
SCHWERPUNKTBEITRAG

https://doi.org/10.1007/s13222-022-00415-0
Datenbank Spektrum (2022) 22:131–141

NebulaStream: Data Management for the Internet of Things

Steffen Zeuch1,2 · Xenofon Chatziliadis1 · Ankit Chaudhary1 · Dimitrios Giouroukis1 · Philipp M. Grulich1 ·
Dwi Prasetyo Adi Nugroho1 · Ariane Ziehn1,2 · Volker Mark1,2

Received: 4 February 2022 / Accepted: 2 May 2022 / Published online: 30 May 2022
© The Author(s) 2022

Abstract
The Internet of Things (IoT) presents a novel computing architecture for data management: a distributed, highly dynamic,
and heterogeneous environment of massive scale. Applications for the IoT introduce new challenges for integrating the
concepts of fog and cloud computing as well as sensor networks in one unified environment. In this paper, we present early
approaches that address parts of the overall problem space. All approaches are incorporated into NebulaStream (NES),
our novel data processing platform that addresses the heterogeneity, unreliability, and scalability challenges of the IoT and
thus provides efficient data management for future applications.

Keywords IoT · Streaming · Modern Hardware

1 Introduction

Over the last decade, the amount of produced data has
reached unseen magnitudes. The International Data Cor-
poration [1] estimates that by 2025 the global amount of
data will reach 175ZB and that 30% of these data will
be gathered in real-time. Particularly the number of IoT
devices is expected to grow to 20 billion connected de-
vices [2], which are deployed in various application scenar-
ios, e.g. smart-cities [3] and traffic-monitoring [4]. At the
same time, devices such as embedded computers or mobile
phones continuously increase their processing capabilities.
The exploitation of their capabilities becomes essential to
handle the future data volumes of the IoT. As a result, the
IoT is one of the fastest emerging trends in the area of
information and communication technology [5].

The explosion in the number of connected devices trig-
gers the emergence of novel data-driven applications. These
applications require low latency, location awareness, geo-
graphical distribution, and real-time data processing on mil-
lions of data sources. To enable these applications, a data

� Steffen Zeuch
firstname.lastname@tu-berlin.de

Volker Mark
firstname.lastname@dfki.de

1 DIMA, TU Berlin, Einsteinufer 17, 10587 Berlin, Germany

2 IAM, DFKI GmbH, Alt-Moabit 91c, 10559 Berlin, Germany

management system needs to leverage the capabilities of
IoT devices. To this end, data processing has to expand
beyond the cloud [6].

Today’s data management systems are not yet ready for
these applications. Systems based on the cloud paradigm,
e.g., Flink [7], Spark [8], and Kafka Streams [9] do not ex-
ploit the capabilities of IoT devices. These system require
the centralization of all data in the cloud prior to applying
any processing. For future IoT applications, this centralized
processing paradigm presents a bottleneck as it requires the
collection of data from millions of geo-distributed sensors.
This trend will not only impact typical IoT applications
like smart cities but also spread across the entire Smart-X
universe, e.g., smart city, smart grid, smart home. In ad-
dition, cloud-based services and even the HPC community
fundamentally neglect that the majority of interesting data
is produced outside the cloud [1, 5]. Thus, the main ques-
tion for future system designs is how to enable analytics on
zettabytes of data produced outside the cloud from millions
of geo-distributed, heterogeneous devices in real-time.

Compared to the pure cloud-based systems, the IoT in-
troduces many significant changes that require new solu-
tions:

1. Hierarchical topology: IoT topologies follow a tree-like
structure. Where data moves from the sensors via inter-
mediate nodes to the cloud.

2. Geo-distribution: IoT devices expand the cloud and are
geo-distributed.

K

https://doi.org/10.1007/s13222-022-00415-0
http://crossmark.crossref.org/dialog/?doi=10.1007/s13222-022-00415-0&domain=pdf
http://orcid.org/0000-0002-4082-7788


132 Datenbank Spektrum (2022) 22:131–141

3. Heterogeneous devices: Processing devices range from
low-end battery-powered sensors (e.g., Mica Motes)
over SoCs (e.g., Raspberry PIs) to high-end servers in
the could.

4. Moving devices: Devices outside the cloud are poten-
tially movable and change their position within the net-
work topology.

5. Sensor Management: Sensor data in IoT environments
have a fluctuating nature, which poses a challenge for re-
source-constrained devices that cannot easily cope with
the velocity and volume of incoming data.

To enable future IoT applications and address the intro-
duced changes, a data management system for the IoT has
to combine the cloud, the fog, and the sensors in a single
unified platform to leverage their unique advantages and
enable cross-paradigm optimizations (e.g., fusing, splitting,
or operator reordering). A unified environment introduces
a previously unprecedented, unique combination of char-
acteristics, e.g., hardware heterogeneity, unreliable nodes,
and changing network topologies.

This new set of characteristics enables new cross-
paradigm optimizations, which are crucial to support up-
coming IoT applications on top of millions of sensors.
Overall, there is no general-purpose, end-to-end data man-
agement system for a unified sensor-fog-cloud environment
with functionality similar to production-ready systems.

In this paper, we present early research results that ad-
dress parts of the overall problem space. All solutions are
designed for NebulaStream 1, our novel data processing
platform that addresses the heterogeneity, unreliability, and
scalability challenges of the IoT to enable efficient data
management. We will point out in the respective sections
what the current status of integration is. In detail, we present
the following approaches: In Sec. 2, we present a new Eco-
Join that allows NebulaStream to perform energy-efficient
joins on IoT devices. In Sec. 3, we present adaptive query
compilation, which allows resource-efficient stream pro-
cessing on a broad ranges of devices. In Sec. 4, we investi-
gate if state-of-the-art monitoring solutions are suitable for
IoT environments with millions of devices and how they
should be modified to improve their performance outside
the cloud. In Sec. 5, we introduce Governor, an operator
placement algorithm designed for the IoT. In Sec. 6, we
investigate complex event processing on top of the IoT and
propose new solutions for a unified fog-cloud environment
that fulfill the low-latency requirements of future IoT ap-
plications. In Sec. 7, we investigate adaptive sampling and
filtering as important techniques for large-scale sensor de-
ployments. With this paper, we present first research results
as results of our work on NebulaStream.

