
Chapter 5
Cloud Infrastructure of the
European Language Grid

Florian Kintzel, Rémi Calizzano, and Georg Rehm

Abstract The European Language Grid (ELG) is a cloud-based platform, utilising a
variety of software packages as well as infrastructure components and virtual hard-
ware. The additional software components developed by the ELG project are usually
provided as open source to facilitate re-use by third parties. This chapter provides an
overview of the infrastructural setup used by the ELG cloud platform. The selected
architecture also has implications for providers as well as users of the platform, e. g.,
in terms of the scaling behaviour of individual Language Technology (LT) services.

1 Introduction

One of the key technical goals of the ELG cloud platform is the ability to integrate
functional Language Technology (LT) services from a variety of sources, i. e., to
build a large platform and a corresponding community of providers and users of
these services. The LT tools and services to be continuously integrated into the ELG
platform are, thus, heterogeneous and vary in their technical setup, which is why a
set of common approaches needs to be established to make the integration of the
tools and services possible. One of the most basic joint technical approaches is the
requirement for all functional services to be containerised so that they can run on
the ELG cloud infrastructure. Providers can optionally benefit from utilising addi-
tional support functionality, e. g., source code repositories, container registries and
deployment pipelines offered by the ELG platform.

Conceptually, the ELG platform consists of three layers, the user interface (UI)
layer, the back end layer and the base infrastructure (see Figure 1). While the UI
and back end are described in more detail in Chapters 2, 3 and 4, the present chapter
focuses on the base infrastructure setup along with supporting functionality. Among
others, this chapter is helpful for providers of functional LT tools and services or
users interested in running parts of the ELG platform on their own hardware.

Florian Kintzel · Rémi Calizzano · Georg Rehm
Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, Germany,
florian.kintzel@dfki.de, remi.calizzano@dfki.de, georg.rehm@dfki.de

95© The Author(s) 2023

G. Rehm (ed.), European Language Grid, Cognitive Technologies,

https://doi.org/10.1007/978-3-031-17258-8_5

mailto:florian.kintzel@dfki.de
mailto:remi.calizzano@dfki.de
mailto:georg.rehm@dfki.de
https://doi.org/10.1007/978-3-031-17258-8_5
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17258-8_5&domain=pdf

96 Florian Kintzel, Rémi Calizzano, and Georg Rehm

The rest of this chapter is structured as follows. First, Section 2 gives an overview
of the building blocks of the ELG infrastructure. Section 3 provides information
about the deployment side of the ELG platform, while Section 4 describes how the
platform’s scaling profile lends itself to usage in different real-world scenarios. Fi-
nally, Section 5 concludes the chapter with an overview of future work on the ELG
platform infrastructure.

Entity

PL
AT

FO
RM

FR

O
N

TE
N

D CMS UITest/Trial UICatalogue UI Admin UI Provider UI &
Metadata Editor

Language Resources
(non-functional content)

Language Technologies
(functional content)

G
AT

EW
AY

BA
SE

 IN
FR

A-
ST

RU
CT

U
RE

PL
AT

FO
RM

BA

CK
EN

D

LT Service Execution
Orchestrator

Billing

Monitoring

Analytics

…

Database Elastic Index
LT

SRV 1
LT

SRV 2
LT

SRV n

User Management Catalogue

Metadata Harvesting

Nodes

File & object storage

Language Resources
(non-functional content)

Docker
Images

Docker repository

REST API

Storage Proxy

Fig. 1 ELG platform architecture

2 Cloud Infrastructure

The base infrastructure consists, first and foremost, of the compute nodes on which
the European Language Grid runs, alongside their respective volume storage and
networking facilities. On these, the Kubernetes1 core components are installed (Sec-
tion 2.1) including S3-compatible object storage (Section 2.2). We use a managed
approach to Kubernetes, i. e., the installation, update and operation of the Kubernetes
system itself is taken care of by a cloud provider. Together, this forms the hardware
basis of the European Language Grid.

