
Autocompletion of Design Data in Semantic  

Building Models using Link Prediction and Graph 

Neural Networks 

Viktor Eisenstadt1, Jessica Bielski2, Christoph Langenhan3, Klaus-Dieter Althoff4, 

Andreas Dengel5 
1,4,5German Research Center for Artificial Intelligence (DFKI)  
2,3Technical University of Munich, Germany  
1,4University of Hildesheim, Germany 
1,4,5{viktor.eisenstadt|klaus-dieter.althoff|andreas.dengel}@dfki.de 
2,3{jessica.bielski|christoph.langenhan}@tum.de 

This paper presents an approach for AI-based autocompletion of graph-based spatial 

configurations using deep learning in the form of link prediction through graph neural 

networks. The main goal of the research presented is to estimate the probability of 

connections between the rooms of the spatial configuration graph at hand using the 

available semantic information. In the context of early design stages, deep learning-based 

prediction of spatial connections helps to make the design process more efficient and 

sustainable using the past experiences collected in a training dataset. Using the 

techniques of transfer learning, we adapted methods available in the modern graph-based 

deep learning frameworks in order to apply them for our autocompletion purposes to 

suggest possible further design steps. The results of training, testing, and evaluation 

showed very good results and justified application of these methods. 
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INTRODUCTION 
Artificial intelligence (AI) is a ubiquitous modern 

computational technology represented in many 

domains of the industry and everyday life with 

services such as automatic translation or 

completion of textual sentences on mobile 

devices. In architecture, however, AI is still looking 

for an opportunity to become widely used, being 

currently limited to academic research and 

practically absent in the established design 

software. In order to raise awareness for the 

potential of AI in architectural design, the 

research project metis-II, funded by the German 

Research Foundation (DFG), investigates the use 

of AI methods such as deep learning (DL) or case-

based reasoning (CBR) for autocompletion of 

spatial configurations using graph-based 

semantic building fingerprints and their tensor 

derivations which turn the graph into a numerical 

representation for deep learning purposes (see 

Figure 1) (Eisenstadt et al. 2021). DL-based 

autocompletion methods are developed to enrich 

the early conceptual phases when the ideas for 

the future design are vague and incomplete. The 

architect can benefit from an AI-based application 

that is able to suggest missing parts in the current 

spatial configuration, improving the quality of the 

designs and the future built environment. 



 

Based on design experiences of already designed 

and built architecture stored in a dataset, artificial 

neural networks (ANN) are trained to produce 

such suggestions, derived from the architectural 

practice of consulting reference buildings. 

In this paper, we present an autocompletion 

approach in the form of link prediction (LP), an 

established computational method for graphs to 

predict the possible direct linkages within a group 

of nodes. LP is a method widely applied in online 

recommender systems or social networks to find 

relations between items or users in order to 

recommend related products or make friend or 

networking suggestions. The main goal of the 

approach of this paper is to predict connections 

(relations) between rooms (nodes) in a semantic 

spatial configuration graph (see Figure 1). 

Using the deep learning methods of graph 

neural networks (GNN) it is possible to learn the 

semantics and architectural contexts of spatial 

configurations in the provided dataset and 

predict the probability of connections between 

the rooms not yet interconnected. The architect 

benefits from link prediction by instantly receiving 

connection suggestions, based on the references  

and experiences recorded by architects in the 

dataset of the GNN, which can be set to learn 

various spatial contexts (e.g., flexible or temporary 

spaces by learning the potential connections of 

different configurations for the same floor plan). 

LP-based autocompletion is included in the 

autocompletion framework in development for 

metis-II, where cluster completion and design 

phase, intention and step prediction complement 

LP (see Conclusion and Future Work section). 

BACKGROUND AND RELATED WORK 
The historical background of the work presented 

in this paper is the research conducted for the 

metis projects whose goal is to support the early 

stages of architectural design, namely ideation 

and schematic design, using the modern methods 

of artificial intelligence. Starting with CBR-based 

retrieval of helpful past architectural design 

references and continuing with data 

augmentation to acquire more architecturally 

consistent data to learn from, the current iteration 

of the research projects moved on to the 

autocompletion of spatial configurations in order 

to provide methods for efficient human-

computer co-creative design process. 

