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Abstract: Research has been growing on object detection using semi-supervised methods in past few
years. We examine the intersection of these two areas for floor-plan objects to promote the research
objective of detecting more accurate objects with less labeled data. The floor-plan objects include
different furniture items with multiple types of the same class, and this high inter-class similarity
impacts the performance of prior methods. In this paper, we present Mask R-CNN-based semi-
supervised approach that provides pixel-to-pixel alignment to generate individual annotation masks
for each class to mine the inter-class similarity. The semi-supervised approach has a student–teacher
network that pulls information from the teacher network and feeds it to the student network. The
teacher network uses unlabeled data to form pseudo-boxes, and the student network uses both label
data with the pseudo boxes and labeled data as the ground truth for training. It learns representations
of furniture items by combining labeled and label data. On the Mask R-CNN detector with ResNet-
101 backbone network, the proposed approach achieves a mAP of 98.8%, 99.7%, and 99.8% with only
1%, 5% and 10% labeled data, respectively. Our experiment affirms the efficiency of the proposed
approach, as it outperforms the previous semi-supervised approaches using only 1% of the labels.

Keywords: object detection; semi-supervised learning; Mask R-CNN; floor-plan images; computer
vision

1. Introduction

Semi-supervised learning-based research is receiving more attention in the past few
years, as it can use label data to increase model performance when it is impossible to
annotate large datasets. The first layout of the semi-supervised approach-based learning
uses consistency-based self-learning [1,2] approaches. The main idea is to create artifi-
cial labels and then predict those self-generated labels by training the model on label
data with stochastic augmentations. Those self-generated labels can be the network’s
predictive distribution or one-hot prediction. The second improvement in semi-supervised
approach-based learning is the variety of available data augmentation techniques. Data
augmentation techniques boost the performance of the training network [3,4] and are also
efficient for consistency-based learning [2,5]. The augmentation approaches progress from
image transformation such as cropping, flipping, scaling, brightness, colour augmentation,
contrast, saturation, translation, and rotation to image generation [6–8] and model training
by reinforcement-learning [9,10]. Previously, the researchers applied supervised learning
techniques for floor-plan object detection. We use the semi-supervised approach for floor-
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plan analysis, which matches the previous semi-supervised approaches using only 1% of
the label data.

The floor-plan object detection problem has high value because of its usage in tremen-
dous applications such as property value estimation, furniture setting and designing, etc.
The floor-plan objects include furniture items, windows, doors, and walls. Humans can
readily recognize floor-plan objects, but to automatically recognize and detect floor-plan
objects is challenging because of the similarity between room types and furniture items. For
example, the Drawing room contains a limited number of furniture items, and the furniture
category of the kitchen and dining room is almost similar. There are many applications
of floor-plan object detection, such as 3d reconstruction of floor-plan [11] and similarity
search [12]. Floor-plan object detection is necessary for floor-plan analysis applications.
Figure 1 is an overview of the floor-plan layout with different furniture items that ex-
plains room size and furniture categories. The top left room is the dining room, where
a single round table is present. The top right room contains a kitchen with a bathroom.
The next room is a living area where different sofa items are present. Thus, all other
rooms have names according to their furniture items. This floor-plan category can help
furniture installation.

Figure 1. The sample image of the floor-plan dataset containing furniture items. The bottom right
corner of the image shows labels of furniture items.

The semi-supervised approach-based object detection needs a small amount of labeled
data with label data. There are some multi-stage approaches [13,14] that use label data for
training in the first stage, followed by unlabeled data for generating pseudo labels, and
then retraining on unannotated data. The model performance depends on the accuracy
of the generated pseudo label, but the available training data is small, which reduces
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model efficiency. To increase label data, we generate pseudo labels using a semi-supervised
approach and then use these pseudo labels and small portions such as 1% of the label data
to train the model. We randomly sample label and labeled data, in which both portions
include all classes present in available data. We used two models for our experiment on
the floor-plan dataset, the first is for detector training, and the second is for generating
pseudo labels for unlabeled data. This approach provides simplified multi-stage training.
Further, it uses the flywheel effect [15], in which the pseudo label generator and training
detector can boost each other to improve model performance with increasing training
iterations. Another important benefit of this approach is that more weight is provided to
the pseudo-label generator model rather than the training detector model, as it guides the
training model instead of providing hard category labels, as in earlier techniques [13,14].
This approach is also proposed in the Soft-Teacher model [16]. In this network, the teacher
model uses a pseudo-label generator, and the student model uses the training detector.

