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Abstract: Job-shop scheduling problems are important in the industrial context to achieve high machine
utilization. Heuristics offer a possibility to solve these problems with moderate computational effort.
However, they might be associated with a high development effort and generalization to other tasks is
difficult. We use a reinforcement learning approach (deep Q-learning) to solve a job-shop problem in
our production environment. A production process is considered where jobs are transported to allocated
stations by two collaborative robots. To this end, a learning environment and a simulation environment
are developed to evaluate the feasibility of an obtained schedule. The results are compared to a First In
- First Out heuristic. The main objective is to consider the motion of the robots and to avoid collisions
without losing unnecessary time. First, a fixed scheduling problem is analyzed to verify that a feasible
solution can be obtained. Second, arbitrary instances of the scheduling problem are solved. The presented
method leads to feasible schedules. An increased training and a more stable convergence process are
necessary for an efficient use.
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1. INTRODUCTION

Scheduling problems have received widespread attention in in-
dustry and are found in areas such as transportation, distribution
and manufacturing. An industrial setting requires the optimiza-
tion of large scale job-shop scheduling problems (Cunha et al.
(2020)). A job-shop scheduling problem (JSSP) describes an
allocation of jobs to a limited number of resources over a certain
period of time. The critical decision is to plan how to assign
tasks to the machines so that an optimal target criterion is
achieved. Depending on the type of optimization criterion, a
scheduling problem can lead to the most difficult optimization
problems. As the JSSP belongs to the class of NP-hard prob-
lems, an optimal solution can not be obtained with a clear rule
of action (Brucker (2007); Martı́nez et al. (2011); Cunha et al.
(2020)).

Conventional approaches to solving JSSPs are heuristics or
priority rules. These are designed to solve a specific problem,
with defined mathematical rules. The advantages include them
being computationally fast, intuitive and easy to implement.
The generalization to other problems and the effort to develop
these techniques belong to the current challenges (Cunha et al.
(2020); Zhang et al. (2020)). An alternative approach for solv-
ing the presented problem is machine learning or, more pre-
cisely, reinforcement learning (RL). Deep reinforcement learn-
� The authors gratefully acknowledge financial support by the Federal Ministry
for Economic Affairs and Energy of Germany in the project ”Modular Smart
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ing (DRL) provides successful results for computer and board
games (Mnih et al. (2015); Silver et al. (2017)). However, deep
learning has been applied only on few applications in the pro-
cessing industry (Waschneck et al. (2018); Cunha et al. (2020);
Zhang et al. (2020)). Panzer and Bender (2021) provided a
detailed literature review as an introduction into DRL supported
production systems. The authors highlighted that in most exam-
inations, conventional approaches are exceeded but the findings
have to be transferred to real-word systems to evaluate the
reliability under existing requirements.

In flexible manufacturing systems (FMS’s) deadlocks may oc-
cur either during allocation processes (assigning resources to
jobs) or between transportation units. For instance, to pre-
vent deadlocks during allocation, Banaszak and Krogh (1990)
proposed to utilize Petri net models to prevent deadlocks by
defining a restriction policy that restricts resource allocation
decisions. The second class of deadlocks, i.e., deadlocks during
transportation task execution, usually stems from insufficient
motion planing. In this case, intersecting trajectories prevent
the task execution assuming sufficient measures for collision
avoidance are in place. Zhou et al. (2017) introduced a dis-
tributed algorithm, where robots exchange their next two con-
secutive states and check if a deadlock occurs. Depending on
the manufacturing system, both types of deadlocks need to be
considered.

In this paper, we use DRL to solve JSSPs for an FMS and
transfer the solutions into a simulation environment. We sched-
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proposed to utilize Petri net models to prevent deadlocks by
defining a restriction policy that restricts resource allocation
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transportation task execution, usually stems from insufficient
motion planing. In this case, intersecting trajectories prevent
the task execution assuming sufficient measures for collision
avoidance are in place. Zhou et al. (2017) introduced a dis-
tributed algorithm, where robots exchange their next two con-
secutive states and check if a deadlock occurs. Depending on
the manufacturing system, both types of deadlocks need to be
considered.

In this paper, we use DRL to solve JSSPs for an FMS and
transfer the solutions into a simulation environment. We sched-

ule the processing as well as the transporting to check the
feasibility of our generated plans. We set up a learning environ-
ment for our production plant and integrate deep Q-learning.
Two collaborative robots (UR3) are considered to transport
the assigned resources to different stations. The robots share
a common workspace and collisions between the robots are
imminent. An online motion control is employed to provide
optimal and collision-free trajectories for each robotic manipu-
lator. We want to emphasize that especially transport operations
of robotic manipulators are associated with many restrictions
and scheduling the process operations alone does not lead to
a sufficient result. Thus, theoretical scheduling meets our sys-
tem requirements. We determine whether deep Q-learning is a
suitable method to solve our JSSP and evaluate the schedules
against a FIFO heuristic.