Link prediction is a method that provides two 

evidential aspects to be applied for such 

autocompletion. Firstly, it is established in the 

graph theory field and so can be seen as a basic 

method, but also future-proof as its fields of 

application grow consistently (e.g., in social 

networks). Secondly, provided that sufficient  

contextual information on the graph entities is 

available, link prediction is compliant with the 

requirements of the architectural design domain 

as the probability of connection can be estimated 

based on the architectural semantics learned from 

the labels and attributes of the spatial graph. 

Figure 1 
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usable by deep 

learning methods. 
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semantic entities 

(i.e., room and 

connection), the 

graph is converted 

into a one-hot 

encoded tensor. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Considering only the graph theory aspect, several 

existing non-AI-based methods could be applied 

for LP (Liben‐Nowell and Kleinberg 2007; Zhou et 

al. 2009). However, the main problem of all those 

methods is that they are limited to the single 

graph information, and neither possess, nor make 

use of the knowledge of the entirety of the 

dataset the graphs are contained in. That is, the 

latent domain-specific information about the 

architectural design context (e.g., residential 

housing) cannot be applied to predict relations, 

potentially resulting in less intelligent predictions. 

To overcome such problems, deep learning can 

be applied to learn the architectural contexts by 

processing the relevant semantic information, as 

investigated in our previous work (Eisenstadt et al. 

2021). The currently emerging field of graph 

neural networks seemed like an obvious choice to 

apply DL for link prediction in architecture. 

Graph neural networks are a specific type of 

artificial neural networks that operate directly on 

graph-based data representations instead of 

sequence-based data like the recurrent neural 

networks or multi-dimensional tensors like the 

convolutional neural networks. Operating directly 

on the spatial graphs, e.g., for accessibility or 

adjacency, allows for an unbiased access to the 

semantics of the graph, while the conversion of 

the graphs to other data representations (e.g., 

simple or weighted matrices) might result in loss 

of relevant information. GNNs have already been 

applied to investigate deep learning models for 

link prediction, for example, the approaches 

Graph Autoencoder (GAE) (Kipf and Welling 2016) 

and SEAL (Zhang and Chen 2018). 

LINK PREDICTION APPROACH 
The autocompletion approach presented in this 

paper applies graph neural networks to predict 

the existence of semantic relations (i.e., 

connections such as Door or Passage) between 

the nodes (i.e., room types such as Living or 

Sleeping) that are not yet connected with each 

other within the spatial configuration graph. 

Figure 2 shows an overview of the 

autocompletion by link prediction: missing links 

between two separated parts of the spatial 

configuration graph on the left side should be 

predicted, the result of the autocompletion 

process on the right side suggests the percentage 

of probability of a connection between the rooms. 

To investigate the GNNs for our 

autocompletion purposes, the framework DGL 

(Deep Graph Library) (Wang et al. 2019) was 

selected. This framework was developed 

specifically to provide an out-of-the-bo x 

implementation of machine learning methods to 

solve the graph theory problems, including the 

Figure 2 

An overview of the 

link prediction 

problem for 

semantic spatial 

configuration 

graphs. 



link prediction problem. In contrast to the other 

currently available general-purpose frameworks, 

such as TensorFlow, Keras or PyTorch, DGL has a 

clear field of application and thus, can be seen as 

the current standard graph DL library. 

In the next sections, the essential components 

of the DGL-based link prediction approach for 

graph-based spatial configurations will be 

presented: the general mode of operation, the 

model of the neural network, the dataset, and the 

results of training, testing and evaluation. 

