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Abstract— This paper presents a dual decomposition-based
distributed optimization algorithm and applies it to distributed
model predictive control (DMPC) problems. The considered
DMPC problems are coupled through shared limited resources.
Lagrangian duality can be used to decompose an MPC problem,
so that each subsystem can compute its individual resource
utilization, without sharing information, such as dynamics or
constraints, with the other subsystems. The feasibility of the
central problem is ensured by the coordination of the subprob-
lems through dual variables which can be interpreted as prices
on the shared limited resources. The proposed coordination
algorithm makes efficient use of information collected from
previous iterations by performing a quadratic approximation
of the dual function of the central MPC problem. Aggressive
update steps of the dual variables are prevented through
a covariance-based step size constraint. The nonsmoothness
encountered in dual optimization problems is addressed by the
construction of cutting planes, similar to bundle methods for
nonsmooth optimization. The cutting planes ensure that the
updated dual variables do not lie outside the range of validity of
the dual approximation. The proposed algorithm is evaluated on
a two-tank system and compared to the standard subgradient
method. The results show that the rate of convergence towards
the centralized solution can be significantly improved while
still preserving privacy between the subsystems through limited
information exchange.

I. INTRODUCTION AND RELATED WORK

The rise in computing power and the improvements of
available optimization algorithms has made optimization-
based predictive control a viable option in recent years.
Model predictive control (MPC) offers a framework in which
a system’s performance can be optimized while simultane-
ously accounting for constraints on the states and inputs [1].
However, the solution of large scale MPC problems can still
be challenging. On the one hand, the underlying optimization
problem might become too complex to be solved within
reasonable computation times [2]. On the other hand, the
MPC problem might involve several autonomous subsystems,
albeit coupled through constraints, that are not able or willing
to exchange information between each other. Examples of
the latter instance include the control of power systems,
which are coupled through their energy consumption [3]–
[5] or reactors belonging to different production units or
sites, which are coupled through streams of materials and
energy [6]. Distributed MPC (DMPC) addresses the afore-
mentioned issues by splitting the central MPC problem into
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smaller subproblems [7]. This paper focuses on DMPC using
dual decomposition, where coupling constraints between the
subproblems are relaxed through the introduction of dual
variables [8]. These dual variables can be interpreted as
prices for shared resources [3], [9]. The feasibility of the
solution is then ensured through the hierarchical coordination
of the subproblems through the dual variables. This hierar-
chical communication structure makes dual decomposition
suitable for problems where only limited information can be
shared between the subsystems. In [3] dual decomposition-
based DMPC is applied to an energy network, where the
energy consumption of sub-networks, governed by indepen-
dent balancing responsible parties (BRPs), is coordinated
through dual variables without sharing private information.
Similarly, dual decomposition-based DMPC is applied in
[4] to optimize power flows in a network of interconnected
microgrids while preserving privacy. In [5] both primal and
dual decomposition are used for energy management in smart
districts using DMPC. In the case of dual decomposition
the subsystems are coordinated through prices on the shared
resources. In contrast, primal decomposition coordinates
the subsystems by directly allocating parts of the shared
resources to the involved subproblems. In this way feasibility
is ensured in every iteration of the coordination algorithm,
whereas dual decomposition only ensures feasibility upon
convergence. However, primal decomposition requires far
more degrees of freedom on the coordinator level, compared
to dual decomposition. In [6] different dual decomposition-
based distributed optimization algorithms were used to con-
trol semi-batch reactors with coupled feed flows and their
performance was compared. Dual decomposition-based dis-
tributed optimization algorithms generally exhibit a slow
rate of convergence [9], which can render their applica-
tion for online control problems challenging. This limita-
tion can be overcome, e.g., by accelerated gradient meth-
ods were information from previous iterations is exploited
in the form of momentum terms [10]. Alternatively, the
dual optimization algorithm can be terminated prematurely
within a satisfactory range of the optimum. Inexact dual
optimization with premature termination in the context of
dual decomposition-based DMPC was investigated in [11].
Similarly, premature termination of an algorithm based on
augmented Lagrangians for DMPC was studied in [12]. Nev-
ertheless, dual decomposition-based DMPC is still suitable
for coupled systems exhibiting slow dynamics and large
sampling times, like power systems or chemical processing
plants. If real-time computations are required, e.g., in the
case of DMPC for cooperative robotic manipulators [13],
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different DMPC approaches can provide better results. An
overview of different DMPC approaches and architectures
can be found in [7] and [14].