Conceptually, the base infrastructure also consists of a larger set of Git2 reposito-
ries and container registries which are described in Sections 2.3 and 2.4.

1 https://kubernetes.io
2 https://git-scm.com

https://kubernetes.io
https://git-scm.com

5 Cloud Infrastructure of the European Language Grid 97

2.1 Kubernetes and Cloud Native

Kubernetes is an open source system for automating deployment, scaling, and man-
agement of containerised applications. It has seen widespread usage in recent years
as the container orchestration tool of choice. Adoption of Kubernetes in a managed
setup was still in a relatively early stage at the time the ELG project was exploring
different cloud providers in early 2019. While various products by the typical hyper-
scalers already existed, European providers had only very recently started offering
comparable solutions.

Our selection of Kubernetes as the framework of choice for ELG was primarily
based on the following criteria:

• Kubernetes provides self-healing capabilities that can detect common failure
situations and restart affected containers automatically.

• Through the use of a managed approach to Kubernetes, failures of the core Ku-
bernetes system itself are the responsibility of the cloud provider.
These first two criteria together allowed the ELG project to have a relatively
small footprint in terms of operational complexity as failures are either self-
healed or taken care of by the cloud provider, at least in theory.While exceptions
do exist, this still has reduced the operational effort considerably.

• Kubernetes facilitates the usage of OCI-compatible containers.3 As ELG aims
to integrate different technologies used for the implementation of LT services
and tools, OCI-compatible containers form a common approach for integration.

• Kubernetes provides off-the-shelf functionality for scaling up resources based
on dynamic load. As ELG integrates hundreds of different LT tools and services,
this functionality was deemed essential.

• Kubernetes namespaces4 are useful to separate the different platform compo-
nents from one another.

• Continuous adoption of Kubernetes within the industry assures continued sup-
port and development of this technology.

An ecosystem of compatible technologies has been established around Kuber-
netes with the Cloud Native Computing Foundation (CNCF).5 CNCF promotes the
use of a large set of base technologies for solving, e. g., authentication, monitoring,
deployment and other common challenges. Most supporting technologies used in
ELG (Section 3.2) are part of CNCF. Alongside this, a set of architecture patterns
has emerged that aim to support properties such as Gannon et al. (2017):

• Cloud-native applications often operate at the global level.
• Cloud-native applications must scale well with thousands of concurrent users.
• Built on the assumption that infrastructure is fluid and failure is constant.
• Designed so that upgrade and test occur without disrupting production.
• Security must be part of the underlying application architecture.

3 https://opencontainers.org – Open Container Initiative
4 https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces
5 https://www.cncf.io

https://opencontainers.org
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces
https://www.cncf.io

98 Florian Kintzel, Rémi Calizzano, and Georg Rehm

2.2 Storage

The various components of the European Language Grid platform utilise persistent
storage differently, as follows:

• Static Language Resources, i. e., corpora, models etc. available for direct down-
load on the European Language Grid platform are persisted on S3-compatible
object storage and can be fetched from there.

• The major infrastructural part of the ELG platform – the hundreds of LT tools
services – do not utilise persistent storage at all, as they are designed stateless.
All application code is shipped within an OCI-compatible container. This in-
cludes additional resources needed to run the service, e. g., language models
and additional configuration files.

• The core ELGplatform components (catalogue, authentication, CMS etc.) utilise
network block storage attached to their running containers for persistence. This
block storage is in turn backed up to the object storage on a regular basis.

Therefore, static resources can potentially be available for direct download and
be included in the respective service container image as well. We decided for this
approach to simplify deployment and management of images and resources, e. g.,
for a local installation of a set of LT services, it is only necessary to pull and run
the respective images, i. e., no additional language resources need to be handled.
Though this potentially results in duplication of resource files (within an image and
as an additional separate file for download) it was deemed a necessary trade-off to
keep the deployment model easier.

2.3 Software Repositories

ELG is comprised of various independent software packages for, e. g., platform com-
ponents and individual LT services. The main ELG GitLab project repository6 is set
up as a GitLab group, consisting of various sub-groups and repositories. The differ-
ent repositories in this group can be categorised as follows.