Using a semi-supervised approach, we detected objects on the pixel level, such as
different furniture items in the floor-plan data. We used Mask R-CNN [17] with Feature
Pyramid Network (FPN) [18] as a detection method, ResNet-50 [19] and ResNet-101 net-
work as a backbone pre-trained on the ImageNet dataset [4] with the student–teacher
approach. We used 1%, 5%, and 10% floor-plan images as labeled data for training and
the rest of the images as label data. We used five data folds for each percentage level
and calculated the final performance by taking the average of these five folds. Figure 2
compares the performance of both these backbones under the different percentage of label
data settings. The increasing colour of bars indicates the increase in the percentage of label
data. We obtain 98.8(%) mAP, 99.7(%) mAP, and 99.8(%) mAP on Mask R-CNN [17] with
ResNet-101 [19] backbone network for 1%, 5%, and 10% floor-plan images, respectively.
This paper provides an end-to-end semi-supervised approach-based object detection in the
floor-plan domain. The main contribution of this work is as follows:

• We present the Mask R-CNN [17]-based semi-supervised trainable network with the
ResNet-50 [19] and ResNet-101 backbone network for object detection in the floor-plan
domain.

• The Mask R-CNN [17]-based semi-supervised approach improves the state-of-the-art
performance on the publicly available floor-plan dataset named SFPI [20], using only
1% of the labels.

Figure 2. Compares the performance of ResNet-50 [19] with the ResNet-101 backbone network using
Mask R-CNN [17] framework under different label data settings.
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The remaining paper is arranged as follows. Section 2 talks about the previous
research on semi-supervised approaches-based learning and floor-plan datasets. Section 3
explain the methodology and Section 4 discusses the dataset briefly. Section 5 is about
experimental setup. Section 6 discusses the evaluation matrices. In Section 7, we analyze
the experimental results. Finally, Section 8 summarizes the experimental work and gives
an idea about future directions.

2. Related Work

Object detection and semi-supervised learning are essential steps toward floor-plan
image analysis. This section overviews previous work in these domains and contains three
parts. The first section describes the literature about object detection. The second section
explains previous semi-supervised approaches. Finally, we explain the literature on the
floor-plan domain.

2.1. Object Detection and Its Applications

Object detection is the main computer-vision domain in which extensive work has
been conducted in the past few years with two main types: single-stage detectors [21–23]
and two-stage detectors [17,24,25]. The two-stage detectors extract the object regions in
the first stage and then classify and localize the object in the second stage. These detectors,
such as Faster R-CNN [25], firstly generate region proposals, making a separate prediction
for every object in the image. In contrast, single-stage detectors perform classification
and localization in one pass through the neural network. The basic difference between
these detectors is the cascade filter for object proposals. These detectors provide good
results on a large amount of label data and are used in different applications in many
fields for Instance Segmentation [26] and object detection, such as face detection [27] and
pedestrian detection [28]. It is also used in document analysis for formula detection [29],
table detection [30,31], and other page object detections [32].

2.2. Semi-Supervised Learning

Semi-supervised-based image classification has two types: pseudo-label-based learn-
ing and consistency-based learning. The consistency-based learning [33–35] examine the
similarity between original and augmented images. It provides more weight to label data
than unlabeled data, which helps in perturbations of the same image for producing similar
labels. There are different methods to apply perturbations using noise [33], augmenta-
tion [35], and adversarial training [34]. In [36], the author predicted the training steps to
assemble the training object. In [37], the author takes the weighted average by ensembling
rather than predicting the model, called the exponential mean-average (EMA). In [5,38], the
authors annotated the unlabeled images with pseudo labels using the classification model
and then retrained the detector using this pseudo-label data. They analyzed the effect of
data augmentation for semi-supervised learning [2,39].

Semi-supervised object detection has two types: pseudo-label-based learning [14,40]
and consistency-based learning [41,42]. In [14,40], labels generated from different aug-
mented images are ensembled to predict labels of unlabeled images. In [43], pseudo-labels
are generated by training the SelectiveNet [44]. In [45], the labeled image contains the
detected box of the label image, and the author calculated the localization consistency esti-
mation for the attached label image. It needs a deep detection procedure [45], as the image
itself is changed. Recently, intricate augmentation approaches, including CTAugment [46]
and RandAugment [47], are proven to be very effective for semi-supervised learning on
object detection [1,2].