In this work a novel dual decomposition-based distributed
optimization algorithm is presented, which updates the dual
variables based on a quadratic approximation of the dual
function. The remainder of this paper is organized as follows:
Section II introduces the considered class of central MPC
problems and their decomposition through the introduction of
dual variables. Furthermore, the subgradient method for the
solution of the dual problem is described. Section III presents
the proposed algorithm based on quadratic approximation.
The algorithm is demonstrated on an illustrative case study of
a two-tank system and compared to the subgradient method
in Section IV. The paper is concluded and direction towards
future research is provided in Section V.

II. DUAL DECOMPOSITION-BASED DISTRIBUTED MPC

In this section the considered class of MPC problems
and their decomposition through Lagrangian duality are
introduced. Furthermore, the subgradient method, which can
be used to solve the central MPC problem in a distributed
fashion, is discussed.

A. Considered class of MPC problems

In this paper MPC problems where Ns subsystems are
coupled through constraints on shared resources are consid-
ered. The central MPC problem can be formulated as follows:

min
x0:Np ,u0:Np−1

Ns∑
i=1

Jf
i (x

Np

i ) +

Np−1∑
k=0

Ji(x
k
i ,u

k
i )

 , (1a)

s.t. xk+1
i = Aix

k
i +Biu

k
i ,

∀i = 1, . . . , Ns k = 0, . . . , Np − 1, (1b)

x0
i = xi,0, ∀i = 1, . . . , Ns, (1c)

xk
i ∈ Xi, ∀i = 1, . . . , Ns,

k = 0, . . . , Np, (1d)

uk
i ∈ Ui, ∀i = 1, . . . , Ns,

k = 0, . . . , Np − 1, (1e)
Ns∑
i=1

uk
i ≤ uk

max, ∀k = 0, . . . , Np − 1. (1f)

Each subsystem i consists of its individual states xi ∈ Rnxi

and inputs ui ∈ Rnu , governed by linear dynamics (1b), with
Ai ∈ Rnxi

×nxi and Bi ∈ Rnxi
×nu . In the following x =

(xT
1 , . . . ,x

T
Ns

)T and u = (uT
1 , . . . ,u

T
Ns

)T denote the set of
all states and inputs of the central MPC problem respectively.
Constraint (1c) corresponds to the states’ initial conditions.
Each subsystem possesses an individual convex objective
function with the running cost Ji : Rnxi × Rnu → R and
the terminal state cost Jf

i : Rnxi → R. Furthermore
the states and inputs are subject to convex constraints Xi

and Ui respectively (1d,1e). The subsystems are coupled
in their inputs through constraint (1f). The coupling can
be interpreted as systems sharing limited resources, where

umax ∈ Rnu describes their maximum availability, i.e.,
how much of the limited resources can be consumed by all
subsystems. The MPC problem is solved over a prediction
horizon k = 0, . . . , Np with the sampling time Ts and
xk = x(k · Ts) and x0:Np = [x0, . . . ,xNp ].

B. Dual decomposition of the central MPC problem

As described in Section I, a solution of the central MPC
problem (1) is not always possible, e.g., due to the problem
size or due to privacy concerns between the subsystems. If
only a limited amount of information can be shared between
the subsystems, the central problem can be decomposed and
solved in a distributed fashion. In this work Lagrangian du-
ality is employed to decouple the subsystems as it enables a
distributed optimization of problem (1) while only requiring
limited information exchange between the subsystems, thus
ensuring confidentiality. The Lagrangian of problem (1) is

L(x0:Np ,u0:Np−1,λ) =

Ns∑
i=1

Jf
i (x

Np

i ) +

Np−1∑
k=0

[Ji(x
k
i ,u

k
i ) + λk,Tuk

i ]


−

Np−1∑
k=0

λk,Tuk
max, (2)

where λ = (λ0,T , . . . ,λNp−1,T )T ∈ R(Np−1)·nu denotes the
dual variables or Lagrange multipliers. The Lagrangian (2)
can be decomposed into the Lagrangians of the individual
subsystems,

L(x0:Np ,u0:Np−1,λ) =

Ns∑
i=1

Li(x
0:Np

i ,u
0:Np−1
i ,λ)−

Np−1∑
k=0

λk,Tuk
max, (3)