• The ELG Infrastructure Repository consists of a set of configuration files,
mostly in the form of Helm7 charts (see Section 3.1). These define which pack-
ages, i. e., containers, the ELG system consists of, as well as numerous additional
configuration parameters such as the number of replicas and package-specific
configurations. It can be used to set up multiple clusters. We maintain differ-
ent branches within the repository, usually at least one for the development and
one for the production cluster. The branches are not only used to distinguish
between specific configurations for each cluster, but present different versions

6 https://gitlab.com/european-language-grid
7 https://helm.sh

https://gitlab.com/european-language-grid
https://helm.sh

5 Cloud Infrastructure of the European Language Grid 99

of the ELG system as it matures during development. This is used to facilitate a
staged roll-out to the production cluster. The actual source code for these com-
ponents is not part of this repository. It only includes references to the container
registries with the specific components. When installing the ELG cluster, these
images are then downloaded (“pulled”) from these registries.

• The ELG Cluster Admin repository holds cluster-specific configurations for
each ELG instance that are applied separately from the settings of the ELG In-
frastructure Repository. These mostly consist of the list of active administrative
users for accessing the ELG infrastructure (those needing access to the infras-
tructure the ELG is running on, not users of the ELG platform), their roles and
access rights as well as the configuration for build-bot, our continuous integra-
tion utility of choice. Included are also various utilities to manage the cluster.
This repository is not needed for local deployment of the ELG, as such a deploy-
ment is usually only meant for a single user, typically a developer, and does not
participate in continuous deployment.

• The main ELG GitLab platform project repository.8 This repository hosts the in-
dividual components that make up the the core ELG platform and ELG website.
These are mainly the platform (catalogue back end and front end components
and the website content management system, along with a larger set of internal
supporting and utility components.

• Individual sub-groups with repositories for individual LT services, grouped by
provider. These consist solely of the LT services provided by members or asso-
ciates of the ELG project consortium.

Implementation code for LT services not provided by ELG project consortium
members is not usually held in the ELG GitLab group but rather managed via
provider-specific repositories.

2.4 Container Registries

The images for instantiating containers in the ELG cluster are stored in various con-
tainer registries. The Kubernetes installation powering ELG pulls the images from
these registries on demand. These can be categorised as follows.

• The ELG GitLab project registry9 is the registry that corresponds to the main
ELG GitLab group, it hosts all images for all ELG core platform components
(e. g., UI, back end, utilities) and for several ELG LT services developed by
ELG project consortium partners. This registry allows public access to facilitate
download and re-use of ELG components.

• Public registries for various externally implemented third-party components
such as database system, identity and access management.

8 https://gitlab.com/european-language-grid/platform
9 registry.gitlab.com/european-language-grid

https://gitlab.com/european-language-grid/platform
http://registry.gitlab.com/european-language-grid

100 Florian Kintzel, Rémi Calizzano, and Georg Rehm

• Private registries of partners who do not publish their LT services under an open
source license (proprietary LT services) or need to use their own registries for
technical reasons.

• Various other public registries for open source LT services.
• The dedicated ELG registry.10 As LT service images are partly pulled from reg-
istries external to the ELG project, this registry was set up to serve as a point
to collect LT service images when they are ingested into ELG in order to per-
form versioning. Using this approach, ELG can ensure the availability of older
versions of certain tools even if their original site is no longer serving them.

3 Installation

ELG utilises a GitOps approach (see, e. g., Beetz and Harrer 2021) to deployment,
i. e., the configuration necessary to set up the compute cluster is managed by version
control. The base artefact for deployment is the Helm chart.11 Helm charts are used
to manage the installation and update the ELG platform. Each chart bundles a set of
components along with their configuration. All custom charts are defined in the ELG
platform repositoryGitLab group (Section 3.1). Alongside the custom charts, a larger
set of third-party charts is utilised to set up the respective components (Section 3.2).