2.3. Floor-Plan Analysis

Research on object detection in floor-plan data is growing because of its usage in
tremendous applications such as property value estimation, furniture setting, and de-
signing, etc. Ghorbel et al. [48] proposed a handwritten floor-plan recognition model.
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This network provides a CAD model for floor-plans data. In [49], the author proposed
a room detection model for the floor-plan dataset. Moreover, [50] proposed a model for
understanding the floor-plan using Hough-transform and subgraph-isomorphism. Several
graphic recognition methods are applied to identify the basic structure and also consider
human feedback during the analysis phase.

In [51], the author used a deep learning network to parse floor-plan images. The author
applied Cascade Mask R-CNN [52] to obtain floor-plan information and keypoint-CNN
for segmentation to extract accurate corner locations and obtained the final segmentation
results after post-processing. In [53], textural information is extracted from floor-plan
images. This work is helpful for visually impaired people to analyze house design and
for customers to buy a house online. The morphological closure is applied to detect the
walls of the floor-plan image, the flood fill method to detect corners, and scale-invariant
features for door identification. After extracting all this information, the author applied
text synthesis techniques.

In [54], the author proposed an object recognition method for floor-plan images. The
main target is to recognize floor-plan items such as windows, walls, rooms, doors, and
furniture items. To extract features, the VGG network [55] is used. It recognizes room types
based on furniture items present in the room. However, room type identification is not
demonstrating good results, as the variation in furniture items is less. It also detects room
boundaries for doors, windows, and walls, which gives good results.

Liu et al. [56] detected edges in the floor-plan dataset using the deep network and
then used Integer programming to detect walls of different rooms by combining those
corner points. However, this approach can only recognize walls of rectangular rooms
with uniform thickness; it works on the Manhattan assumption that aligns the walls with
two main axes in a floor-plan image. Yamasaki et al. [57] applied a fully convolutional
network (FCN) to label pixels for detecting similar structure houses by forming a graph
model of the floor-plan dataset with different classes. Their method ignores spatial relations
between different classes, as it detects pixels of different classes separately by using a simple
segmentation network.

In [58], Faster R-CNN [25] is used to detect kitchen items such as stoves, sliding doors,
simple doors, and bathtubs, and then it adopted the fully convolutional network (FCN) to
detect the walls’ pixels. They also estimated the size of the different rooms by recognizing
text using a library tool. Maće et al. [49] used Hough transform to identify doors and walls
in floor-plan images. In [59], the author used a pixel-based segmentation approach to detect
doors, walls, windows, and the bag-of-words (BOW) network to classify image patches.
They trained these patches to generate graphs for detecting walls. The author detected
the walls in [11] by recognizing parallel lines, determined the room size by calculating
the distance between parallel lines, and estimated the wall thickness by the clustering
distance value.

3. Method

The experiment is performed on Mask R-CNN [17] with ResNet-50 [19] and ResNet-101
backbone. We used this model with convolutional networks (CNN) and a student–teacher
network. In this section, we explain the individual modules of the experiment.

3.1. Mask R-CNN

Mask R-CNN [17] is an extended version of Faster R-CNN [25] with a new branch
for providing masks to the detected objects with the two already present branches for
the classification and regression layer. This branch is applied on RoIs (Region of Interest)
to deal with detection on the pixel level to segment each stance accurately. The basic
architecture of Mask R-CNN is identical to Faster R-CNN, as it uses a similar architecture
to generate object proposals. The major difference is that Mask R-CNN uses an RoI-align
layer rather than an RoI-Pooling layer to reduce misalignment on the pixel level because of
spatial quantization. Generally, the training of Mask R-CNN [17] and Faster R-CNN [25] is
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identical. For accuracy and speed, we prefer ResNet-101 [19] as a backbone with the feature
Pyramid Network(FPN) [60]. We create the mask for each class for pixel-level classification
to reduce interclass similarity. We created the ground truth for the mask using object width,
height and bounding box coordinates. The masks of all classes are in square boxes having
four corner points as (xminymin, xmaxymin, xmaxymax, xminymax). Where (xmin, ymin) is the
first corner point of the mask and obtained other corner points by adding the width and
height of the bounding box in the first corner point. The model learns the mask of each
class separately and is defined as the average binary cross-entropy loss, as shown in the
following Equation (1).