By relaxing the coupling constraints (1e) of the central
problem through the dual variables, the MPC problems of the
individual subsystems can be solved in a distributed fashion
as

min
x
0:Np
i ,u

0:Np−1

i

Li(x
0:Np

i ,u
0:Np−1
i ,λ), (4a)

s.t. xk+1
i = Aix

k
i +Biu

k
i ,

∀k = 0, . . . , Np − 1, (4b)

x0
i = xi,0, (4c)

xk
i ∈ Xi, ∀k = 0, . . . , Np, (4d)

uk
i ∈ Ui, ∀k = 0, . . . , Np − 1. (4e)

In order to ensure feasibility of the central problem, the dual
variables have to be updated iteratively through a coordina-
tion algorithm. The coordinator communicates dual variables
to the subsystems, which in turn solve their DMPC problem
(4) for the current value of λ. The coordinator subsequently
gathers the responses on the shared resource utilization uk

i of
the subsystems and updates the dual variables accordingly.

The aggregation of the objective values obtained for a
given value of the dual variables λ through the solution of

915

Authorized licensed use limited to: Saarl Universitaets. Downloaded on December 03,2022 at 15:25:16 UTC from IEEE Xplore.  Restrictions apply. 



the individual MPC problems (4) corresponds to the value
of the dual function of the central MPC problem (1)

d(λ) = min
x0:Np ,u0:Np−1

L(x0:Np ,u0:Np−1,λ), (5a)

s.t. xk+1
i = Aix

k
i +Biu

k
i ,

∀i = 1, . . . , Ns, k = 0, . . . , Np − 1,
(5b)

x0
i = xi,0, ∀i = 1, . . . , Ns, (5c)

xk
i ∈ Xi, ∀i = 1, . . . , Ns,

k = 0, . . . , Np, (5d)

uk
i ∈ Ui, ∀i = 1, . . . , Ns,

k = 0, . . . , Np − 1. (5e)

The maximization of the dual function

max
λ∈R(Np−1)·nu

d(λ), (6a)

s.t. λ ≥ 0 (6b)

is referred to as the dual problem, while the central MPC
problem (1) is the corresponding primal problem. Constraints
(6b) follows from the Karush-Kuhn-Tucker conditions, as the
relaxed coupling constraints (1e) are posed as inequalities
[15]. If the primal problem is convex and a feasible primal-
dual solution (x0:Np∗,u0:Np−1∗,λ∗) exists, then strong du-
ality holds

d(λ∗) =

Ns∑
i=1

Jf
i (x

Np∗
i ) +

Np−1∑
k=0

Ji(x
k∗
i ,uk∗

i )

 , (7)

i.e., solving the dual problem is equivalent to solving the
primal problem. The dual function is always concave, regard-
less whether or not the primal problem is convex, i.e., the
dual problem (6) is always a convex optimization problem
[15]. The basis of dual decomposition-based distributed
optimization algorithms is that the dual function (5) can be
evaluated in a distributed fashion by solving the individual
DMPC problems (4) for a given set of dual variables λ.
In the following subsection the subgradient method for the
solution of the dual problem is discussed.

C. Subgradient method

Solving the dual problem (6) through a gradient ascent
method is generally not possible, as a gradient of the dual
function can not be computed in a distributed fashion. Fur-
thermore, a gradient might not even exist for all values of λ,
as the dual function d(λ) is generally nonsmooth. However,
a subgradient can be computed instead of a gradient. A
vector ξ ∈ Rnχ is called a subgradient of a convex function
ϕ : Rnχ → R at a point χ0 ∈ Rnχ , if

ϕ(χ) ≥ ϕ(χ0) + ξT (χ− χ0), ∀χ ∈ dom ϕ, (8)

holds [16]. The set of all subgradients of a function ϕ(χ) at
the point χ0 comprise the subdifferential ∂ϕ(χ0). In the case
of the dual function d(λ), a subgradient g(λ) of the negative
dual can be computed through the evaluation of the coupling

constraints (1e) for the optimal primal variables u0:Np−1∗(λ)
obtained for the dual variables λ [17], i.e.,(

Ns∑
i=1

uk∗
i (λ)− uk

max

)
{k=0,...,Np−1}︸ ︷︷ ︸

=g(λ)∈Rnλ

∈ ∂(−d(λ)). (9)

The subgradient method iteratively updates the dual variables
by performing a step in the direction given by the subgradient
[18],

λ(c+1) =
[
λ(c) + α(c) · g(λ(c))

