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ABSTRACT

Moving microphones allow for the fast acquisition of sound-field
data. Such continuous sampling procedures require trajectory knowl-
edge for relating the dynamic samples to a positional context and
solving the involved spatio-temporal channel estimation problem.
Having one non-uniformly moving microphone, the hardware effort
is heavily dominated by additional tracking equipment. In this paper,
we present a low-cost tracking method using the microphone signal
itself, provided that loudspeakers at surrounding reference points are
excited by perfect sequences. As this is often the actual measure-
ment setup, the proposed technique can be seamlessly incorporated
into such dynamic sampling procedures. The acoustic tracking sys-
tem employs a polyphase decomposition and resampling scheme for
obtaining low-frequency estimates of the varying impulse responses
to the loudspeaker positions and applying multilateration.

Index Terms— Acoustic tracking, perfect sequences, interpola-
tion of time-variant systems, bandwidth adaptation, time of arrival.

1. INTRODUCTION

In closed-room environments, localization and tracking systems are
often based on acoustic wave propagation. These approaches usually
extract spatial cues to the target object from audio data, e.g., time of
arrival (TOA), time difference of arrival, angle of arrival, received
signal strength, and feed them to adequate multilateration or mul-
tiangulation algorithms [1]. While pure localization algorithms rely
on snapshots of static source-sensor setups, tracking algorithms deal
with continuously moving targets that allow for smoothing estimates
by using observation histories and motion models [2]. However, fast
moving objects may lead to estimation biases due to limitations in
following the time-varying system dynamics.

There are two general tasks: the localization of sound sources
and the localization of microphones. The source localization in-
volves either supervised sound sources where the emitted signals and
their timings are controlled or roughly provided by close-distance
microphones, or sound sources of widely unknown behavior, e.g.,
talkers and random acoustic events. The corresponding non-blind
and blind source localization problems can be solved by using syn-
chronous measurements from a self-contained microphone array [3],
or using decentralized audio data from an ad-hoc wireless acoustic
sensor network (WASN) [1]. At this, the microphone positions define
the reference points for the multilateration and multiangulation algo-
rithms. The extraction of position related parameters is basically an
estimation problem regarding (relative) channel impulse responses
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that may consist of interfering multipath components due to rever-
berant surroundings. There are approaches relying on a simplified
single-path propagation model, e.g., synchrony-based methods such
as the generalized cross-correlation [4] and beamforming-like pro-
cedures [5], and the subspace methods MUSIC [6] and ESPRIT [7].
Other methods are based on the explicit formulation of a multi-
channel system identification problem, which may be solved, e.g.,
by applying adaptive-filtering techniques [8]. Range estimates for
multilateration systems are then obtained from the dominant peaks
in the particular impulse responses [9]. Data-driven strategies using
supervised learning and neural networks have also been proposed,
especially for tasks of audio event localization [10] and direction-
of-arrival problems in multi-source scenarios [11]. For the source
tracking issue, localization systems often use likelihood-based algo-
rithms with an additional correction stage, e.g., by applying Kalman
filters, particle filters, or probability hypothesis density filters [12].

Due to the emitter-receiver reciprocity, mathematical models for
source localization can be equivalently used for the microphone lo-
calization task. However, for the latter, the spatial variety of acces-
sible signals is often constrained: the number of microphones pro-
vided to estimate the position of the target object is strictly limited
by the spatial extent of the target itself. Generic applications for mi-
crophone localization and tracking are the self-calibration and au-
tomatic ranging of nodes in WASNs [1], the spatial calibration of
microphone arrays [13], and the (private) positional monitoring of
sensor-equipped objects [14]. Usually, the spatial reference points
are defined by controlled loudspeakers.