Lmask “ ´
1

M2

ÿ

1ďl,mďM

ylmlogyn
lm ` p1´ ylmqlogp1´ yn

lmq (1)

where ylm is the label of pixel (l,m) in true mask area M ˚M and yn
lm is the estimated value

of the same pixel for the ground-truth class n. The loss function of Mask R-CNN [17] is the
combination of localization, classification and segmentation mask loss, where classification
and localization loss is the same as in Faster R-CNN [25].

3.2. Backbone Network

The model performance drops both for train and test data. This reduction is not
because of overfitting. Instead, network initialization, exploding, or vanishing gradients
can also cause this problem. These can be easily optimized compared to the plain network,
whose training error increases with adding more layers. The ResNet-50 [19] network is
formed by replacing the 2-layer block of resnet-34 with a 3-layer block. This network
has a higher accuracy than the resnet-34 network. The ResNet-101 contains three more
layers. We used ResNet-50 [19] and ResNet-101 backbone network for this semi-supervised
experiment. Figure 3 explains the Mask R-CNN [17] framework with ResNet-101 backbone.
This network obtains a convolution feature map from the backbone layer, provides anchors
generated by a sliding window and predicts the regions by the Region-Proposal Network
(RPN). Then, we implement a pooling process to resize and a Fully connected layer to
produce three nodes as a mask, softmax classification, and bounding-box regression.

Figure 3. The overview of Mask R-CNN [17] framework with ResNet-101 [19] backbone for floor-plan
object detection.
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3.3. Semi-Supervised Model

Creating pseudo labels for object detection is more challenging than image classifica-
tion, where the simple probability distribution is considered for a pseudo-label generation.
To obtain high-quality pseudo labels and avoid overfitting, strong augmentation is applied
to the student model, and weak augmentation is used for the teacher model. The perfor-
mance of the model is dependent on the quality of pseudo labels. Setting a high threshold
on the foreground value to obtain more student-created boxes can provide better results
than a low threshold. We get the best results when the threshold value is 0.9. However, a
high threshold value provides good foreground precision, and the recall of box-candidate
decreases quickly. Suppose we apply intersection over union (IoU) between teacher-created
pseudo-boxes and student-created box-candidate to provide background and foreground
labels as an ordinary object detection model does. In that case, we incorrectly classified
some foreground boxes as negative, which reduces performance.

To eliminate this problem, we use the student–teacher network to generate pseudo-
labels using a semi-supervised approach based on Mask R-CNN to provide pixel-to-pixel
alignment to generate individual annotation masks for each class to mine the inter-class
similarity and then use these pseudo labels as well as a small portion such as 1% of label
data to train the model. This label and labeled data sampling includes all classes present
in available data. The random samples of labeled and label images are selected using
sampling ratio sr to make training batches. The teacher model uses label data to form
pseudo-boxes, and the student model uses both label data with the pseudo boxes and
labeled data as ground truth for training. We assessed the reliability of student-created box
candidates of a real background and used it to weigh background-class loss. Equation (2)
is the total loss that is the combination of unsupervised and supervised loss:

L “ Lsup ` αLun (2)

where Lsup represents the supervised loss of labeled data while Lun represents the unsu-
pervised loss of label data, α is the controlling factor of unsupervised loss. We normalized
these losses by their respective amount of floor-plan images in the training batch. The
supervised and unsupervised loss is the combination of classification, localization, and
segmentation mask loss as shown in Equations (3) and (4), respectively. The mask loss is
explained in Equation (1) while classification and localization loss is the same as in Faster
R-CNN [25].

Lsup “
1

Nb

Nb
ÿ

n“1

pLclasspIn
b q ` LrgpIn

b q ` LmaskpIn
b qq (3)

Lun “
1

Nu

Nu
ÿ

n“1

pLclasspIn
u q ` LrgpIn

u q ` LmaskpIn
u qq (4)

where In
b represents n-th labeled-image, In

u represents n-th label-image, Nb indicates total
labeled-images, Nu indicates total label-images, Lclass, Lrg and Lmask is the classification,
regression, and mask loss, respectively.