We apply the charts to the cluster using a Continuous Integration (CI) approach,
i. e., automatic deployment happens whenever changes to the configuration are de-
tected by the CI (Figure 2).

Fig. 2 ELG continuous integration

10 registry.european-language-grid.eu
11 https://helm.sh

http://registry.european-language-grid.eu
https://helm.sh

5 Cloud Infrastructure of the European Language Grid 101

If a new version of the infrastructure setup is detected, the CI checks out the
respective changes and applies them to the cluster state. Any new container versions
are then pulled from their distributed container registries. The Kubernetes cluster is
updated with the latest configuration and takes care of gracefully shutting down and
instantiating new containers.

Continuous integration regarding the ELG infrastructure only deals with updating
the ELG cluster with the latest set of images (as specified by their version number)
and configuration. It does not deal with building the respective images themselves.

3.1 ELG Charts

These charts were specifically developed for ELG and control its setup and installa-
tion. The packages are meant to be installed together, though it is possible to install
only a subset for specific use cases (e. g., custom local installations). The architec-
ture of the ELG is described in Chapter 2 as well as, e. g., Rehm et al. (2021), which
is why we focus only on the software packages themselves.

• The ELG core package consists of definitions for various supporting function-
alities of ELG. These are the Ingress12 definitions for routing incoming traffic
into the ELG cluster, the configuration for the rest server component as well as
the configuration for the temporary storage component (used for large file op-
erations). Various smaller configurations can also be found here, e. g., priority
classes for pod scheduling, support for maintenance operations and others.

• The ELG back end chart consists of the definitions for the main back end com-
ponents, the Django13 and React14 powered applications that form the ELG cat-
alogue and the ELG back end and administrative applications. Included in this
chart are also a set of utility functions that deal with housekeeping.

• The ELG LT services chart bundles the whole set of individual LT services in-
stalled in ELG. It is actually a collection of charts that follow a common struc-
ture, each sub-chart consisting of the definitions for the LT services of a specific
LT services provider as well as a common chart for open source LT services by
providers who only offer a small set of services. A definition for each individual
LT service consists at the minimum of the reference to its image location, but
can consist of numerous additional configurations, e. g., specific hardware re-
quirements, helper images, parameters for scaling the service up and down and
various other parameters.

12 https://kubernetes.io/docs/concepts/services-networking/ingress
13 https://www.djangoproject.com
14 https://reactjs.org

https://kubernetes.io/docs/concepts/services-networking/ingress
https://www.djangoproject.com
https://reactjs.org

102 Florian Kintzel, Rémi Calizzano, and Georg Rehm

3.2 Third-Party Charts

Apart from the core components, we use a set of third-party components, which
provide their functionality to the ELG cluster. In the following, we briefly describe
the main third-party components.

• Cert-manager15 is a tool to manage issuing and updating of TLS certificates. It
is used to install and refresh TLS certificates to allow for the encryption of all
HTTPS traffic that reaches the cluster via one of the configured ingress-rules.

• The Horizontal Pod Autoscaler (HPA)16 is a standard Kubernetes component
used to scale pods based on their load and runtime behaviour. For scalability and
load monitoring, Kubernetes collects certain metrics, e. g., CPU and memory
load, from each pod. Therefore, it is necessary to have at least one instance
of each type of pod to be up and running at all times. Otherwise, no metrics
can be collected. This setup is useful to scale ELG core components, e. g., the
portal website and back end. It cannot be utilised as is to scale the hundreds of
LT services offered by the platform, as these need to be scaled down to zero
replicas if they are not needed to not exceed the cluster capacity. Therefore, we
introduced KNative (see below), which is feeding the standard autoscaler with
a new metric “concurrency”, based on the number of active requests to that LT
service. Scaling those services still makes use of cluster-autoscaler functionality,
but with the new metric also being available if no active replica of an LT service
is instantiated.