Mode of Operation 
The general structure of the GNN-based 

autocompletion approach follows the mode of 

operation proposed by the DGL developers for 

the link prediction problem (DGL Team 2018). It is 

based on negative sampling, a technique to 

maximize similarity value between objects in the 

similar context in contrast to the objects from 

different contexts. Most famously it is used in the 

natural language processing (NLP) library 

word2vec, more exactly in its Skip-gram model, 

where it is used to estimate probability of a word 

to appear in a certain context (i.e., sentence) 

(Mikolov et al. 2013). Transferred to graph 

machine learning, this means that the 

neighboring nodes (i.e., those connected to each 

other) will have a higher similarity value in relation 

to their context, in contrast to the nodes not 

connected to each other in the same context. The 

corresponding GNN model learns this contextual 

similarity and classifies a connection between 

such neighboring nodes as highly probable. In a 

semantic spatial configuration graph, nodes 

represent the rooms; accordingly, the graph 

neural network model should be able to estimate 

if there is a probability of connection between the 

rooms based on the learned semantics. 

Dataset 
In order to provide the GNN with the relevant 

semantics to learn from and predict the 

connection correctly, a dataset that consists of 

such semantic information on available 

connections of all available graphs is the most 

essential requirement. For the metis research 

projects, a dataset of semantic spatial 

configurations for residential housing was 

previously developed and all graphs were 

validated for architectural consistency using a 

specific consistency checker tool (Arora et al. 

2021). For GNN-based link prediction, all room 

connection pairs (e.g., Living <- Door -> Corridor) 

from all graphs were extracted, validated for use 

in the dataset, and enriched with specific semantic 

features to provide the GNN with relevant  

information to learn from and assess the 

contextual similarity correctly. 

Following semantic features were added to 

the connections and their corresponding rooms 

in order to add sufficient contextual information. 

Each room got three additional features assigned 

as semantic addition to its current room type label 

(e.g., Living or Sleeping): 

1. The housing category class that describes the 

number of habitable spaces (i.e., Sleeping , 

Living, Children, and Working) and if the 

spatial configuration is open or closed , 

identified by whether there is a passage 

between the kitchen and the living room. An 

example of such a category class is “2_open”. 

2. The number of accessibility connections (Door, 

Passage, Entrance, or Stairs) to reach the room 

from the corridor which is usually a central 

circulation and access point to other spaces. 

This feature was inspired by the “Step depth”  

measurement described in SpaceSyntax (UCL 

Space Syntax 2022). 

3. Connectivity grade: the number of other 

rooms accessible from this room via 

accessibility connections, calculated using the 

established Dijkstra shortest path algorithm 

(Dijkstra 1959). 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Each connection edge was further enriched with 

the weight specific for the connection type. For 

example, 1 for the accessibility connections (see 

above) and 0.5 for the adjacency connections  

(Wall, Slab, Window). 

Following requirements were then applied to  

validate the inclusion of the connection into the 

link prediction dataset: 

• The spatial configuration that contains the 

connection should include at least one 

Corridor to ensure the application of Space 

Syntax’ “Step depth”. 

• The spatial configuration that contains the 

connection should not have the inaccessible 

spaces, i.e., those that have no accessibility via 

an open connection of type Door, Passage , 

Entrance, or Stairs. 

To this end, the dataset eventually consisted of 

two separate entry lists (see Figure 3):  

• Connection entries with IDs of the connected 

rooms and the weight of the connection type 

• Room entries linked with connection entries 

via IDs and furthermore consisting of the type 

of the room (label) and the corresponding 

additional semantic features (see above) 

While features and type labels were initialized as 

categorical data using the binning methods (Lutes  

2021), all other data was used in the numerical  

form. Entry examples are shown in Figure 3. 

Model 
The actual graph neural network model used for 

link prediction follows loosely the model structure 

proposed by the Deep Graph Library developers 

in which the layers of the GNN learn positive and 

negative (i.e., existing and non-existing) 

connection examples. DGL’s link prediction 

methods apply the approach SEAL (Zhang and 

Chen 2018), which is based on the extraction and 

heuristic evaluation of the surrounding semantic 

information of the investigated connection. More 

specifically, SEAL evaluates the features of the 

nodes and edges of the connection’s local 

enclosing subgraphs of different connection 

depths (hops), counting the depth from the 

source, as well as from the target of the 

connection. The SEAL-based GNN is then able to 

learn the contextual graph structure using the 

features for explicit (semantics and labels) and 

latent (here: residential housing patterns) 

information encoded in the connections. Figure 4 

shows the SEAL-based graph neural network 

model for link prediction in spatial configurations. 