Figure 4 explains the overall architecture of the student–teacher approach. We initial-
ized the teacher and student model randomly to start training; then, the student model
updates the teacher model just like [2,61] using the exponential moving average (EMA)
approach. Generating pseudo-labels for detecting objects is more challenging than clas-
sifying objects, as an image typically has multiple objects. To annotate those objects, we
need location and category. The teacher model obtains label images to detect objects and
generate many bounding boxes. The non-maximum suppression (NMS) is applied to
minimize redundant boxes generated on the image objects. Even though we eliminated
most iterating boxes, some non-foreground boxes remain.
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Figure 4. The complete architecture of the semi-supervised approach. The red arrows show the
supervised, and dark blue arrows show unsupervised training. The total loss is the combination of
unsupervised and supervised loss.

The FixMatch [2] is a supervised learning-based image classification approach used
to get better pseudo boxes and speed up student network training. We applied weak aug-
mentation for generating pseudo-labels by the teacher network and strong augmentation
for training the student network. Calculating the reliability score is a little bit difficult. So,
we used the background value generated by the teacher model using weak augmentation
as a signal for the student model. This approach is just like simple negative-mining, not
like OHEM [62,63] or Focal Loss [63], known as hard negative-mining. To measure the
consistency of regression boxes, we used a box jittering approach in which we sample
teacher-generated pseudo boxes bk and refine them by feeding those boxes into the teacher
model to obtain a refined box bk, as follows:

b̂k “ f ilteredpjitterpbkqq (5)

We repeated this process many times to obtain Njitter filtered jitter boxes. The location
probability of an object as a regression-variance is determined as follows:

σ̄k “
1
4

4
ÿ

n“1

pσ̂nq (6)

σ̂n “
σn

0.5phpbkq `wpbkqq
(7)

where σ̂n is the normalization of σn, σn is standard-derivation of nth coordinate of filtered
jittered boxes, wpbkq is the width and hpbkq is the height of jittered box bk.

The localization accuracy will be more when the regression variance of the box is
smaller. However, it is not feasible to assess the regression-variance of box candidates
during the training process. Thus, we compute reliability only for those boxes whose
foreground value is above 0.5, reducing the number of boxes from hundreds to 16 per
image, minimizing the computational cost.
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4. Dataset

We need a large dataset with various floor-plan layouts for deep neural network
training, and there should be enough classes to analyze variation in furniture items. The
dataset is created from SESYD [64] named SFPI (Synthetic Floor-Plan Images) [20]. It
contains 16 furniture classes as window1, sofa1, sink1, table1, door1, window2, sofa2, sink2,
table2, door2, tub, sink3, table3, sink3, armchair, sink4, and bed placed in various rooms,
which helps in generating more realistic results. We have 10,000 floor-plan dataset images
containing 1,000 floor-plan layouts and around 300,000 furniture items of 16 classes. We
have different types of augmentation to create variation in our dataset. The first type of
augmentation is rotation. We rotate with a random angle between [0, 30, 60, 90, 120, 180,
210, 270, 330].

Figure 5 shows that tub and sink furniture class items have different directions based
on the provided angle. Another augmentation method is scaling with a random scaling
factor between [20, 40, 75, 100, 145, 185, 200]. During scaling, we keep the same aspect
ratio for all furniture classes. Figure 5 shows the sample image of this floor-plan dataset in
which all furniture items are nearly the same size. The red and blue rectangular box objects
demonstrate that sink and tub classes can vary in orientation. Further, we notice that some
furniture items are present in particular rooms, which helps recognize room categories for
different furniture items. This SFPI dataset is publicly available and can be downloaded
from here https://cloud.dfki.de/owncloud/index.php/s/mkg5HBBntRbNo8X, accessed
on 29 August 2022.

Figure 5. Sample image of the floor-plan dataset with different types of augmentation to create
variation.