2. RELATED WORK

The use of RL methods in the area of optimization and schedul-
ing has already been investigated in 1995. Zhang and Dietterich
(1995) presented a successful application of RL combined
with neural networks to solve JSSPs. Based on a critical-path
schedule, RL was used to find a short conflict-free schedule.
Aydin and Öztemel (2000) focused on dynamic scheduling
with an RL agent to select the most suitable priority rule in
real-time. The dynamic behavior was achieved with a simu-
lation environment communicating with the agent when a job
needed to be assigned to a machine. The results outperformed
the traditional alternatives. Subsequently, Gabel and Riedmiller
(2007) developed techniques to solve JSSPs and showed that
solutions with multiple agents are advantageous to get nearly
optimal results. The agents were associated with resources and
decided which job has to be processed next on the resource.
Martı́nez et al. (2011) combined learning and optimization to
solve flexible JSSPs. Two-stage Q-learning was applied to find
the routing and sequencing with priority rules-related rewards.
Then the mode optimization procedure was used to minimize
the makespan. In 2018, Waschneck et al. (2018) applied coop-
erative deep Q-network agents to production scheduling. The
authors used discrete event simulation to observe the factory
state and distributed agents at different workcenters optimizing
a global reward. The obtained results were on par with the
expert benchmark. Wang et al. (2019) presented a multi-agent
RL setting with a deep Q-network to control the scheduling of
multi-workflows while outperforming the baseline algorithms.
Chen et al. (2020) solved flexible JSSPs with a self-learning
genetic algorithm. The approach combined genetic algorithm
as the substantially optimization with RL to customize the key
parameters resulting in outperforming its competitors. Zhang
et al. (2020) mentioned the importance of priority rules. Since
developing these methods is time-consuming, the authors fo-
cused on the question of whether they can automate the process
of designing priority rules using DRL. Priority rules trained
by the authors’ policy perform significantly better than exist-
ing manually designed ones. Popper et al. (2021) developed
a RL multi-agent system combining job scheduling and vehi-
cle planning. The authors explained that the location of the
means of transport is usually omitted in scheduling but new
research should consider these aspects. The presented concept
performed up to 100 times better than the compared heuristics.

Especially, Waschneck et al. (2018), Zhang et al. (2020), Panzer
and Bender (2021) and Popper et al. (2021) highlighted that
the numerous real-world applications of JSSPs are widely un-

explored with respect to RL. Popper et al. (2021) used the
inclusion location of the transport units to increase the trans-
ferability to real production systems. Whereby the authors in-
vestigated automated guided vehicles, robotic manipulators are
linked with significantly more restrictions and we concentrate
on the feasibility of our production plant.

3. METHODS

We use a deep Q-learning method based on a global state to
train in the learning environment and to solve the JSSP. We con-
sider a transportation system consisting of two robotic manip-
ulators sharing a common workspace. The robots perform pick
and place operations, where trajectories are performed using
distributed model predictive control (DMPC). Hereby, collision
and deadlock avoidance between the robots are considered.

3.1 Job-Shop Scheduling Problem

The JSSP is classified by a set of n jobs J = {J1, ...,Jn} and m
machines M = {M1, ...,Mm}. Each job Ji(i = 1, ...,n) consists
of ni operations Oi = {Oi1, ...,Oi,ni}. The processing time pio
defines the processing time of the operation Oio (o = 1, ...,ni).
Each operation Oio (i = 1, ...,n,o = 1, ...,ni) is linked to a set
of Mio ⊂ M machines on which it may be executed. Each job
has to be processed in an individual sequence of machines,
in which a single machine might be used for more than one
operation (Brucker (2007); Martı́nez et al. (2011)). Heuristics
can be used to solve the JSSP, for example, a FIFO heuristic
where the prioritization is based on arrival (Haupt (1989)).

