selection through visualization 
 
Knowing that semantic relations can be identified 
by their context, graphical representation can also 
be used as an alternative way of selecting 
distinctive features, e.g. typical words. Pictures 1 
(ac_rf_ne_smart) and 2 (tl_old_smart_rf) below 
show the distribution of typical features on the two-
dimensional grid and their correspondence to the 
formation of visual clusters. Large black and white 
boxes represent instances of the two relations, 
analyzes and causes, and the small boxes represent 
context words. It can be seen very clearly how 
typical context words "pull" instances into the 
white or black cluster. 
Picture 3 (ac_rf_ne_404) shows the term cloud for 
analyses-causes. In this constellation we allow for 
overlapping nodes, which leaves less constraints for 
the resulting layout.  Although the score for this 
dataset was low, one can see that the different 
relations are apparent. Interestingly, typical stop 
words (be, have, are, patient) are positioned in the 
barycentre of the graph. 
 
 
  



  

 

7. Conclusions 
 
Starting from the hypothesis that semantic relations 
are realized in texts through identifyable context 
features, the goal of the described experiments was 
to design a methodology to model relations and 
determine the parameters that distinguish relations.  
After evaluating different data representations we 
propose a method for feature selection on a 
relatively small data set of 49 manually selected 
relation instances, which was found to perform well 
also on a larger set of relation instances. In further 
work we will explore the interaction between 
general statistical methods, vector-based 
representations and graph representations. The 
result could be used as decision support for text-
mining algorithm selection or be combined with the 
outcome of a text-mining algorithm on the original 
data. 

Picture 1: Distinctive features for treats - 
location_of 

 
 Although all our test sets were limited to two 

relations, the approach can be easily generalized to 
an arbitrary number of domain-specific relations. 
The evaluation of the approach on distinguishing 
between more than two relations is another 
direction for further work. 

 

 

 
By learning context models of medical semantic 
relations, new unlabelled instances can be classified 
and thus identified in texts. A particularly important 
application of relation extraction is in document 
retrieval, where a query may be pruned or expanded 
according to the target relation. On the other hand, 
collecting new relation evidence from large text 
collections can also be used for the purposes of 
enriching the UMLS.  
 
In order to test the usability of the methods we 
propose, context models should be constructed for 
all target relations and evaluated in a classification 
task. Finally, we also envisage transferring this 
approach to a proper knowledge discovery task by 
expanding the context of a relation to larger text 
sections or entire documents or search for 
document parts where the vocabulary and thus the 
context of a relation instance shifts from one 
instance to another. 

Picture 2: Distinctive features for analyzes - 
causes 
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