5. Experiments
5.1. Implementation Details

We used Mask R-CNN [17] based semi-supervised approach with ResNet-50 [19] and
ResNet-101 backbone pre-trained on ImageNet [4] as a detection method. The training data

https://cloud.dfki.de/owncloud/index.php/s/mkg5HBBntRbNo8X
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contains 1%, 5%, and 10% floor-plan images as labeled data and the remaining images as
label training data. We have 5 data folds for each type and calculated the final performance
as the average of all folds. Our methodology and hyper-parameters are formulated from
MMDetection [65]. For training, we used anchors with a three-aspect ratio and five-scale
value and formed 1k and 2k region proposals with a 0.7 non-maximum suppression
threshold. We selected a total of 512 proposals from 2k as box candidates for the training of
RCNN. The IoU threshold value is set to 0.5 for mask bounding boxes.

5.1.1. Partially Labeled Data

We performed training for 80 k iterations on 8 GPUs (A100) using eight images per
GPU. For initial training, the learning rate has the value of 0.01 and then is reduced to 0.001
at 30 k iteration and 0.0001 at 40 k iteration. The momentum and weight decay values are
0.9 and 0.0001, respectively. The data sampling ratio has an initial value of 0.2 and then
decreases to 0 for the last 5 k iterations, and the foreground threshold has a 0.9 value.

For selecting box regression pseudo-labels, we set a threshold value of 0.02, and the
Njitter value is set as 10 to calculate the reliability of box localization. The jitter boxes are
sampled by setting offset values for all coordinates and selecting the offsets from ´6% to
6% width or height of pseudo-box candidates. Moreover, different augmentations are used,
such as FixMatch [2], to generate pseudo-label and train the labeled and label data.

5.1.2. Fully Labeled Data

We have 150 k training iterations on 4 GPUs (A100) using eight images per GPU. For
initial training, the learning rate has a value of 0.01 and then is reduced to 0.001 at 30 k
iteration and 0.0001 at 40 k iteration. The momentum has a value of 0.9. The data sampling
ratio has an initial value of 0.2 and then decreases to 0 for the last 15 k iterations, and the
foreground threshold has a 0.9 value. The weight decay has a value of 0.0001. We assigned
the Njitter value of 10 to estimate box localization probability and the threshold value of
0.02 for selecting box regression pseudo labels.

6. Evaluation Criteria

We used some detection evaluation metrics to evaluate the performance of the semi-
supervised based floor-plan object detection approach. This section explains the evaluation
metrics used.

6.1. Intersection over Union

We calculated the intersection over union(IoU) in Equation (8) by taking the inter-
section divided by the union for the area of the ground-truth box Ag and the generated
bounding box Ap.

IoU “
areapAg X Apq

areapAg Y Apq
(8)

IoU is used to estimate whether a detected object is false positive or true positive.

6.2. Average Precision

We calculated the average precision(AP) using a precision-recall curve. It is the area
under the precision-recall curve and can be determined using the following Equation (9):

AP “
N

ÿ

k“1

pRk`1 ´ RkqPintrpRk`1q (9)

where R1, R2, . . ., Rk are the values of the recall parameter.

6.3. Mean Average Precision

The mean average precision (mAP) is the most common metric for evaluating the
performance of object detection methods. We calculate it by taking the mean of average
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precision for all classes s of the dataset. While working with a floor-plan dataset, it is
preferred to calculate mAP to lower 16 classes to a set of classes s. The overall performance
of mAP depends on class mapping, where a slight change in the performance of one class
can affect overall mAP; that is the only drawback of mAP. We set the IoU threshold value
of 0.5 and 0.75 to calculate the mAP, as shown in Equation (10):

mAP “
1
S

S
ÿ

s“1

APs (10)

where S is the total number of classes. For our floor-plan dataset S, its value is 16.

7. Results and Discussion

We use Mask R-CNN [17] based semi-supervised network on the floor-plan dataset.
This section will explain the qualitative as well as quantitative results of the student–
teacher network. For our experiment, we take 1%, 5%, and 10% floor-plan images as
labeled data and the rest of the floor-plan images as label data. We have 5 data folds for
each type and calculated the final performance as the average of all folds. We train and
evaluate the approach on Faster-RCNN [25], and Mask R-CNN [17]. Furthermore, we also
compare the algorithm’s performance on ResNet-50 [19] and ResNet-101 backbone with
Mask R-CNN [17].

Figure 6 shows the average precision of every class separately. It is evident that
some classes, such as armchairs, door2, table3, bed, table1, tub, door1, sink2 and table2
demonstrate one average precision, while all other classes show average precision above
0.95 except window1 class. We can observe for which classes our model performs well
and where we need further improvements. Figure 7 shows the furniture items detection
and localization on the floor-plan test dataset. The final result, where furniture items are
detected and labeled in different colours, accurately detects all 16 classes.