In recent years, increasing demand for high-precision micro-
phone tracking has emerged due to new dynamic measurement tech-
niques [15–24]. These techniques exploit spatio-temporal samples
from moving microphones for the spatial reconstruction of acoustic
impulse responses (AIRs). The key of such procedures is accurate
knowledge of instantaneous sensor locations. For example, angular
position data may be constituted by performing a circular trajectory
at constant speed and measuring the round-trip time of the moving
microphone array. This is often the practical case in dynamic setups
acquiring head-related [15, 16], binaural [17], and room impulse re-
sponses [18, 19], where the uniformly rotating target array is driven
by specific actuation hardware. Regarding non-uniform trajectories,
microphone positions can be controlled by a robot or tracked by op-
tical [17], acoustical [20], or inertial [21, 22] measurement systems.
However, so far, there is no acoustical solution that provides accurate
trajectory data by use of only one microphone channel. In particular,
one arbitrarily moving microphone is the basis for the compressed-
sensing framework proposed in [24], which allows for the spatial
reconstruction of room impulse responses (RIRs) from sub-Nyquist
sampling within three-dimensional volumes.

In this paper, we present a simple and effective tracking scheme
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that is capable of providing accurate positional estimates based on
the signal of a single moving microphone. The core of our contribu-
tion is a polyphase model that involves the bandwidth-adapted recon-
struction of time-varying signal components for robust TOA estima-
tions. To employ this model, shifted perfect sequences must be ap-
plied to multiple loudspeakers at distributed reference positions. Due
to its perfectly flat spectrum, perfect-sequence excitation is often al-
ready a part of dynamic strategies for AIR-field acquisition. Thus,
the proposed method can be easily incorporated into such contin-
uous procedures, avoiding additional tracking hardware. Regarding
this purpose, we consider reverberant environments and may assume
clock synchronization, compensated internal delays, known speed of
sound, non-real-time handling, existing direct paths (line of sight),
and calibrated source positions suited to multilateration techniques.

2. EXCITATION AND SAMPLING MODEL

Assume a closed-room environment with constant atmospheric con-
ditions. For one sound signal s(t) transmitted from a fixed source
position, the sound pressure dynamically observed along the trajec-
tory x̃(t) inside the target volume Ω ∈ R3, x̃ : R→ Ω, may be de-
scribed by p̃(t) =

∫∞
−∞ s(t− τ)h(t, τ)dτ , where t ∈ R defines the

global time variable and h(t, τ) is the time-variant RIR subject to
the relative delay time τ ∈ R [25].

2.1. Perfect Sequences for Single-Channel Excitation

For the single-loudspeaker case, the repetitive use of determinis-
tic L-shift cross-orthogonal sequences s̃(n) leads to L-periodic ex-
citation signals s(n) = s̃(nmodL) having the perfect autocorre-
lation rss(m) = σ2

s δ(mmodL), with σ2
s being the signal power

and δ(m) denoting the unit impulse function. Since all L circularly
shifted versions of s̃(n) are orthogonal to each other, the system
identification task, i.e. deconvolution, can be simplified to a pure
correlation task exploiting the property

s(n) ∗ s̃(−n) = Lσ2
s

∞∑
r=−∞

δ(n− rL). (1)

The corresponding inverse convolution approach using perfect-
sequence excitation (PSQE) is a common technique for stationary
sound-field measurements [26, 27].

For the identification of rapidly time-varying systems by adap-
tive filtering, the normalized least-mean square algorithm (NLMS)
achieves optimal tracking ability in PSQE situations [28,29]. In fact,
having a time-invariant system, the NLMS is equivalent to the in-
verse convolution technique based on (1) and reaches convergence
after L iterations for noiseless steady-state conditions and unit step
size [27]. Moreover, a system representation subject to the orthogo-
nal basis formed by s̃(n) may be used for an efficient NLMS vari-
ant, where each iteration reduces to a single assignment operation
of the particular expansion coefficient, i.e., each coefficient is up-
dated/replaced once per period [27, 30]. A similar technique has
been proposed in [18] for the continuous measurement of (binaural)
RIRs along a circle using PSQE. Here, the knowledge of positional
data is exploited for embedding the time-varying expansion coeffi-
cients into the spatio-temporal context of the time-invariant environ-
ment. At this, the efficient NLMS algorithm is interpreted as nearest-
neighbor-like interpolation along the trajectory, where its inherent
online mode leads to a delayed rectangular synthesis function [19].