]+
, (10)

where c denotes the iteration index, α(c) > 0 is a step size
parameter and [·]+ denotes the projection onto the positive
orthant. The updated dual variables are subsequently com-
municated to the subsystems, where the individual DMPC
problems (4) are solved in a distributed fashion. In this work
the algorithm is terminated when the primal residual,

w(c)
p = ∥max{0,g(λ(c))}∥2, (11)

the dual residual

w
(c)
d = ∥λ(c+1) − λ(c)∥2, (12)

and the complementary slackness

w(c)
s = ∥λ(c),Tg(λ(c))∥2 (13)

lie below a defined threshold ϵ. Eq. (11) indicates primal fea-
sibility, eq. (12) indicates convergence of the dual variables
and eq. (13) indicates the satisfaction of the complementarity
conditions [15]. The subgradient method converges, if the
step size is adequately chosen. It must be set large enough
to ensure fast convergence, but not too large so as to prevent
oscillations or even divergence. However, the algorithm gen-
erally exhibits a slow rate of convergence. In the following
section a dual decomposition-based distributed optimization
algorithm which makes efficient use of previously collected
information to speed up the rate of convergence is presented.

III. QUADRATICALLY APPROXIMATED DUAL ASCENT

Wenzel et al. [9] proposed to approximate the squared
primal residual w2

p(λ) through a quadratic function by
collecting information obtained in previous iterations and
to then update the dual variables through a minimization
of this quadratic function. This approach suffers from the
drawback that the approximated function is nonconvex and
nonsmooth if the subsystems contain changing sets of active
local constraints. In contrast, the algorithm proposed in this
paper approximates the dual function d(λ) which might be
nonsmooth, but is always concave. Since a smooth approx-
imation of a nonsmooth function is prone to inaccuracies,
the update of the dual variables includes constraints that take
the nonsmoothness into account, which are not applicable in
the algorithm proposed in [9]. The different elements of the
algorithm are presented in the following subsections.
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A. Quadratic approximation of the dual function

The key of the proposed algorithm is the approximation
of the dual function d(λ) by a quadratic function

d
(c)
Q (λ) =

1

2
λTQ(c)λ+ q(c),Tλ+ q

(c)
0 (14)

in each iteration. The parameters of the quadratic function
Q(c) ∈ Rnλ×nλ ,q(c) ∈ Rnλ and q

(c)
0 ∈ R can be obtained

through the solution of a regression problem

min
Q(c),q(c),q

(c)
0

∑
∀j∈J (c)

∥d(c)Q (λ(j))− d(λ(j))∥22, (15)

where J (c) ⊆ {1, . . . , c} denotes the dataset used for the
regression. In order to perform a regression at least

mreg,min = (nλ + 1)(nλ + 2)/2 (16)

data points have to be collected [9]. To this end, the proposed
algorithm initially performs subgradient steps (10) and stores
the data

B(c) = {(λ(j), d(λ(j)),g(λ(j))) ∈ Rnλ × R× Rnλ ,

1 ≤ j ≤ c}. (17)

The collected data includes the dual variables as well as the
value of the dual function and a subgradient. Once enough
data has been collected, the subset of the data points J (c)

used for the regression problem (15) is selected. In this
work the nearest axis point separation (NAPS) algorithm,
described in [9], is employed for the data selection. The
NAPS algorithm does not select data older than a specified
age τ (in terms of past iterations) and aims at selecting
points λ(j) that are evenly spread around the current value
λ(c). All points within a specified distance rλ are selected.
Afterwards, the algorithm cycles through the remaining data
points, until enough points for a regression are selected. For
more details the reader is referred to [9].

B. Covariance-based step size constraint

In order to prevent too aggressive update steps, which
might lead to divergence, Wenzel et al. [9] proposed the use
of a step size constraint, based on the covariance matrix of
the dual variables used for the approximation. If the used
dual variables are summarized in a matrix Λ(c), its covari-
ance matrix can be computed and subsequently decomposed
through a singular value decomposition,

C(c) = cov(Λ(c)) = UΣVT , Σ = diag(σi), (18)

where σi, i = 1, . . . , nλ denotes the singular values. By
scaling the singular values according to

σ̂i := max{si,min{σi, si}}, (19)

with user defined lower and upper bounds si and si, a scaled
covariance matrix can be computed,

Ĉ(c) = UΣ̂VT , Σ̂ = diag(σ̂i). (20)

The update of the dual variables is then constrained to lie
within the ellipsoid

E(Λ(c)) = {λ ∈ Rnλ | (λ−λ(c))T Ĉ−1(λ−λ(c)) ≤ γ(c),2}.
(21)

The parameter γ can be updated according to

γ(c) = max{logw(c)
p , γ}, (22)

with a user defined lower bound γ, in order to allow larger
steps in the first iterations and smaller steps close to the
optimum [9].