1 https://nebula.stream

2 Energy Efficiency

IoT systems often offload data processing workload to edge
devices due to their proximity to data sources. In many
cases, these edge devices operate on a limited power and
energy budget, e.g., battery-powered. Hence, it is crucial to
take energy efficiency into account when designing a stream
processing engine (SPE) for the IoT.

Energy-efficient data management has been an active
research area over the few last years. Tsirogiannis et al.
[10] argued that energy efficiency can be improved through
a more optimized processing efficiency, such as by using
a more efficient algorithm. On an orthogonal dimension,
race-to-idle [11, 12] exploits the capability of modern pro-
cessors to enter the low-energy idle state when there is no
work, e.g., by lowering the clock speed. Another line of
research utilize system-on-chip (SoC), such as energy-opti-
mized CPUs [13] and integrated GPUs [14] to deliver high
performance and low energy consumption.

Existing research in energy-efficient data management
focuses on processing workloads of relational databases.
However, the IoT and NebulaStream in particular bring
unique challenges that are not tackled by previous work.

2.1 EcoJoin

To tackle the energy efficiency challenges when process-
ing stream join workloads on IoT devices we proposed the
EcoJoin [15] for NebulaStream. In particular, EcoJoin ad-
dresses three aspects of IoT devices when handling en-
ergy efficiency. First, we exploit changing workload char-
acteristics. Second, we design a join algorithm to increase
high computational efficiency. Third, we utilize the avail-
able hardware to preserve energy utilization.

2.1.1 Exploiting Workload Characteristics.

EcoJoin adopts the idle-to-race approach to achieve energy-
efficient stream join processing. To exploit idle-to-race,
EcoJoin splits the processing of incoming event streams
into batches. In particular, EcoJoin applies a two-step ap-
proach: first, by setting the processor to enter an idle phase
when waiting for tuples in batches and second, by adjusting
the processor’s frequency to the value required to sustain
the current ingestion rate.

2.1.2 Increasing Computational Efficiency.

EcoJoin applies a symmetric hash join algorithm to achieve
higher throughput and energy efficiency compared to the
nested loop join algorithm that is used in state-of-the-art
stream join solutions. Adapting the symmetric hash join to
a streaming setup leads to two challenges. First, triggering

K

https://nebula.stream


NebulaStream 133

the build and probe for each incoming tuple is inefficient.
Second, a full scan of the hash table to invalidate a tuple that
exceeds the range of the specified window is expensive. To
this end, EcoJoin implements a batching mechanism and
reduces the tuple invalidation overhead by only evicting
records if the hash table is close to its maximum capacity.

Under the hood, EcoJoin maintains two hash tables, i.e.,
one for each join side, and performs the join operation in
three phases. In the first phase, EcoJoin inserts tuples from
a batch that is ready processing into the corresponding hash
table, which is partitioned on the tuple’s key. In the second
phase, EcoJoin probes the batch from one side with the
hash table of the other join side. If a pair satisfy the join
predicate, EcoJoin emits the matching pair into a result
stream. In the third phase, EcoJoin deletes all invalid tuples,
i.e., tuples that are outside of the current window range
and thus will not find any match. To reduce the clean-up
overhead, EcoJoin counts invalid tuples and only triggers
the clean-up process periodically.

2.1.3 Exploiting Heterogeneous Processors.

EcoJoin leverages CPUs and integrated GPUs to maximize
energy efficiency. To this end, EcoJoin switches devices to
process the join based on their availability and under the
given workload.

2.2 EcoJoin Evaluation

We evaluated the power consumption, throughput, and la-
tency of EcoJoin. To this end, we compared the throughput
and energy consumption of EcoJoin to existing stream
join algorithms, i.e., naive Handshake Join (CPU) [16]
and HELLS Join (CPU/GPU co-processing) [17]. Figure 1
shows the throughput and power consumption of the differ-
ent stream join algorithms. The x-axis shows the maximum
sustainable throughput of each algorithm. The CPU and
GPU variant of our EcoJoin achieve the highest through-
put compared to other algorithms, i.e., up to 1M tuples/s.
In contrast, the Handshake Join and HELLSJoin achieve
similar maximum sustainable throughput of 4K tuples/s,

Fig. 1 Power consumption of streaming joins

while the naive NLJ achieves only 2K tuples/s. On the
y-axis, we show the amount of power consumed by each
join algorithm. EcoJoin consumes significantly less energy
compared to other join algorithms for the same sustainable
throughput. In particular, EcoJoin shows up to 81% less
power consumption compared to Handshake Join and 65%
less compared to HELLS Join. In summary, the EcoJoin
outperforms state-of-the-art stream join algorithms in terms
of throughput and energy efficiency.

2.3 Summary

Energy efficiency is one of the most crucial aspects in of-
floading data processing workloads to edge devices in an
IoT data management system. We tackle this challenge
within EcoJoin by proposing an energy-efficient stream
join. In future work, we plan to integrate the approach that
we have in EcoJoin to NES and investigate the feasibility
of a similar approach for other stream processing operators
in general.

3 Efficient StreamProcessing

Over the last years, the increasing demands of real-time
use-cases has led to a wide adoption of stream processing
workloads. These workloads execute long-running queries
over unbounded, continuously changing, high-velocity data
streams. State-of-the-art stream processing engines, e.g.,
Flink [7], and Storm [18], distribute processing to large
homogeneous compute clusters to achieve high-throughput
and low-latency’s. However, these systems are designed for
cloud environments and can not address the unique require-
ments of IoT scenarios. In particular, we observed in an ex-
perimental study three fundamental limitations of current
SPEs [19].