2.2. Considered Sampling Problem

Let us consider a fixed set of N spatially distributed loudspeakers.
The i-th loudspeaker is fed by the source sequence si(n) with n ∈
N0 being the discrete variable of the causal time signals. Supposing
linearity, the measurement along the trajectory x̃(t) by use of one
moving microphone provides the sampled signal

p̃(n) =

N∑
i=1

L−1∑
m=0

si(n−m)hi(n,m) + η(n), (2)

with η(n) denoting the measurement noise and hi(n,m) being the
sampled time-variant RIR from the respective loudspeaker to the cur-
rent sensor position. Here, the amplitudes of the RIRs disappear into
the noise floor for sampled delays m ≥ L. The microphone mea-
sures at uniform points tn = n/fs, where fs ≥ 2(fcut + αfcut) is the
sampling rate, fcut is the cutoff frequency of the analog anti-aliasing
prefilter, and α is the maximum shifting factor due to the Doppler
effect [23, 25].

2.3. Sampling Model for Controlled Multichannel PSQE

As the microphone is non-stop moving, the estimation of hi(n,m)
from (2) leads to an ill-posed problem. For solving this problem
as best as possible, controlled PSQE can be used to apply signals
si(n) to the loudspeakers that achieve both the perfect autocorrela-
tion property (1) and zero cross-correlation to each other [29]. Using
the vector notations si(n) = [si(n), . . . , si(n− L+ 1)]T , s(n) =
[sT

1 (n), . . . , sT
N (n)]T , hi(n) = [hi(n, 0), . . . , hi(n,L− 1)]T , and

h(n) = [hT
1 (n), . . . ,hT

N (n)]T , the samples can be represented sub-
ject to the pooled time-variant impulse response h(n) ∈ RLN ,

p̃(n) =

N∑
i=1

sT
i (n)hi(n) + η(n) = sT(n)h(n) + η(n). (3)

By choosing a perfect sequence s̃(n) of length L = LN for set-
ting up the L-periodic excitation sequence s(n), phase-shifted loud-
speaker excitations si(n) = s(n+(i−1)L) allow for reformulating
the steady-state sampling model for the noise-free case according to

p̃(n) = sT(n)STSγ−1h(n) = sT(n)ST γ−1c(n) = cq(n), (4)

where the columns of S ∈ RL×L are built up by all L circularly
delayed versions of s̃(n) and satisfy the orthogonality STS = γI
with γ = Lσ2

s and I being the identity matrix. Correspondingly,
sT(n)ST yields a row vector containing only zeros except for the
value γ at the q-th element with q = nmodL+ 1. Thus, the instan-
taneous sample p̃(n) acquired by the moving microphone at the par-
ticular time point n can simply be assigned to the q-th time-varying
expansion coefficient cq(n) in the vector c(n) ∈ RL.

3. BANDWIDTH-ADAPTED RECONSTRUCTION OF
TIME-VARYING EXPANSION COEFFICIENTS

The full coefficient vector c(n) = [c1(n), . . . , cL(n)]T , including
its out-of-phase elements ck(n) (OPEs) at indices k 6= q, decodes
the time-varying RIRs according to

h(n) = γ−1ST c(n). (5)

By following an NLMS-based online strategy, only outdated infor-
mation would be available for determining the OPEs as the micro-
phone is continuously moving and the current sample p̃(n) cov-



ers cq(n) exclusively. Dropping real-time requirements, the method
in [18] uses the already known trajectory to reconstruct these co-
efficients within a spatial context. In contrast to that, we propose a
scheme that interpolates the OPEs explicitly along the global time in-
dex n, in order to specify the positional connections a posteriori. For
reducing aliasing artifacts, this procedure requires a preprocessed
bandwidth adaptation in practice.