C. Bundle cuts

The dual function is usually not smooth, as the set of active
constraints of the subsystems might change for changing val-
ues of the dual variables. Bundle methods have been shown
to be very efficient for nonsmooth optimization problems
[16]. Their key idea is to use the previously collected data
B(c) to construct a piece-wise linear over-approximator of
the dual function. The dual variables can then be updated
by computing an ascent direction of this approximation. In
this paper the same collected information is used to further
constrain the update of the dual variables. As g(λ(j)) is a
subgradient of −d(λ) at the point λ(j), the same should hold
for the approximated dual function, i.e.,

d
(c)
Q (λ) ≤ d(λ(j)) + gT (λ(j))(λ− λ(j)), ∀j ∈ J (c). (23)

If condition (23) is not satisfied for the updated dual variables
λ(c+1), the algorithm has left the range of validity of
the approximation. Hence, the updated dual variables are
constrained to satisfy the constraints (23) defined by the
cutting planes, referred to as bundle cuts in the following.

D. Update problem

To summarize, the proposed algorithm initially performs
subgradient update steps (10) until at least mreg,min data
points have been collected. Afterwards, in each iteration
regression data is selected and the parameters of the quadratic
model are computed through the solution of the regression
problem (15). Note that the regression problem can be solved
through the inversion of the corresponding Vandermonde
matrix. The dual variables are then updated by solving the
constrained optimiaztion problem

max
λ∈Rnλ

d
(c)
Q (λ), (24a)

s.t. λ ∈ E(Λ(c)), (24b)

d
(c)
Q (λ) ≤ d(λ(j)) + gT (λ(j))(λ− λ(j)),

∀j ∈ J (c), (24c)
λ ≥ 0, (24d)

instead of subgradient update steps. Constraint (24b) is the
covariance-based step size constraint while constraints (24c)
are the bundle cuts constraints. Constraint (24d) ensures
dual feasibility of the updated variables. Note that since the
dual function d(λ) is always concave the approximated dual
function will usually also be concave if suitable regression
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data is chosen. Therefore the update problem (24) is a
convex quadratically constrained quadratic program, which
can be solved efficiently. The quadratic approximation is
used to update the dual variables in an ascent direction of the
approximated dual function, hence the algorithm describes a
quadratically approximated dual ascent (QADA).

IV. NUMERICAL RESULTS

In this section the proposed QADA algorithm is demon-
strated on an illustrative case study. A two-tank system is
linearized and the levels of the tanks are controlled in a
distributed fashion, while respecting constraints on the shared
resources.

A. Two-tank system

q1

a1

q1,out
A1

h1

h2

q2

a2

A2

q2,out

MPC1 MPC2

Fig. 1: Two tank system.

The system consisting of two tanks is depicted in Fig.
1. Each tank represents a subsystem, where the level of
each tank is controlled in a distributed fashion. Assuming
incompressibility of the fluid, the dynamics of the level hi

of each tank i can be described through eq. (25),

ḣ(t) = − 1

Ai
(qi,out(t)− qi(t))

= − ai
Ai

√
2ghi(t) +

1

Ai
qi(t), (25)

where Ai and ai denote the cross-sectional areas of the tank
and the outlet respectively, g is the gravitational acceleration
and qi(t) is the flowrate serving as a controlled input of the
system. The tanks are decoupled in their dynamics. However,
the inputs are limited by a shared resource, i.e.,

q1(t) + q2(t) ≤ qmax(t). (26)

The levels of the two tanks are controlled in a distributed
fashion without exchanging information such as dynamics,
state trajectories or constraints. To this end, dual decom-
position is applied to decouple the two MPC problems, as
described in Section II.

B. System and algorithm parametrization

For the purpose of the MPC problems, the nonlinear
dynamics (25) are linearized around a steady-state, given by
the initial conditions h1,0 = 3 m and h2,0 = 5 m. The levels
of the tanks are constrained by upper bounds hUB

1 = 4.5 m
and hUB

2 = 5.5 m, respectively. The flowrates are constrained
by qUB

1 = 0.45 m3/min and qUB
2 = 0.69 m3/min. For the

tanks A1 = 5 m2, a1 = 5.27 · 10−4 m2, A2 = 7 m2, and
a2 = 7.38 · 10−4 m2 holds.