3.1 Low resource utilization.

Our study revealed that none of the existing systems were
able to fully utilize the available hardware resources. In
particular, they suffered from instruction cache misses as
they follow interpretation-based processing model and data
cache misses as they rely on managed runtimes. Conse-
quently, these systems are not suited for IoT environments,
which require efficient data processing on a wide range of
heterogeneous and resource-constrained devices.

3.2 Inefficient parallilization.

State-of-the-art SPEs utilize a key-by partitioning to dis-
tribute stream processing workloads uniformly across large
compute clusters. However, this strategy introduces an ex-

K



134 Datenbank Spektrum (2022) 22:131–141

pensive shuffle phase, which induces a high overhead per
node. Consequently, this strategy is not suited for low-end
and mid-end IoT devices with limited processing power.

3.3 Missed optimizations.

Current SPEs receive a query, apply optimizations, and de-
ploy an execution plan. However, stream processing queries
are inherently long-running. Thus, the data characteristic of
the input stream may change over the run time, which re-
duces the efficiency of a plan. As a result, current SPEs are
not designed to handle the dynamicity of the IoT.

To address these three limitations, NebulaStream lever-
ages adaptive query compilation [20].

3.4 Adaptive Query Compilation

In the following, we discuss NebulaStream’s adaptive query
compilation engine, which bases on Grizzly [20]. Grizzly
combines query compilation, task-based parallelization, and
adaptive optimizations to increase resource utilization.

Query compilation is a well-known technique for effi-
cient data processing in relational data processing engines
[21, 22]. Grizzly adopts this approach for stream process-
ing and supports the unique properties of stream processing
queries. Within queries, Grizzly fuses operators to compact
code fragments and performs all operations in a single pass
over the data. Furthermore, Grizzly avoids serialization and
accesses data directly. As a result, query compilation based
on Grizzly increases code and data locality within NES.

Task-based parallelization enables the concurrent exe-
cution of operator pipelines [23, 24] to fully utilize multi-
core CPUs. This eliminates the overhead of data pre-parti-
tioning but requires coordination between threads. To this
end, Grizzly introduces a lock-free window operator.

Adaptive optimizations enable a system to react to
changing data characteristics [25, 26]. Grizzly monitors
data-characteristics, detects changes, and generates new
code variants at run time. This allows Grizzly to perform
speculative optimizations that exploit assumptions about
the incoming data. To mitigate profiling overhead, Grizzly
leverages hardware-performance counters to detect changes
in the data characteristics.

By leveraging these techniques within NebulaStream, we
improve execution performance significantly. Our results
show that Grizzly outperforms state-of-the-art SPEs by up
to an order of magnitude without losing generality.

3.5 Summary

NebulaStream applies adaptive query compilation to mit-
igate the limitations of state-of-the-art SPEs. As a result,
NebulaStream is able to fully utilize the available hardware

resources. In the future, we plan to extend NebulaStream
with support of UDFs [27] and concept drift detection [28].

4 Monitoring

SPEs apply optimizations to enable efficient data process-
ing at scale, e.g., state management [29], operator place-
ment [30–34], scheduling [35, 36], query compilation [20],
adaptive sampling [37], and load shedding [38]. For optimal
decision making these approaches require accurate system
metrics of the underlying infrastructure as well as applica-
tions metrics of the running tasks. To provide these metrics,
SPEs need to monitor the infrastructure (e.g., available re-
sources on the devices, utilized bandwidth), detects node
failures, and measures the performance of internal work-
loads (e.g., operator throughput).

Managing the variety of metrics at scale in a highly dis-
tributed cloud-based SPE is in general a challenging task for
a monitoring system. Monitoring an SPE in an IoT environ-
ment exacerbates the challenge even further due to the geo-
distributed, heterogeneous, highly dynamic, and volatile na-
ture of IoT environments [39]. The collected metrics can
become quickly outdated due to device or network failures
and fluctuating load. While there exist several cloud-based
performance monitoring solution [40–42], there are no so-
lutions for IoT systems like NebulaStream.

In previous work [43], we analyzed two common ap-
proaches for performance monitoring in cloud-based SPEs
and investigate their applicability in large-scale IoT set-
tings. The first approach uses an external, general-purpose
monitoring system to monitor the performance of the SPE.
In contrast, the second approach implements monitoring
internally within the SPE. As the first approach is widely
adopted in industry, we experimentally evaluate whether it
can be applied efficiently in an IoT setting. Finally, based
on our analysis, we highlight the need to re-design moni-
toring frameworks for IoT data management systems and
sketch a set of requirements.

4.1 State of the Art

External monitoring systems such as Ganglia [40], Na-
gios [41], JCatascopia [44], the Elastic ecosystem [45] or
Prometheus [42] consist of four major components: mon-
itoring agents, monitoring server, data storage analytics &
visualization. Such frameworks monitor SPEs as follows:
1) the monitoring agents collects metrics from the nodes
of an SPE, 2) send the metrics to the monitoring server
for processing, and 3) transmit the processed metrics back
to the master node of the SPE. This solution has two ma-
jor drawbacks. On the one hand, it creates a strong de-
pendency between the SPE and an external system, which

K



NebulaStream 135

makes the dependent components harder to maintain in case
of changes. On the other hand, metrics have to cross multi-
ple system boundaries, i.e., from the SPE to the monitoring
system and back to the SPE, which creates an unnecessary
overhead [19].

To alleviate the inefficiencies of external monitoring
systems, some cloud-based SPEs like Flink, Spark, and
Storm implement their own monitoring internally. From
a high-level architectural perspective the monitoring of
cloud-based SPEs consists of the following common com-
ponents: metrics manager, SPE components, master node,
and external monitoring system. The metrics manager re-
trieves performance metrics from the Java Virtual Machine
(JVM) instance and from internal components of the SPE.
Afterwards, the metrics are forwarded to the corresponding
destinations, which can be components inside the workers
that require monitoring data, the master node, or external
systems. By introducing such a coupling of the monitoring
component, the SPE can avoid the additional overhead of
external monitoring systems and make monitoring more
efficient.