Figure 6. Class-wise average precision (AP) results of 5 data folds with 10% label data using Mask
R-CNN [17] with ResNet-101 [19] backbone.
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Figure 7. Test images where furniture items are detected and labeled using Mask R-CNN [17] with
ResNet-101 [19] backbone on 10% label data.

Using different backbone networks, we determine the relative error between Mask R-
CNN [17] and Faster R-CNN [25] detectors. Table 1 shows a comparison of these detectors
with ResNet-50 [19] and ResNet-101 backbone on floor-plan dataset under semi-supervised
setting. It shows that Mask R-CNN decreases the error by 8.94%, 16%, and 37.5% with
ResNet-50 backbone and 29.4%, 50%, and 50% with ResNet-101 backbone for 1%, 5%, and
10% label data, respectively. Using 1% labeled data, we are obtaining 98.8% mAP on Mask
R-CNN with ResNet-101 backbone, which demonstrates that this approach provides the
best results using a small amount of labeled data. This comparison also demonstrates
that the ResNet-101 backbone provides better results than the ResNet-50 [19] backbone for
both detectors.

Table 1. Different supervised train detectors compared on floor-plan under the semi-supervised
setting on Faster R-CNN [25] and Mask R-CNN [17] with ResNet-50 [19] and ResNet-101 backbone.

Detector Backbone 1% 5% 10%

Faster R-CNN ResNet-50 98.1 98.5 99.2

Faster R-CNN ResNet-101 98.3 99.4 99.6

Mask R-CNN ResNet-50 98.27 Ó 8.94 98.74 Ó 16 99.5 Ó 37.5

Mask R-CNN ResNet-101 98.8 Ó 29.4 99.7 Ó 50 99.8 Ó 50

We also study the behaviour of hyper-parameters on model performance. The first
hyperparameter is the jittered-box value that calculates the localization reliability of pseudo
boxes. Table 2 compares the performance under different values of jittered boxes. By setting
a jittered box value of 10 it gives a mAP of 99.6%, while AP0.5 and AP0.75 are 99.8% and
99.7%, respectively. We can observe from Table 2 that the model gives the highest accuracy
shown in bold when Njitter has a value of 10.
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Table 2. The performance comparison by setting different values of jittered boxes using Mask
R-CNN [17] with ResNet-101 [19] backbone on 10% label data.

Njitter mAP mAP@0.5 mAP@0.75

5 0.996 0.998 0.997

10 0.998 1.0 1.0

15 0.997 1.0 1.0

We apply intersection over union (IoU) between the teacher-created pseudo-boxes
and student-created box-candidate to provide background and foreground labels as an
ordinary object detection model does. In that case, some foreground boxes are incorrectly
classified as negative, reducing performance. Table 3 shows the box regression-variance
threshold. We obtain the best results shown in bold by setting the threshold value to 0.02.
However, a high threshold value provides good foreground precision, and the recall of
box-candidate decreases quickly.

Figure 8 shows a test image where some furniture items are miss-classified. The
network confuses between window1 and window2. The green box wrongly detects two
windows, as one window is named window2. The size of window1 and window2 objects
is small compared to all other floor-plan objects. The detection performance of such small
objects can be improved further, where the background occupies 95% area of the image.

Table 3. The performance comparison by setting different box regression-variance thresholds to select
pseudo-boxes for box regression using Mask R-CNN [17] with ResNet-101 [19] backbone on 10%
label data.

Threshold mAP mAP@0.5 mAP@0.75

0.04 0.998 0.998 1.0

0.03 0.997 1.0 1.0

0.02 0.998 1.0 1.0

0.01 0.992 1.0 1.0

Figure 8. Test images where furniture items are miss-classified using Mask R-CNN [17] with ResNet-
101 [19] backbone on 10% label data.
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Comparison with prior SOTA approaches Table 4 shows the comparison of our semi-
supervised network performance with previously presented semi-supervised approaches
on an average of five data folds with 1%, 5%, and 10% floor plan label data. For supervised
training on Mask R-CNN, we used just 1%, 5%, and 10% label data for training. This mask-
aware semi-supervised training gives 98.8% mAP on just 1% labels, as this dataset is formed
by applying different augmentation approaches explained in Section 4. This behavior can
also be observed in other semi-supervised approaches, as they also give high mAP on just
1% label data. It is observed from Table 4 that our Mask R-CNN-based semi-supervised
approach shown in bold outperforms the previous semi-supervised approaches.