• KNative17 and Kourier18 give ELG the possibility to scale down LT services
based on the current number of parallel requests to them (concurrency). The
concurrency metric is available even if there is no active replica of an LT ser-
vice. KNative buffers HTTP requests to one of the ELG APIs until the specific
LT service’s container has started and keeps track of the concurrency metric to
terminate the replica if it is no longer needed. We cannot overstate the impor-
tance of this functionality for ELG as the platform consists of hundreds of indi-
vidual LT service components, not all of which need to run all the time, i. e., it
would not be efficient to have all these services consume resources while in idle
state. Starting up a container takes a certain amount of time though, while the
service initialises. Using a service after it has not been used in a while therefore
requires a certain spin-up time. KNative does not natively provide facilities to
reduce the spin-up time further, but additional methods might be helpful in the
ELG context, e. g., predictive auto scaling (Nanayakkara 2021). If frequent traf-
fic is expected for a particular service, it can easily be configured to have one or
more instances running at any given time, depending on hardware availability.

15 https://cert-manager.io/docs
16 https://kubernetes.io/de/docs/tasks/run-application/horizontal-pod-autoscale
17 https://knative.dev/docs
18 https://github.com/3scale-archive/kourier

https://cert-manager.io/docs
https://kubernetes.io/de/docs/tasks/run-application/horizontal-pod-autoscale
https://knative.dev/docs
https://github.com/3scale-archive/kourier

5 Cloud Infrastructure of the European Language Grid 103

• Ingress-Ningx19 is installed to act as ingress-controller, i. e., handling HTTP traf-
fic received and forwarding them to their respective endpoint within the cluster.

• Keycloak20 is an open source solution for authentication and authorisation. It
interfaces with front end, back end and LT services to provide single-sign on.

• Elasticsearch21 is used to index the catalogue database for fast faceted search.
• Prometheus22, Grafana, Loki and AlertManager form the ELG monitoring so-
lution. They collect and analyse logs and metrics from all running components
in the cluster (including the hardware) and provide visualisations in the form of
dashboards and diagrams (Figure 3).

Fig. 3 Monitoring ELG using Prometheus and Grafana

• The ELG back end database uses PostgreSQL23, a well-supported open source
database engine. It holds all relevant data concerning the ELG catalogue, e. g.,
projects, organisations, LT resources, LT service as well as user information.

• MariaDB24 is used for persistence of the Drupal CMS that powers the ELG
portal. We plan to move this over to PostgreSQL for ease of maintenance.

• Not an off-the-shelf component, but rather specifically adapted for ELG, the
s3proxy25 facilitates the upload of LT resources (models, corpora, but also
project and organisation logos etc.) to ELG. It acts as a proxy to the S3-com-
patible object storage that takes care of validating upload authorisation with the
ELG back end and streams data to the object storage.

19 https://nginx.org
20 https://github.com/keycloak/keycloak
21 https://github.com/elastic/elasticsearch
22 https://prometheus.io
23 https://www.postgresql.org
24 https://mariadb.org
25 https://gitlab.com/european-language-grid/platform/s3proxy

https://nginx.org
https://github.com/keycloak/keycloak
https://github.com/elastic/elasticsearch
https://prometheus.io
https://www.postgresql.org
https://mariadb.org
https://gitlab.com/european-language-grid/platform/s3proxy

104 Florian Kintzel, Rémi Calizzano, and Georg Rehm

4 Scalability of LT Tools and Services

ELG is optimised for stateless LT tools and services. Its database systems are ex-
clusively used by the platform back end for the metadata catalogue, user data etc.
LT services do not have persistence enabled for them, with the exception of tempo-
rary files used for large file uploads. In the following, we describe our approach for
scaling up individual LT services and describe its impact for service usability.

4.1 Implementation

With the goal of hosting thousands of individual LT tools and services with very
different hardware needs, it is neither feasible nor practical to have all of them in-
stantiated at the same time as this would require hundreds of Gigabytes of RAMeven
in idle mode, i. e., even if none of them are actually used. Therefore, ELG leverages
the capabilities of KNative26 which make is possible to automatically scale down
services not currently in use to zero replicas. In this state, an LT service does not
consume any hardware resources.