4.2 Requirements

Existing general purpose monitoring solutions can be seam-
lessly implemented and integrated in cloud-based SPEs that
use JVMs. There are many Java libraries that facilitate the
gathering of system and user metrics independently from
the underlying operating system and hardware. Data man-
agement systems for the IoT like NES are, however, im-
plemented in C++ due to its efficiency and suitability for
low-end devices [19]. Additionally, IoT environments are
more complex and diverse than the purely cloud-based en-
vironments, since they frequently undergo changes and con-
sist of many hierarchical levels with different networks and
permissions. As a result, not all devices can be connected
directly at all times.

In [43], we propose a list of requirements that are specifi-
cally tailored to an internal monitoring component for a data
management system for the IoT. Specifically, we identify
four categories of functional requirements that such a sys-
tem needs to satisfy in order to enable monitoring in IoT
environments: 1) performance optimization and scalability,
2) handling uncertainties, 3) permission and access control
and 4) handling heterogeneity. The first category addresses
the resource constrained environment and massive num-
ber of nodes properties. The second category addresses the
dynamic topology property. The third one handles the com-
plex networks property, and the last category addresses the
properties diversity.

4.3 Summary

In this section we explored existing monitoring solutions
with respect to their applicability in a stream processing
setting for IoT environments. We described the architec-
ture of SPE-external monitoring frameworks and provided
an overview of SPE-internal monitoring components. We
conclude that novel monitoring solutions are required to
support the distribution, heterogeneity, volatility, and com-
plexity of IoT environments.

5 Operator Placement

An IoT infrastructure encompasses a large number of
heterogeneous, geo-distributed, and sparsely connected de-
vices [39]. These devices are capable of producing large
volumes of data that allow interesting real-time applica-
tions such as public mobility, health care, or manufacturing
[6]. These applications require IoT workloads which can
process massive amounts of real-time data to generate
new insights. The state-of-the-art solutions first collect
these large volumes of data centrally in the cloud and then
employ cloud-based frameworks such as, Flink or Spark,
for data processing. However, this central collection of
data leads to an increase in processing latency and overall
network, storage, and compute resources.

The resources available at and close to IoT devices in
the fog [46] infrastructure can mitigate these challenges by
performing in-network processing, such as partial-aggrega-
tion or filtering. This pre-processing allows reduction in the
overall data and further processing requirements. However,
holistic computation of data is not possible within the fog
infrastructure due to unavailability of data from IoT devices
in an isolated network zone.

A unified fog-cloud infrastructure allows mitigating the
challenges of increased resource consumption at cloud in-
frastructure and inability of performing holistic computa-
tions at fog infrastructure. In particular, by unifying the
cloud and fog infrastructure we can enable real-time pro-
cessing of data and efficient utilization of underlying het-
erogeneous and geo-distributed resources.

An IoT workload can have different application ob-
jectives, such as infrastructure monitoring, time-sensitive
anomaly detection, or fault-tolerant billing information col-
lection. The heterogeneity and volatility in the network and
compute resources in this unified fog-cloud infrastructure
presents unique challenges for achieving these application
objectives. A common challenge in such unified infrastruc-
ture is to perform placement of operators from a workload
to leverage the unique infrastructure properties and the
workload Service Level Objectives (SLOs), e.g., high-
throughput, low resource consumption.

K



136 Datenbank Spektrum (2022) 22:131–141

Table 1 Five example Governor policies

Low-Latency Fault-Tolerance High-Throughput Minimum Resource
Consumption

Minimum Energy Consump-
tion

Path Se-
lection
Phase

– Distinct paths
with lowlink
latency

– All paths be-
tween sources
and sink

– Distinct paths
with high band-
width capacity

– Common path
between sources
and sink

– Common path between
sources and sink

Operator
Assign-
ment
Phase

– Non-blocking
operators closer
to source

– Replicate op-
erators when
possible

– Use shared nodes
among selected
paths

– Replicate op-
erators when
possible

– Non-blocking
operators closer
to source

– Blocking oper-
ators closer to
sink

– Share intermediate
operators among
different sources

– Avoid operator
replication

– Non-blocking operators
closer to source

– Share intermediate operators
among different sources

– Avoid operator replication

The cloud-centric operator placement techniques ignores
volatility and heterogeneity in the infrastructure and instead
focus on network and compute resource efficiency [47–49].
In contrast, approaches proposed for unified fog-cloud en-
vironments consider volatility and heterogeneity but only
optimize for a specific goal, e.g., network efficiency or fault
tolerance [30, 50, 51]. None of the above works allow spec-
ification of custom SLOs for operator placement.

We proposed Governor [31], a novel operator placement
approach for the placement of workloads with varying SLO
in a unified fog-cloud environment. Governor consists of
Governor Policies (GPs) and the Governor placement pro-
cess which are discussed in remainder of this section.

5.1 Governor Polices

Governor policies consist of a sub-set of heuristic-based
rules from a fixed collection of rules. An administrator pre-
pares the GP by selecting rules from a predefined catalog,
which is maintained and updated by a domain expert. A GP
then guides the operator placement process for a specific
SLO. For example, to place a query with high fault-toler-
ance as an SLO, a GP selects all available network paths

Fig. 2 Governor placement
process

a b c d

between source and sink nodes, and places replicated oper-
ators on different nodes along the selected paths. In case of
an operator failure, another replica operator will take over
the failed operator’s workload, thereby achieving the fault-
tolerance objective.

A GP defines rules for two purpose: path selection and
operator assignment. The rules defined for the path selec-
tion guide the selection of a subset of available paths in the
infrastructure for data transfer. In contrast, the rules defined
for operator assignment guide the placement of operators
on nodes on the selected paths. Table 1 presents five differ-
ent example policies with different SLO objectives. We can
notice that different policies share common heuristic rules
among each other.