 

Figure 3 

An example of a 

connection entry 

and its 

corresponding 

room entries in 

the dataset. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Historically, SEAL is the extension of WLNM 

(Weisfeiler-Lehman Neural Machine) (Zhang and 

Chen 2017) that improves the overall 

performance of WLNM reducing the number of 

hops necessary to properly learn the features. This 

is especially helpful for smaller graphs, like the 

housing spatial configurations, whereas the 

previously mentioned Graph Autoencoder (GAE) 

requires a bigger network, e.g., the Cora citation 

dataset (McCallum et al. 2000). In particular, SEAL 

applies a GNN instead of a fully connected ANN 

and the gamma-decaying heuristics to increase 

the performance. In a comparative evaluation, 

SEAL outperformed GAE (Zhang et al. 2020). 

Starting with the original link prediction 

model, which was originally trained on the Cora 

dataset, and applying it to our housing graph 

connections dataset described above, we 

gradually modified the model improving its 

performance using the different ANN/GNN 

options from DGL. This modification technique for 

models is also known as one of the transfer 

learning methods (Brownlee 2019). Ending up 

with the GNN configuration consisting of 3 deep 

layers activated with the tanh function and 

application of dropout of 0.5 (instead of 2 layers, 

relu activation and no dropout), the GraphSAGE 

layer structure (Hamilton et al. 2017) and the dot 

product calculation for the final prediction score 

(see also Figure 4) were kept. The originally used 

Adam optimizer (Kingma and Ba 2014) was 

replaced by Nadam (Dozat 2016) and the number 

of training cycles could be reduced to 150 from 

the original 250. The original learning rate of 0.01 

was kept. This model configuration provided the 

best performance (see next sections). 

Training, Test and Evaluation 
In machine learning-related research, the best 

practice to automatically find the model with the 

optimal performance is to train different model 

configurations on a training dataset, control the 

training on a test dataset, and then evaluate the 

models with the best test outcome on the 

separate validation dataset. One of the common 

requirements on the validation dataset is the 

covering of the same distribution of samples as 

for the training dataset in order to check how well 

the model has learned the provided samples. This 

means that the model should be effectively 

evaluated for use under the real-world conditions.  

From the original dataset of 2544 spatial 

configurations derived from Building Information 

Modeling (BIM) data, overall, 2075 spatial 

configurations were used for training, from which 

18463 connections for 14261 room entries could 

be extracted according to the schema described 

in the Dataset section of this paper. From this 

amount of data, 10% were used for testing. 

Additionally, 92 spatial configurations with overall 

Figure 4 

The GNN Model 

used for link 

prediction learns 
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(middle blocks) 

and produces a 

prediction score 
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the query 

connection (left 

block). 



974 connections for 726 room entries were used 

to evaluate the model. The rest was filtered out as 

it did not correspond to the selection criteria 

described in the Dataset section. 

The main goal of the evaluation was to check  

if the GNN model is able to learn all of the latent 

and explicit semantic features in order to provide 

a contextually suitable connection prediction. To 

achieve this, the creation process of the 

evaluation dataset made sure that all of the 

features (see Figure 3) were covered by the set of 

spatial configurations selected for the validation. 

In order to make sure that the model indeed 

performs constantly on samples it has never seen 

before, the spatial configurations for validation 

were selected randomly during the data pre-

processing for the model and the entire process 

of training-testing-evaluation was repeated 

multiple times for the best performing model 

configuration (in this and next sections, only the 

latest recorded iteration is detailed out). 