Scaling up an LT service happens automatically to an initial number of replicas
once a request has been received for that individual service. Requests are buffered
while new containers are starting up. This setup is especially suitable for services see-
ing little or irregular traffic. Further scale-up happens when a configurable threshold
of concurrent requests for a given service is exceeded.

LT services deployed on ELG need to be aware that their life-cycle is exclusively
controlled by Kubernetes and they need to expect to be started, stopped and hori-
zontally scaled regularly, e. g., when the scheduler detects low resource situations
on one of the nodes, if a container fails to respond, if high traffic is received to an
LT service and other situations. LT services, therefore, highly benefit from quick
start-up times and this is one of the reasons, why we opted for LT services to include
necessary resources like models into their OCI images directly.

4.2 Use Cases

Given its scalability (Section 4.1), a number of use cases can be solved with ELG.

• Demonstration of service functionality: providers of LT tools and services can
freely deploy their services to the platform and can expect to be discoverable
via the platform’s catalogue. For the try out functionality of services, a certain
spin-up time from idle mode will not impact its usefulness. More performant in-
stallations of a given service could, e. g., be offered by the providers themselves.

26 https://knative.dev/docs

https://knative.dev/docs

5 Cloud Infrastructure of the European Language Grid 105

• Batch processing of multiple documents: as the containers of an individual LT
service will stay instantiated for some time after usage before scale-down hap-
pens, ELG is a good fit for batch processing as the initial scale-up time will not
be a major contributing factor to processing time.

• For services intended to power applications where quick response times are re-
quired (e. g., mobile apps), however, the time it takes to spin up a container is
likely too long (some seconds, depending on a service’s implementation). This
is why services on ELG can be configured to stay instantiated all the time and
still benefit from dynamic scaling in high load situations. To be feasible, dedi-
cated hardware is necessary, which service providers will be able to reserve on
the ELG platform for a fee in the future so their services will show the respon-
siveness and performance they require.

• Remote processing is a second alternative for LT service providers who want to
offer their services to the public. In this setup, the ELG platform uses a proxy
to forward user requests to an external installation of a service, managed by the
service providers themselves. This offers a flexible approach for providers to
tune the hardware setup according to their own requirements.

• Management of non-functional LT resources, where only bandwidth limits scal-
ability instead of compute capacity.

5 Conclusions

The ELG platform is growing continuously and the capacity, availability, operational
readiness and tooling support of the base infrastructure need to evolve accordingly.
We foresee a need to evolve in the following areas in particular.

• Hardware capacity and cost distribution: through the use of cloud technology,
ELG has the technical capability to grow horizontally as required by the encoun-
tered load. In practice, though, the available hardware is restricted by budget
considerations. Batches of utilised compute resources would need to be individ-
ually matched to the user requesting them or the provider offering them, to allow
the ELG to calculate operational costs on a per request basis. With this and the
emerging payment functionality, individual resource usage can be reimbursed.

• Hardware acceleration: ELG currently runs on CPUs exclusively. Already now,
a larger number of LT services in ELG would benefit from GPU support. Apart
from higher costs, GPU support will pose a number of technical challenges,
among them a need to map LT services to specific compute nodes (with or with-
out GPU support).

• Integration and deployment support: the initial integration of a functional LT
service will need further automation and tooling support to be able to cope with
increased demand and an increased number of running services.

• Workflow support: ELG would benefit from a possibility for easy workflow
composition, spanning multiple LT services. Initial efforts have been started to-
wards this goal (Moreno-Schneider et al. 2020).

106 Florian Kintzel, Rémi Calizzano, and Georg Rehm

• Gaia-X: in the Gaia-X27 project OpenGPT-X28 the ELG platform is currently
being integrated into the wider Gaia-X ecosystem, i. e., ELG is further extended
so that it complies to the technical Gaia-X specifications. This will enable all
ELG LT services and resources to be discoverable and usable within Gaia-X.