5.2 Governor Placement Process

The Governor’s operator placement process consists of four
different steps. Figure 2 presents steps involved in the place-
ment of operators of a query on an example infrastructure.
First, Governor transforms a query into a directed acyclic
graph (DAG) of interconnected operators (Fig. 2a). Second,
Governor extracts a graph representing underlying physical

K



NebulaStream 137

infrastructure containing compute nodes that are intercon-
nected by network links (see Fig. 2b). In the next two steps,
Governor uses the GP to guide the placement process to as-
sign the operators from the query DAG on the infrastructure.
Third, Governor uses the rules from a GP to perform the
path selection from the graph representing the infrastruc-
ture (Fig. 2c). Governor identifies paths between the source
(IoT device) and the sink (cloud servers) nodes using the
heuristic rules defined in the GP. The path selection phase
allows pruning the search space for the operator assign-
ment in a large-scale infrastructure containing thousands
of interconnected nodes. Fourth, Governor performs opera-
tor assignment on nodes along the selected paths from the
previous step (Fig. 2d). Governor distinguishes between
operators residing on a fixed location (i.e., pinned) and the
operators that can be placed freely on any node along the
path (i.e., unpinned).

5.3 Summary

In this section, we presented Governor, a first step towards
operator placement on a unified fog-cloud infrastructure.
We have implemented few example Governor policies and
its overall operator placement strategy in NebulaStream.
We presented Governor’s ability to accept custom Policies
with different optimization objectives for operator place-
ment. With that, we introduced the challenges as well as
early solutions for operator placement in the future IoT era.

6 Complex Event Processing

Complex event processing (CEP) is a stream processing
method that detects user-defined patterns in data streams.
Patterns contain information about the relationships be-
tween event types, e.g., by time or cause [52]. When
matches of the pattern are detected in the involved streams,
the user is notified, e.g., by pushing a notification, or the
application may react autonomously, e.g., showing a pop-
up on a live map. As a result, CEP is a powerful and
necessary tool for monitoring IoT applications, e.g., traf-
fic congestion monitoring, smart street lamps [53], and
an essential feature in NebulaStream [39] we currently
investigate.

6.1 State-of-the-Art

In order to enable CEP for the IoT, we need engines that
allow for large-scale and massive distributed processing.
Thus, we focus our state-of-the-art analysis on CEP so-
lutions that allow for efficient stream processing in cloud
or fog environments. Giatrakos et al. [54] and Carbone et
al. [55] reviewed a broad set of parallel and distributed

CEP approaches and concluded that no single solution pro-
vides the entire set of features that are required to leverage
the cloud entirely, e.g., flexible resource allocation [56] or
multi-query optimization [57]. In contrast, over the last two
decades, analytical stream processing (ASP) evolved for
Big Data processing with engines that scale out over clus-
ters of machines to cope with the volume and velocity of
data, e.g., Flink [7] and Spark [8]. This trend also adapts
original CEP features, e.g., out-of-order arrivals and event
time [55, 58]. Therefore, first CEP approaches have been
proposed that leverage cloud-optimized ASP engines to pro-
vide large-scale CEP features. One naive approach is to run
instances of CEP engines on worker nodes of an ASP en-
gine-managed cluster. This approach was demonstrated by
’Siddhi on Spark’ [59] but is conceptually not limited to
this combination. However, this setup still prevents the full
leverage of the cloud. Another approach enables built-in
support for CEP in an ASP engine to utilize its distributed
stream processing optimization. Flink is the only ASP that
provides this approach with the FlinkCEP library [60].

6.2 Solution Sketch

We aim to leverage NebulaStreams’s unified fog-cloud en-
vironment for CEP and provide a solution that fulfills the
latency requirements of IoT applications. To this end, we
investigate in the following core features of CEP.

6.2.1 Pattern Evaluation Mechanisms

Efficient CEP requires a high-performance pattern evalu-
ation mechanism. FlinkCEP uses an order-based evalua-
tion mechanism, i.e., an NFA applicable to NebulaStream’s
cloud layer. However, these solutions introduce two prob-
lems: First, cloud bottlenecks, e.g., the central data collec-
tion, remain without leveraging the fog layer. Second, cloud
CEP solutions are naive and bound to one common evalu-
ation mechanism, i.e., order-based evaluation driven by au-
tomata. The structure of automata is order-based and allows
for limited pattern plan optimization, while other evaluation
mechanisms, e.g., tree-based solutions, have an enormous
optimization potential similar to join query plan optimiza-
tion [61] (see Fig. 3). In order to overcome these problems,
we are currently evaluating promising evaluation mecha-
nisms for distributed pattern detection and bringing them
together with the fog paradigm and distribution strategies.
To this end, we consider three candidate solutions: (1) the
order-based mechanism used by FlinkCEP, (2) the tree-
based mechanism that provides more extensive pattern plan
optimization techniques as order-based mechanisms, and
(3) a mapping between CEP operators and ASP operators
that leverages cloud-optimized operator implementations.

K



138 Datenbank Spektrum (2022) 22:131–141

Fig. 3 Pattern Detection Mech-
anism. a order-based (NFA),
b tree-based

a b

6.2.2 Optimization of Evaluation Mechanisms

After identifying the best candidate for an evaluation mech-
anism in fog-cloud environments, we suggest focusing on
its optimization for the fog environment. Unlike the cloud
paradigm, fog environments allow us to tailor the data to the
relevant only using the fog nodes on the data flow through
the network. Cloud-based optimization techniques do not
consider the limitations and challenges of using fog nodes,
i.e., unreliable and moving low-end devices in a dynamic
network topology. These limitations require adjustments to
stream processing in general, e.g., derive query plans for
dynamically changing instead of static networks. Another
challenge specific to CEP is that CEP is a stateful pro-
cessing method that requires storing partial matches (in-
termediate results) in such a dynamic environment. Storing
and maintaining large amounts of partial matches is already
a significant challenge in cloud environments with almost
unlimited resources. We currently investigate two CEP op-
timization techniques that need to be adjusted for fog exe-
cution: rewriting single patterns and sharing techniques for
multi patterns [62]. Both techniques improve pattern detec-
tion plans by reducing partial matches.