Table 4. Previously comared semi-supervised detectors with our approach trained on an average of
5 data folds with 1%, 5%, and 10% SFPI label dataset.

Method Detector 1% 5% 10%

Supervised Mask R-CNN 92.26 ˘ 0.16 92.89 ˘ 0.15 93.16 ˘ 0.12

STAC [13] Faster R-CNN 94.86 ˘ 0.12 (+2.6) 95.43 ˘ 0.14 (+2.54) 97.12 ˘ 0.15 (+3.96)

Unbiased Teacher [66] Faster R-CNN 96.12 ˘ 0.143 (+3.86) 96.87 ˘ 0.15 (+3.98) 97.18 ˘ 0.12 (+4.02)

Label Match [67] Faster R-CNN 98.1 ˘ 0.12 (+6.01) 98.54 ˘ 0.16 (+5.65) 99.1 ˘ 0.12 (+5.94)

Mask-Aware (Our) Faster R-CNN 98.27 ˘ 0.20 (+6.01) 99.74 ˘ 0.25 (+6.85) 99.5 ˘ 0.15 (+6.43)

Mask-Aware (Our) Mask R-CNN 98.8 ˘ 0.10 (+6.54) 99.7 ˘ 0.15 (+6.81) 99.8 ˘ 0.10 (+6.64)

Table 5 shows the comparison of our semi-supervised network performance for five
data folds with 10% label data on Faster R-CNN [25] and Mask R-CNN [17] with pre-
viously presented supervised approaches. We can not directly compare the results of
Ziran et al. [68] because of the different datasets. It is observed from Table 5 that the semi-
supervised approach outperforms the previous supervised approaches using just 10% of
label data.

Table 5. Previously compared supervised detectors with our semi-supervised approach that is
trained on the floor-plan dataset using Mask R-CNN [17] and Faster R-CNN [25] with ResNet-
101 [19] backbone on 10% label data. *We cannot directly compare the results of Ziran et al. [68]
because of the different datasets.

Method Approach_Dataset Detector mAP

Ziran et al. [68] supervised_d1 Faster R-CNN 0.31

Ziran et al. [68] supervised_d2 Faster R-CNN 0.39

Singh et al. [69] supervised_(SESYD+ROBIN) Faster R-CNN 0.756

Singh et al. [69] supervised_(SESYD+ROBIN) YOLO 0.857

Mishra et al. [20] supervised_SFPI Cascade Mask R-CNN 0.995

Ours semi-supervised_SFPI Faster R-CNN 0.996

Ours semi-supervised_SFPI Mask R-CNN 0.998

8. Conclusions and Future Work

We examine the capabilities of the semi-supervised approach to detect objects in floor-
plan data. It pulls information from the teacher network and feeds it to the student network.
The teacher model uses label data to form pseudo-boxes, and the student model uses both
label data (with the pseudo boxes) and labeled data as ground truth for training. On Mask
R-CNN [17] detector with ResNet-101 backbone, the proposed approach achieves 98.8(%)
mAP, 99.7(%) mAP, 99.8(%) mAP with 1%, 5%, and 10% labeled data, respectively. We can
observe from the results that we can obtain the best performance by just using 1% labeled
data. Furthermore, this experiment can be implemented in various floor-plan applications
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such as floor-plan text generation, and furniture fitting, helping impaired people to analyze
house design and for customers to buy a house online. Earlier, all these applications used
supervised learning approaches [68,69] for floor-plan object detection. However, now with
our experiment, it is clear that the semi-supervised [16] approach gives better results for
these applications.

In future, we can improve Mask R-CNN [17]-based semi-supervised floor-plan detec-
tion system in different ways. We can add text information to detect room types, especially
rooms that are not physically separated, like the dining hall attached to the kitchen. We
can also label rooms according to their functionality. Further research using noisy labels in
training and uncertainty estimation are also a few important topics to boost the efficiency
of semi-supervised-based object detection.
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