This list only includes a selection of likely areas of improvement.Many additional
use cases and requirements for ELG can be imagined – the platform infrastructure
will need to grow and evolve as required.

References

Beetz, Florian and Simon Harrer (2021). “GitOps: The Evolution of DevOps?” In: IEEE Software
39.4, pp. 70–75. DOI: 10.1109/MS.2021.3119106.

Gannon, Dennis, Roger Barga, and Neel Sundaresan (2017). “Cloud-Native Applications”. In:
IEEE Cloud Computing 4.5, pp. 16–21. DOI: 10.1109/MCC.2017.4250939.

Moreno-Schneider, Julián, Peter Bourgonje, FlorianKintzel, andGeorgRehm (2020). “AWorkflow
Manager for Complex NLP and Content Curation Pipelines”. In: Proc. of the 1st Int. Workshop
on Language Technology Platforms (IWLTP 2020, co-located with LREC 2020). Ed. by Georg
Rehm, Kalina Bontcheva, Khalid Choukri, Jan Hajic, Stelios Piperidis, and Andrejs Vasiljevs.
Marseille, France, pp. 73–80. URL: https://www.aclweb.org/anthology/2020.iwltp-1.12.pdf.

Nanayakkara, Pallage Kamindu (2021). “Serverless Performance Improvement for Knative using
Predictive Auto Scaling”. PhD thesis. Sri Lanka: Informatics Institute of Technology. URL:
http://dlib.iit.ac.lk/xmlui/handle/123456789/702.

Rehm, Georg, Stelios Piperidis, Kalina Bontcheva, Jan Hajic, Victoria Arranz, Andrejs Vasiļjevs,
Gerhard Backfried, José Manuel Gómez Pérez, Ulrich Germann, Rémi Calizzano, Nils Feldhus,
Stefanie Hegele, Florian Kintzel, Katrin Marheinecke, Julian Moreno-Schneider, Dimitris Gala-
nis, Penny Labropoulou, Miltos Deligiannis, Katerina Gkirtzou, Athanasia Kolovou, Dimitris
Gkoumas, Leon Voukoutis, Ian Roberts, Jana Hamrlová, Dusan Varis, Lukáš Kačena, Khalid
Choukri, Valérie Mapelli, Mickaël Rigault, Jūlija Meļņika, Miro Janosik, Katja Prinz, Andres
Garcia-Silva, Cristian Berrio, Ondrej Klejch, and Steve Renals (2021). “European Language
Grid: A Joint Platform for the European Language Technology Community”. In: Proceedings
of the 16th Conference of the European Chapter of the Association for Computational Linguis-
tics: System Demonstrations (EACL 2021). Kyiv, Ukraine: ACL, pp. 221–230. URL: https://w
ww.aclweb.org/anthology/2021.eacl-demos.26.pdf.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

27 https://www.gaia-x.eu, https://www.data-infrastructure.eu
28 https://www.opengpt-x.de

https://doi.org/10.1109/MS.2021.3119106
https://doi.org/10.1109/MCC.2017.4250939
https://www.aclweb.org/anthology/2020.iwltp-1.12.pdf
http://dlib.iit.ac.lk/xmlui/handle/123456789/702
https://www.aclweb.org/anthology/2021.eacl-demos.26.pdf
https://www.aclweb.org/anthology/2021.eacl-demos.26.pdf
http://creativecommons.org/licenses/by/4.0/
https://www.gaia-x.eu
https://www.data-infrastructure.eu
https://www.opengpt-x.de

	Chapter 5 Cloud Infrastructure of the European Language Grid
	1 Introduction
	2 Cloud Infrastructure
	2.1 Kubernetes and Cloud Native
	2.2 Storage
	2.3 Software Repositories
	2.4 Container Registries

	3 Installation
	3.1 ELG Charts
	3.2 Third-Party Charts

	4 Scalability of LT Tools and Services
	4.1 Implementation
	4.2 Use Cases

	5 Conclusions
	References