6.3 Summary

We introduced the importance of CEP for the IoT and
its state-of-the-art solutions. Furthermore, we discussed
current challenges and sketched directions to enable CEP
for NebulaStream’s fog-cloud environment [63]. We are
currently working on implementing the above-introduced
pattern evaluation mechanisms for NebulaStream that will
form a baseline for further optimizations to leverage the
fog layer.

7 Sensor Data Management

The Internet of Things (IoT) creates environments with mil-
lions of heterogeneous sensor nodes that provide data in real
time [64]. Timely acquisition of data from such a highly
distributed sensor deployment poses complex challenges

for data management systems. The main research chal-
lenges of these sensors networks are: (i) heterogeneity of
resources, (ii) widely distributed communication networks,
and (iii) nodes with diverse sets of capabilities [39, 65, 66].

In NES, we examine how current research tackles those
challenges in highly distributed sensor environments. To
this end, we want to first collect classes of algorithms that
enable data management in very large IoT environments and
consuquently implement and expand the State-of-the-Art
inside NES, as none of the catalogued techniques have been
evaluated in the context of real-time stream processing.

In previous work [37], we consider adaptive sampling
and filtering algorithms that run on the data sources, i.e.,
directly on sensor nodes, as the fundamental building blocks
for a sensor-aware system. With adaptive sampling and fil-
tering, we are able to address important scalability chal-
lenges for gathering volatile streams of heterogeneous sen-
sor data from the IoT. Adaptive sampling enables the sys-
tem to decide when, where, and how often to sample [67]
a value from a sensor. In contrast, adaptive filtering allows
the system to decide which values to transmit to an SPE for
further analysis. To highlight the unique characteristics of
adaptive sampling and filtering, we summarize briefly both
techniques.

7.1 Adaptive Sampling

Adaptive sampling changes the sampling rates on a sensor
node such that (i) sensors observing an interesting event
provide detailed data (high sampling rate) and (ii) sensors
that do not observe interesting events reduce sampling rates
to not overload the receiver. Ideally, at any time, a subset
of sensors dynamically switches to a higher sampling rate
while the majority of sensors provides data at lower rates.
As a result, a highly adaptive sampling approach is crucial
to enable future IoT deployments with millions of sensor
nodes.

In Fig. 4, blue diamonds mark sensor readings performed
with a fixed rate. In contrast, orange triangles mark sensor
readings performed with an adaptive rate. In this example,
adaptive sampling has three advantages compared to fixed
rate sampling. First, it performs fewer sensor reads, which

K



NebulaStream 139

a b

Fig. 4 Adaptive Sampling. a original stream, b resulting stream

leads to energy savings on the sensor nodes. Second, it
transmits fewer values to the central analysis engine, which
saves network traffic. Third, the reconstructed phenomenon
of the adaptive technique is closer to the original.

7.2 Adaptive Filtering

Adaptive filtering techniques focus on finding a threshold
that helps deciding whether a system should transmit a sen-
sor value. In particular, if a sensor value is similar to pre-
vious values or evolves predictably, a node can avoid data
transmission and thus save network traffic. In contrast, if
a value changes unexpectedly and does not follow a pre-
diction, a node needs to transmit an update to maintain the
precision of the reconstructed signal on the receiver side.
Since the behavior of a signal may change frequently, static
a-priori filtering would lead to sub-optimal decisions. Thus,
filter thresholds and rules for value filtering must adapt over
time to the observed values.

Figure 5 depicts an example of adaptive filtering. This
example compares two different filtering techniques (left
and right). Both techniques transmit the values for the inter-
vals marked in red for a stream of price changes. However,
on the left, the technique transmits changes that exceed the
predefined threshold only, ignoring later changes. In con-
trast, the right side captures changes depending on the mag-

a b

Fig. 5 Adaptive Filtering. a static filter, b adaptive filter

nitude of change between values. A technique with fixed
thresholds may underestimate the importance of changes.
By adapting the threshold, a filtering technique reduces net-
work traffic and maintains data quality.

7.3 Summary

We discussed fundamental techniques that will enable Neb-
ulaStream to process data from millions of devices, in real
time. Adaptive sampling from sensors and adaptive filtering
of sampled data allow NebulaStream to get accurate infor-
mation while reducing the amount of network messages to
a bare minimum. Currently, we are working on the imple-
mentation of equivalent operators inside NES in order to
create a true sensor data management system for the scale
of the IoT.

8 Conclusion

In this paper, we presented early research results in the
huge problem space of IoT environments. We summarized
our approaches and outlined why they are important to cre-
ate an IoT data management system. All approaches are
incorporated into NebulaStream, our novel data process-
ing platform that addresses the heterogeneity, unreliability,
and scalability challenges of the IoT and thus provides effi-
cient data management for future applications. Besides the
discussed areas, we investigate in NebulaStream different
directions of development, e.g., modern networking infra-
structure [68], the support of machine learning [69, 70], and
the optimization of stream operators [71–74].

Funding Open Access funding enabled and organized by Projekt
DEAL.

Open Access This article is licensed under a Creative Commons At-
tribution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included
in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view
a copy of this licence, visit http://creativecommons.org/licenses/by/4.
0/.

References

1. Reinsel D et al (2018) Data age 2025: The digitization of the world
from edge to core. https://www.seagate.com/files/www-content/
our-story/trends/files/idc-seagate-dataage-whitepaper.pdf. Zuge-
griffen: 15. Dez. 2019

K

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf


140 Datenbank Spektrum (2022) 22:131–141

2. Hung M (2017) Leading the iot, gartner insights on how to lead in
a connected world (Gartner Research)

3. Gavriilidis H et al (2020) Scaling a public transport monitoring sys-
tem to internet of things infrastructures. In: EDBT

4. Grulich PM, Zukunft O (2017) Bringing big data into the car: Does
it scale? In: Innovate-Data, IEEE

5. Miorandi D, Sicari S, De Pellegrini F, Chlamtac I (2012) Internet of
things: Vision, applications and research challenges. Ad Hoc Netw
10:1497–1516. https://doi.org/10.1016/j.adhoc.2012.02.016