Results 
The results of the training, testing and validation 

processes revealed that the link prediction model 

developed using SEAL and DGL is generally able 

to predict a contextual existence of a connection 

between two rooms in a spatial configuration for 

the semantics it has learned from both room and 

connection entries. In its current state, the 

training accuracy value converged at approx. 0.93  

(see Figure 5), i.e., the model is set to be able to 

differentiate the existence and non-existence of a 

connection with precision of 93%. Even higher is 

the value of evaluation accuracy: here, an 

approximate value of 0.98 could be achieved. That 

is, from the 100% of existing connections selected 

for evaluation, 98% were predicted to exist. The 

loss during the training process converged at the 

value of approx. 0.39 (see Figure 6). Due to such 

high accuracy numbers, all results can be 

considered a success of application of graph 

neural networks using SEAL and DGL for link 

prediction in architectural spatial configurations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CONCLUSION AND FUTURE WORK 
In this paper, we presented a deep learning model 

for prediction of connections between rooms in a 

graph-based spatial configuration. Graph neural 

networks from the approach SEAL, using the deep 

learning framework DGL, were applied. The 

resulting model is able to predict the existence of 

connections with an accuracy of approx. 93%.  

While the link prediction method can be used 

as a standalone component to identify potential 

linkages, in the near future it is planned to use it 

as an integral part of the framework of the 

research project metis-II for full autocompletion 

of spatial configurations. In the remainder of this 

paper, we present this integration, showing which 

methods complement link prediction in order to 

get a full autocompletion recommendation. 

Figure 5 

Training accuracy 

of the link 

prediction model. 

Figure 6 

Loss distribution 

accuracy of the 

link prediction 

model. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Integration in the Framework 
As depicted in Figure 7, link prediction is the last 

step of the sequential procedure to generate a full 

autocompletion recommendation, which consists 

of the likely missing rooms and the corresponding 

linkages. The generation of autocompletion starts 

with the parallel execution of clustering and 

classification on the current spatial configuration. 

During the classification process, the current  

spatial configuration is first converted into a one-

hot encoded tensor representation (see Figure 1) 

and then classified using a convolutional neural 

network to find out the housing class of the 

configuration. The housing class contains the 

information on the amount of habitable spaces 

(e.g., 2 or 3) and if the living room is connected  

with the kitchen via passage (open or closed). An 

example of such housing class is 3_open. 

During the clustering process the current  

spatial configuration gets divided into different 

segments (clusters), e.g., using the algorithm 

(Girvan and Newman 2002). The clusters are then 

checked for architectural consistency using the 

consistency checker (Arora et al. 2021) (see also 

the Dataset section). Inconsistent clusters will be 

added to the autocompletion query together with 

the previously determined housing class. 

In the next step, a specific node prediction 

GNN suggests rooms possibly missing in the 

inconsistent clusters, based on training on the 

previously recorded consistent clusters. Link 

prediction GNN then estimates the availability of 

connections between the suggested and existing 

rooms, as described in this paper, producing a full 

autocompletion recommendation. The user is 

then presented with this recommendation. 

Besides the completion of missing entities of 

a spatial configuration with clustering and link 

prediction, another autocompletion method will 

be part of the framework as well. This method is 

going to apply a pipeline of recurrent neural 

networks (RNN) to predict the next design step 

based on the recognized design phase and design 

intentions. For training of RNNs, quantifiable 

sketch protocol data generated by architects 

during floor plan sketching process in the early 

design process and processed by a specific 

protocol analyzer tool (Bielski et al. 2022) will be 

used. A preliminary description of this 

autocompletion approach was presented in the 

previous research work (Eisenstadt et al. 2022). 

Figure 7 

Integration of link 

prediction GNN in 

the generation 

process of a full 

autocompletion 

recommendation. 



With the autocompletion framework it is intended 

to provide a tool for architects in the early phases 

of the design process by complementing the 

design of architecture with the latest 

technological developments as proposed by 

(Fricker et al. 2007) as the optimal collaboration 

option between the architects and computers. 

Further Development 
Furthermore, for the upcoming development of 

the link prediction method it is intended to 

recommend retroactive changes and so support 

the architect by drawing attention to potentially 

flawed connections. This will help provide a 

consequent insight in order to improve the overall 

architectural quality of the design. 

Source Code 
The link prediction model is published on GitHub 

under an open-source license for use by other 

researchers and developers, see following URL: 

https://github.com/metis-caad/link-prediction. 
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