Each MPC controller optimizes a convex objective func-
tion

Jf
i (x

Np

i ) = ∥xNp

i − x
Np,ref
i ∥2Hx,i

, (27a)

Ji(x
k
i ,u

k
i ) = ∥xk

i − xk,ref
i (k)∥2Hx,i

+ ∥uk
i ∥2Ru,i

, (27b)

where ∥y∥2P = yTPy denotes the weighted squared 2-norm,
with Hx,1 = Hx,2 = 1, Ru,1 = 0.1 and Ru,2 = 0.02.
The states xi of the subsystems correspond to the levels hi,
while the flowrates qi serve as control inputs ui. The system
exhibits slow dynamics, so that dual decomposition-based
DMPC is applicable. The sampling time is set to Ts = 1
min and the prediction horizon to Np = 10.

The dual decomposition algorithms are initialized with
λ(0) = 0, i.e., with a decentral solution. The step size
parameter of the subgradient method is adapted according
to

α(c) = α(0)/
√
c, (28)

with α(0) = 0.1. For QADA, subgradient steps are performed
until mreg,min data points have been collected. The parame-
ters of the point selection algorithm are set to rλ = 5 · 10−5

and τ = 2 · mreg,min. The ellipsoid axes of the step size
constraint (24b) are scaled by s = 2 · 10−5, s = 10−3

and γ = 1. The maximum number of iterations is set to
kmax = 500 and the convergence tolerances to ϵ = 10−3.
The parameters where chosen such that fast convergence is
achieved without too aggressive update steps, which would
lead to oscillations or divergence. Both the DMPC problems
and the QADA update problem (24) are implemented in
Matlab using CasADi [19]. The interior point solver IPOPT
[20] is applied to solve the optimization problems.

C. Simulation results

The results for the dual decomposition-based DMPC of
the two-tank system are depicted in Fig. 2. In Fig. 2a the
two MPC controllers compute their respective flowrates in
a decentral fashion (for λ = 0) without accounting for the
limitation of the shared resource and for the resource utiliza-
tion computed by the other controller. This approach leads
to an overutilization of the shared resource, as seen in Fig.
2b. In order to achieve feasibility and convergence towards
the solution of the central MPC problem, the subgradient
method and QADA are applied to coordinate the resource
consumption and their performance is compared. Fig. 2c
illustrates the evolution of the primal (11) and dual (12)
residuals for the two algorithms. The subgradient method
requires 201 iterations to converge to the solution of the
central problem. In comparison, QADA initially is identical
to the subgradient method while data points are being
collected through subgradient update steps. Once enough
points are collected, the dual variables are instead updated
through problem (24). While the algorithm initially searches
in the wrong direction for the first step, indicated by the
increase of the residuals, it quickly converges to the solution
of the central problem within 82 iterations. Fig. 2d depicts
the flowrates computed by the DMPC controllers upon
convergence of the QADA algorithm. As seen in Fig. 2e, the
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the distributed optimization algorithms.
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Fig. 2: Results for the distributed control of the considered
two tank system.

resource constraints are satisfied over the entire prediction
horizon. The results upon convergence of the subgradient
method are almost identical and are therefore omitted at this
point. Nevertheless, Fig. 2c shows that QADA exhibits a
smaller value of the primal residual upon convergence. This
can be interpreted as a termination with a smaller violation
of the constraints on the shared resources.

V. CONCLUSION AND OUTLOOK

This paper presented a novel dual decomposition-based
distributed optimization algorithm. The algorithm relies on a
quadratic approximation of the dual function and updates
the dual variables by solving a constrained optimization
problem in each iteration. The algorithm can be used to
solve distributed MPC problems while preserving privacy be-
tween the involved subsystems. The approach was evaluated
on an illustrative case study consisting of two tanks with
shared resources. The proposed algorithm showed superior
performance in terms of the required number of iterations

compared to the standard subgradient method. Future work
will focus on the comparison of the proposed algorithm to
other state-of-the-art dual decomposition-based distributed
optimization methods, e.g., the alternating direction method
of multipliers (ADMM) or bundle methods [16]. Further-
more, the QADA algorithm can be improved by employing
a more efficient algorithm in the initial sampling stage.
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