6. Zeuch S et al (2020) Nebulastream: Complex analytics beyond the
cloud. In: VLIoT

7. Alexandrov A et al (2014) The stratosphere platform for big data
analytics. VLDB J 23:939–964. https://doi.org/10.1007/s00778-
014-0357-y

8. Zaharia M et al (2016) Apache spark: a unified engine for big
data processing. Commun ACM 59:56–65. https://doi.org/10.1145/
2934664

9. Sax MJ et al (2018) Streams and tables: Two sides of the same coin.
In: BIRTE

10. Tsirogiannis D et al (2010) Analyzing the energy efficiency of a
database server. In: SIGMOD, ACM

11. Götz S et al (2014) Energy-efficient databases using sweet spot fre-
quencies. In: UCC, IEEE

12. Kissinger T et al (2018) Adaptive energy-control for in-memory
database systems. In: SIGMOD, ACM

13. Ungethüm A et al (2015) Query processing on low-energy many-
core processors. In: ICDE, IEEE

14. Cheng X et al (2015) Energy-efficient query processing on embed-
ded CPU-GPU architectures. In: DaMoN, ACM

15. Michalke A et al (2021) An energy-efficient stream join for the in-
ternet of things. In: DaMoN, ACM

16. Teubner J, Müller R (2011) How soccer players would do stream
joins. In: SIGMOD, ACM

17. Karnagel T et al (2013) The hells-join: a heterogeneous stream join
for extremely large windows. In: DaMoN, ACM

18. Kulkarni S et al (2015) Twitter heron: Stream processing at scale.
In: ACM SIGMOD

19. Zeuch S et al (2019) Analyzing efficient stream processing on
modern hardware. PVLDB 12:516–530. https://doi.org/10.14778/
3303753.3303758

20. Grulich PM et al (2020) Grizzly: Efficient stream processing
through adaptive query compilation. In: ACM SIGMOD

21. Breß S et al (2018) Generating custom code for efficient query ex-
ecution on heterogeneous processors. VLDB J 27:797–822. https://
doi.org/10.1007/s00778-018-0512-y

22. Neumann T (2011) Efficiently compiling efficient query plans for
modern hardware. VLDB 4:539–550. https://doi.org/10.14778/
2002938.2002940

23. Leis V et al (2014) Morsel-driven parallelism: A numa-aware query
evaluation framework for the many-core age. In: ACM SIGMOD

24. Zeuch S, Freytag J (2014) QTM: modelling query execution with
tasks. In: ADMS

25. Răducanu B et al (2013) Micro adaptivity in vectorwise. In:
SIGMOD, ACM

26. Zeuch S et al (2016) Non-invasive progressive optimization for in-
memory databases. Proc VLDB Endow 9:1659–1670. https://doi.
org/10.14778/3007328.3007332

27. Grulich PM et al (2021) Babelfish: Efficient execution of polyglot
queries. Proc VLDB Endow 15:196–210. https://doi.org/10.14778/
3489496.3489501

28. Grulich PM et al (2018) Scalable detection of concept drifts on data
streams with parallel adaptive windowing. In: EDBT

29. DelMonte B et al (2020) Rhino: Efficient management of very large
distributed state for stream processing engines. In: SIGMOD

30. Cardellini V et al (2016) Optimal operator placement for distributed
stream processing applications. In: ACM DEBS

31. Chaudhary A et al (2020) Governor: Operator placement for a uni-
fied fog-cloud environment. In: EDBT

32. Pietzuch P et al (2006) Network-aware operator placement for
stream-processing systems. In: ICDE

33. Rizou S et al (2010) Solving the multi-operator placement problem
in large-scale operator networks. In: ICCCN

34. Xu J et al (2014) T-storm: Traffic-aware online scheduling in storm.
In: IEEE ICDCS

35. Babcock B et al (2003) Chain: Operator scheduling for memory
minimization in data stream systems. In: ACM SIGMOD

36. Carney D et al (2003) Operator scheduling in a data stream man-
ager. In: VLDB

37. Giouroukis D et al (2020) A survey of adaptive sampling and filter-
ing algorithms for the internet of things. In: DEBS

38. Babcock B et al (2004) Load shedding for aggregation queries over
data streams. In: IEEE ICDE

39. Zeuch S et al (2020) The nebulastream platform for data and appli-
cation management in the internet of things. In: CIDR

40. Massie ML et al (2004) The ganglia distributed monitoring sys-
tem: design, implementation, and experience. Parallel Comput
30:817–840. https://doi.org/10.1016/j.parco.2004.04.001

41. Nagios Enterprises Nagios xi 5.6.10. https://www.nagios.com.
Zugegriffen: 6. Mai 2021

42. Prometheus Authors Prometheus 2.15.9. https://prometheus.io/.
Zugegriffen: 6. Mai 2021

43. Chatziliadis X et al (2021) Monitoring of stream processing engines
beyond the cloud: An overview. OJIOT 7:71–82

44. Trihinas D et al (2014) Jcatascopia: Monitoring elastically adaptive
applications in the cloud. In: CCGrid

45. Elastic Elastic ecosystem. https://www.elastic.co. Zugegriffen: 14.
Juni 2021

46. Bonomi F et al (2012) Fog computing and its role in the internet of
things. In: MCC

47. Chatzistergiou A et al (2014) Fast heuristics for near-optimal task
allocation in data stream processing over clusters. In: CIKM, ACM

48. Huang Y et al (2011) Operator placement with qos constraints for
distributed stream processing. In: CNSM, IEEE

49. Kafil M et al (1998) Optimal task assignment in heterogeneous dis-
tributed computing systems. Ieee Concurr 6:42–50. https://doi.org/
10.1109/4434.708255

50. Cardellini V et al (2017) Optimal operator replication and place-
ment for distributed stream processing systems. SIGMETRICS
44:11–22. https://doi.org/10.1145/3092819.3092823

51. da Silva Veith A et al (2018) Latency-aware placement of data
stream analytics on edge computing. In: International conference
on service-oriented computing. Springer, Heidelberg