3.1. Interpolation of Out-Of-Phase Coefficients

According to the sampling model (4), the `-th expansion coeffi-
cient, ` ∈ {1, . . . ,L}, is sampled along the time-varying dimension
at equidistant time points n` ∈ {n |n = (`− 1) + rL, r ∈ N0}.
Thus, the underlying PSQE procedure can be interpreted as the
decomposition of the microphone signal p̃(n) sampled at fs into L
polyphase signals c`(n`) actually sampled at fs/L. Our aim is to re-
sample the polyphase signals to the original rate fs. For this purpose,
let us introduce the mapping r`(n) = (n− `+ 1)/L, where integer
values of the variable r` ∈ R define the sampling positions of the
`-th expansion coefficient. Then, the reconstruction of the expansion
coefficients in the time-varying dimension can be expressed as

c`(n) =
∑
r∈N0

φ(r`(n)− r) p̃((`− 1) + rL), (6)

where φ(r`(n)−r) is a fractional delay filter approximating the sinc
function. For ` = q, the interpolation (6) reduces to c`(n) = p̃(n).

3.2. Aliasing in the Time-Varying Dimension

For rating the performance of the bandlimited OPE interpolation (6),
an upper bound of the signal bandwidth in the time-varying di-
mension needs to be provided. Due to the constant environment,
i.e., fixed temperature, static scatterers, etc., the target volume Ω
contains a time-invariant configuration of scattering paths. Thus,
the time-variance of the transmission system is actually a space-
variance, fully determined by the spatial variations of the moving
microphone inside Ω. Accordingly, sampling and reconstruction of
the time-varying coefficients c`(n`) is a problem that may be trans-
ferred to a spatial worst-case correspondence. First, let us bound
the highest temporal frequency passing through the prefilter of the
microphone according to fmax ≤ fcut(1 + vmax/c), which considers
the Doppler-shifted case where the microphone is moving at maxi-
mum speed vmax along the direction of the sound wave propagating
at speed c. Since the sound signal is bandlimited in the temporal
dimension, it is also bandlimited in the spatial dimension [31]. For
the worst case of maximum spatial variations, which occurs when
the microphone is constantly moving at vmax along a straight line,
the received maximum wave number is κmax = fmax/c [31]. At this,
the sampling rate fs/L of the polyphase signals c`(n`) corresponds
to a maximum spatial sampling interval of ∆max = Lvmax/fs. In
order to allow for an aliasing-free OPE reconstruction according to
the Nyquist-Shannon sampling theorem, i.e., ∆max ≤ (2κmax)

−1,
this worst-case scenario requires an audio bandwidth limited to

fc ≤
cfs

2Lvmax(1 + vmax/c)
. (7)

3.3. Bandwidth Adaptation for Robust TOA Extraction

Due to its flat magnitude spectrum, PSQE generally permits broad-
band measurements for the system identification task, e.g., for the
estimation of RIRs having wide frequency ranges. However, within

the tracking procedure, our only aim is to extract TOAs from the
first dominant peaks in approximated time-varying RIRs. For that,
the cutoff frequency fc is considered as a tuning parameter that al-
lows for reducing aliasing artifacts in the interpolation scheme (6)
at the cost of a less sharp peak localization in the early time dimen-
sion of the resulting RIRs. For finding a suitable tradeoff between
tolerable corruption by aliasing and sufficient sharpness of the di-
rect peak, the worst-case aliasing bound (7) may be employed with
reference to the maximum expected microphone speed vmax. Similar
to the multiresolution strategy in [23], we can tune the bandwidth by
applying a digital low-pass filter gfc (n) with cutoff fc to the dynamic
microphone signal p̃(n), leading to the bandwidth-adapted model

D{gfc (n) ∗ p̃(n)} = p̃′fc (n) = sT(n)h′(n) = c′q(n), (8)

where D compensates for the delay introduced by the filter and
the superscript (·)′ denotes the low-pass filtered signal equivalents.
Since the microphone signal is dynamically shaped by the trajectory
function, i.e., p̃(x̃(n)), this actually corresponds to a spatio-temporal
filtering. As the time-varying RIRs live on the same trajectory, i.e,
h(x̃(n)), they are equally affected by this filtering operation.

Altogether, the proposed tracking scheme based on the micro-
phone signal p̃(n) can be condensed into the following simple steps:

1) Calculation of p̃′fc (n) for a chosen tradeoff fc.
2) Interpolation of c′`(n) according to (6) for setting up c′(n).
3) Recovery of h′i(n) using c′(n) and (5).
4) TOA estimations Ti(n) from the relevant peaks in h′i(n).
5) Multilateration of x̃(n) using T1(n), . . . , TN (n).