52. Luckham DC (2005) The power of events - an introduction to com-
plex event processing in distributed enterprise systems. ACM, New
York

53. Ahmed A et al (2019) Fog computing applications: Taxonomy and
requirements. CoRR

54. Giatrakos N et al (2020) Complex event recognition in the big data
era: a survey. VLDB J 29:313–352. https://doi.org/10.1007/s00778-
019-00557-w

55. Carbone P et al (2017) Large-scale data stream processing systems.
In: Handbook of big data technologies

56. Mei Y, Madden S (2009) Zstream: a cost-based query processor for
adaptively detecting composite events. In: SIGMOD, ACM

57. Cugola G et al (2012) Complex event processing with T-REX. J
Syst Softw 85:1709–1728. https://doi.org/10.1016/j.jss.2012.03.
056

58. Luckham D (2019) What’s the difference between esp and cep?
https://complexevents.com/2019/07/15/whats-the-difference-
between-esp-and-cep-2/. Zugegriffen: 06.2020

59. Stratio decision. https://github.com/Stratio/Decision. Zugegriffen:
01.2021

K

https://doi.org/10.1016/j.adhoc.2012.02.016
https://doi.org/10.1007/s00778-014-0357-y
https://doi.org/10.1007/s00778-014-0357-y
https://doi.org/10.1145/2934664
https://doi.org/10.1145/2934664
https://doi.org/10.14778/3303753.3303758
https://doi.org/10.14778/3303753.3303758
https://doi.org/10.1007/s00778-018-0512-y
https://doi.org/10.1007/s00778-018-0512-y
https://doi.org/10.14778/2002938.2002940
https://doi.org/10.14778/2002938.2002940
https://doi.org/10.14778/3007328.3007332
https://doi.org/10.14778/3007328.3007332
https://doi.org/10.14778/3489496.3489501
https://doi.org/10.14778/3489496.3489501
https://doi.org/10.1016/j.parco.2004.04.001
https://www.nagios.com
https://prometheus.io/
https://www.elastic.co
https://doi.org/10.1109/4434.708255
https://doi.org/10.1109/4434.708255
https://doi.org/10.1145/3092819.3092823
https://doi.org/10.1007/s00778-019-00557-w
https://doi.org/10.1007/s00778-019-00557-w
https://doi.org/10.1016/j.jss.2012.03.056
https://doi.org/10.1016/j.jss.2012.03.056
https://complexevents.com/2019/07/15/whats-the-difference-between-esp-and-cep-2/
https://complexevents.com/2019/07/15/whats-the-difference-between-esp-and-cep-2/
https://github.com/Stratio/Decision


NebulaStream 141

60. Flinkcep (2019) Complex event processing for flink. https://
ci.apache.org/projects/flink/flink-docs-stable/dev/libs/cep.html.
Zugegriffen: 12.2019

61. Kolchinsky I, Schuster A (2018) Join query optimization tech-
niques for complex event processing applications. Proc Vldb En-
dow 11:1332–1345. https://doi.org/10.14778/3236187.3236189

62. Kolchinsky I, Schuster A (2019) Real-time multi-pattern detection
over event streams. In: SIGMOD, ACM

63. Ziehn A (2020) Complex event processing for the internet of things.
In: VLDB PhD Workshop

64. Traub J et al (2017) Optimized on-demand data streaming from sen-
sor nodes. In: SoCC

65. Gaura EI et al (2013) Edge mining the internet of things. IEEE In-
ternet Things J 8:10220–10221. https://doi.org/10.1109/JIOT.2021.
3075304

66. Yao Y et al (2015) Edal: An energy-efficient, delay-aware, and life-
time-balancing data collection protocol for heterogeneous wireless
sensor networks. TON

67. Madden SR et al (2005) Tinydb: an acquisitional query processing
system for sensor networks. TODS 30:122–173. https://doi.org/10.
1145/1061318.1061322

68. Del Monte B et al (2022) Rethinking stateful stream processing
with rdma. In: SIGMOD

69. Grulich PM, Nawab F (2018) Collaborative edge and cloud neural
networks for real-time video processing. In: VLDB

70. Baunsgaard S et al (2021) ExDRa: Exploratory data science on fed-
erated raw data. In: SIGMOD

71. Benson L et al (2020) Disco: Efficient distributed window aggrega-
tion. In: EDBT

72. Traub J et al (2018) Scotty: Efficient window aggregation for out-
of-order stream processing. In: ICDE, IEEE

73. Traub J et al (2019) Efficient window aggregation with general
stream slicing. In: EDBT

74. Traub J et al (2021) Scotty: General and efficient open-source win-
dow aggregation for stream processing systems. TODS

K

https://ci.apache.org/projects/flink/flink-docs-stable/dev/libs/cep.html
https://ci.apache.org/projects/flink/flink-docs-stable/dev/libs/cep.html
https://doi.org/10.14778/3236187.3236189
https://doi.org/10.1109/JIOT.2021.3075304
https://doi.org/10.1109/JIOT.2021.3075304
https://doi.org/10.1145/1061318.1061322
https://doi.org/10.1145/1061318.1061322

	NebulaStream: Data Management for the Internet of Things
	Abstract
	Introduction
	Energy Efficiency
	EcoJoin
	Exploiting Workload Characteristics.
	Increasing Computational Efficiency.
	Exploiting Heterogeneous Processors.

	EcoJoin Evaluation
	Summary

	Efficient Stream Processing
	Low resource utilization.
	Inefficient parallilization.
	Missed optimizations.
	Adaptive Query Compilation
	Summary

	Monitoring
	State of the Art
	Requirements
	Summary

	Operator Placement
	Governor Polices
	Governor Placement Process
	Summary

	Complex Event Processing
	State-of-the-Art
	Solution Sketch
	Pattern Evaluation Mechanisms
	Optimization of Evaluation Mechanisms

	Summary

	Sensor Data Management
	Adaptive Sampling
	Adaptive Filtering
	Summary

	Conclusion
	References