The key of this procedure is formed by the first three steps, yield-
ing current RIR estimates (in low frequencies) that allow for TOA
estimates being robust against spatial variations induced by the mi-
crophone velocity. The last steps can be achieved by standard peak-
detection [9] and multilateration algorithms [1].

Finally, with reference to (7), it should be mentioned that the
period length L = LN is another important parameter that could be
adjusted to improve the OPE reconstruction along the time-varying
dimension for a given bandwidth. For that, the considered RIR length
L could be reduced. This increases undesired wrap-around artifacts
(time aliasing) forL < T60fs, with T60 being the reverberation time.
Also, the number N of involved loudspeakers could be reduced.
However, for range-based methods localizing in D dimensions, at
least N = D + 1 spatial reference points are required to solve the
multilateration problem unambiguously.

4. EXPERIMENTS

For proving our concept, we first present data from numerical ex-
periments based on the image source method [32]. We simulated
dynamic measurements along the trajectory depicted in Fig. 1(a),
considering PSQE by four randomly distributed loudspeakers in a
box-shaped room of dimensions 6.94 m× 5.22m× 2.61m with
different reverberation times T60 ∈ {0.15, 0.3} s. Various micro-
phone speeds were tested, using the slowest velocity profile shown
in Fig. 1(b) and its accelerated versions vp(n) = 2pv0(2pn) for
p = {1, 2, 3}. The recordings were simulated at fs = 24 kHz and
corrupted by additive white Gaussian noise with a signal-to-noise
ratio (SNR) of 40 dB. The delay dimension of the RIRs was limited
to L = dT60fse taps. For the PSQE, we used maximum-length se-
quences with period length L = 4L. The average positional errors
(in centimeter) achieved by the proposed tracking method are sum-
marized in Table 1 for the different simulated scenarios and different
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Fig. 1. Tracking scenario. (a) True trajectory (red) and tracked posi-
tions (blue) for the velocity profile v1(n) = 2v0(2n) in the scenario
T60 = 0.3 s choosing fc = 1200 Hz. (b) Velocity profile v0(n).

Table 1. Mean (median) values [m]−2 of the tracking errors for dif-
ferent reverberation times T60, velocities vp(n), and choices of fc.

Velocity profile
Scenario v0(n) v1(n) v2(n) v3(n)

T60 = 0.15 s
fc = 900Hz 2.90 (3.55) 3.60 (2.94) 3.78 (3.16) 5.85 (4.22)
fc = 1200Hz 2.44 (1.95) 2.49 (2.02) 2.72 (2.29) 6.35 (3.85)
fc = 2400Hz 0.60 (0.44) 0.64 (0.51) 1.74 (0.88) 46.5 (5.37)
fc = 3600Hz 0.25 (0.19) 0.35 (0.30) 3.82 (0.82) 94.5 (13.5)
fc = 4800Hz 0.15 (0.12) 0.40 (0.27) 10.3 (1.15) 128 (81.1)
fc = 6000Hz 0.11 (0.09) 0.41 (0.28) 24.1 (1.44) 171 (130)

T60 = 0.30 s
fc = 900Hz 5.68 (4.26) 6.41 (4.65) 17.2 (7.08) 128 (114)
fc = 1200Hz 3.75 (3.07) 3.90 (3.16) 27.2 (6.78) 154 (129)
fc = 2400Hz 0.99 (0.70) 7.84 (1.11) 89.4 (13.4) 291 (259)
fc = 3600Hz 0.46 (0.37) 31.6 (1.16) 160 (107) 340 (328)
fc = 4800Hz 3.09 (0.31) 45.7 (1.48) 241 (184) 361 (336)
fc = 6000Hz 12.1 (0.31) 78.6 (2.32) 269 (216) 379 (345)

choices of the tuning parameter fc. In each case, the signal filtering
subject to fc was accomplished by a Hamming windowed low-pass
filter of order 1000 and the reconstruction according to (6) was
performed by a simple linear interpolator. For the TOA estimations,
we resampled the recovered RIRs by the factor 32 and determined
each index of the earliest significant maximum. For solving the
actual localization problem, we recast the non-linear multilateration
equations to an unconstrained linear least-squares problem and used
its closed-form solution [1].

Considering the room scenario T60 = 0.15 and the velocity pro-
files v0(n), v1(n), v2(n), v3(n), the (worst-case) aliasing bounds
according to (7) are 3600 Hz, 1800 Hz, 900 Hz, and 450 Hz, respec-
tively. In these scenarios, our tracking algorithm achieves robust po-
sitional accuracy in the range of a few centimeters for the lowest
tested cutoffs fc = 900 Hz and fc = 1200 Hz. Larger cutoffs lead
to sharper peak resolutions in the estimated RIRs and high-precision
tracking for v0(n) and v1(n) with small errors in the millimeter
range. Generally, from a certain point where fc exceeds the bound
(7) by an excessive margin, errors due to aliasing artifacts become
dominant. This can be observed, e.g., for v1(n), fc > 3600 Hz and
for v2(n), fc > 2400 Hz. For v1(n), the instantaneous tracking er-
rors subject to fc are presented in Fig. 2. For v2(n), fc > 2400 Hz,
high-velocity segments yield high error outliers and, thus, increased
mean tracking errors in Table 1, while the median error values re-
main reasonably low. Similar dependencies on fc can be observed
from the tracking results for T60 = 0.3 s. Here, the errors are gener-
ally higher. Due to the doubled reverberation time, the accordingly
doubled RIR length halves the aliasing bound (2) for v0(n), v1(n),
v2(n), v3(n) to 1800 Hz, 900 Hz, 450 Hz, and 225 Hz, respectively.
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Fig. 2. Instantaneous tracking errors at T60 = 0.15 s and v1(n) for
selections of (a) lower and (b) higher cutoff frequencies fc.
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Fig. 3. Tracking results for the planar case. (a) Ideal (red) and tracked
(blue) circular trajectory of the microphone. (b) Recovered velocity
profile (top) and the corresponding radial mismatch (bottom).

Finally, we present the tracking results from a simple real-world
experiment. For this, we used a MOTU 8M audio interface, three
K+H M52 loudspeakers, and one microphone of the type beyerdy-
namic MM1. In an office room of size 4.02 m × 4.64 m × 3 m and
reverberation time T60 = 0.34 s, we calibrated the three distributed
loudspeaker positions by measuring their mutual distances and ap-
plying multidimensional scaling. Within the convex hull of the loud-
speaker points, we mounted the microphone on a stand of the type
K&M 210/9 and performed a circular trajectory of radius 0.253 m by
freely rotating its boom arm. Simultaneously, the microphone signal
was sampled at 48 kHz and PSQE was applied to the loudspeakers
using a perfect sweep of length L = 3L with L = 214. In this
setting, the SNR due to ambient noise is about 30 dB. For the track-
ing scheme, we used a Hamming windowed low-pass filter of order
4000 with cutoff fc = 1500 Hz, a linear interpolator, and a resam-
pling factor of 16. The resulting positional estimates for 1.5 round
trips of the microphone are depicted in Fig. 3(a). The recovered ve-
locity profile is presented at the top of Fig. 3(b), leading to a mean
velocity of about 0.08 m/s. The radial error compared to the ideal
circle is shown below. The mean radial mismatch is only 0.002 m.
The maximum radial error is 0.012 m and coincides with the maxi-
mum microphone speed.

5. CONCLUSIONS

In this paper, we presented a simple and effective tracking proce-
dure for localizing the instantaneous positions of one continuously
moving microphone. The method exploits the cross-orthogonality
of perfect-sequence excitation for representing the involved RIRs
by time-variant expansion coefficients. Using these coefficients, a
bandwidth-adapted interpolation scheme allows for robust RIR es-
timates at low frequencies and reliable TOA extractions that can be
used to solve the multilateration problem with very high accuracy.
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