3.2 Reinforcement Learning

RL describes an approach, where an agent learns its own
behavior by interacting with a dynamic environment. The agent
makes certain decisions that result in reward or punishment.
With the environment in state St , the agent can perform a
set of predefined actions At from the set of all actions A.
Depending on the selected action At and its subsequent state
St+1 of the environment, the agent receives a reward Rt+1.
The main objective is to find a policy to maximize the sum of
the rewards. The agent has two general learning strategies: a
decision must be taken to explore previously poorly examined
state space regions or to check the correctness of the previous
states. One way to handle this problem is the ε-greedy strategy
with a parameter ε ∈ [0,1]. Before an action At is performed,
a random number x is generated that decides whether the agent
follows its strategy (x ≥ ε) or performs a random action (x < ε)
(Sutton and Barto (2018); Lapan (2018)). Q-learning describes
a possible algorithm of model-free learning to find an optimal
policy, (Watkins and Dayan (1992)). The expected benefit of an
action At in the state St is described by the Q-function Q(St ,At)
in the following form,

Qnew(St ,At) =Qold(St ,At)+η [Rt+1 + γ max
A

Qold(St+1,A)

−Qold(St ,At)].
(1)

The corresponding values are stored in the Q-table. The new
Q-value denoted as Qnew(St ,At) consists of the old value
Qold(St ,At), the reward Rt+1 and the maximum Q-value of all
the next states maxA Qold(St+1,A). The parameter η denotes
the learning rate and defines the step size at each iteration.
The discount factor γ controls the influence of future decisions.
Q-learning is applicable if the number of possible states St
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and actions At is manageable (Sutton and Barto (2018); Lapan
(2018); Dutta (2018)). For this reason, neural networks are used
in deep Q-learning to approximate the values of the Q-function
(Mnih et al. (2015); Fan et al. (2019)). The learning process of
deep Q-networks is facilitated by two essential steps:

(1) A virtual memory (replay memory) is created. The mem-
ory e consists of all transitions,

e = (St ,At ,Rt+1,St+1).
Random samples of the memory can be used for training
(Lin (1992); Mnih et al. (2015); Fan et al. (2019)).

(2) A target network is used to approximate the Q-values
of the next state maxA Qold(St+1,A). The target network
serves to determine an uninfluenced estimator for the error
function. The step size τ is defined, whereby the weights
of the target network are updated with those of the policy
network (Dutta (2018); Fan et al. (2019)).

Depending on the strategies explained so far, the algorithm of
deep Q-learning is presented in Mnih et al. (2015). We adopt
this procedure to our problem statement in Algorithm 1. In Sec.
4.2, a detailed description of Algorithm 1 is provided during the
introduction of the training procedure.

3.3 Online Motion Control

Online motion control is realized by applying the approach
of Gafur et al. (2021a,b) which is based on the concept of
distributed model predictive control (DMPC). Each robotic ma-

Algorithm 1: Training for solving JSSPs
Initialize the replay memory e with capacity N;
Initialize the policy network Q with random weights wi j;
Initialize the target network Q∗ with random weights and w∗

i j = wi j;
Loop

Initialize ε with ε = εstart;
for Sequence = 1,seq do

Initialize the JSSPs for y learning environments;
for Step = 1,Steps do

Reset state S1 for every learning environment;
for env = 1,y do

while JSSP not solved or not terminated do
With ε choose random action At considering

normal action space and reduced action space or
At = argmaxA Q(St ,A;wi j);

Run action At , get reward Rt+1 and state St+1;
Store state transition (St ,At ,Rt+1,St+1) in e;

end
Get random stack (S j,A j,R j+1,S j+1) from e, calculate

the error with Q-function and train the neural
network with gradient descent procedure for x times;

Every τ steps reset Q∗ = Q;
end
if ε > εend then

ε = ε − εdecay;
end

end
end
Initialize the JSSPs for z validation environments;
for env=1,z do

while JSSP not solved or not terminated do
With policy (ε = 0) choose action

At = argmaxA Q(St ,A;wi j);
end

end
EndLoop

nipulator plans its own trajectory after receiving a sequence
of setpoints from the scheduling algorithm. As robotic ma-
nipulators are operating in a shared workspace, they have to
account for potential collisions between each other. Therefore,
each robotic manipulator shares its predicted trajectory with all
the other manipulators to compute a collision free trajectory.
Furthermore, deadlocks between the robots are locally detected
by each robot and communicated to a coordinator that resolves
the occurring deadlocks. More details on the applied algorithm
are provided in Gafur et al. (2021a).

4. SYSTEM CONFIGURATION

4.1 Learning Environment

The production plant is shown in Fig. 1. It consists of two UR3
robots, five machine stations (Fig. 1: black objects) and 5 jobs
(Fig. 1: red objects), each with 4-5 operations. In addition, there
are two buffer stations in the middle of the workspace (Fig. 1:
circled black objects) that serve as an intermediate storage. A
starting and ending tray (Fig. 1: blue trays) are used as interface
to the working area. Within the context of discrete event sim-
ulation time is not modeled explicitly. Instead, discrete event
points are defined and their timing is computed within the
simulation by accounting for the duration of processing and
transport times between consecutive events. Set up times s and
transport times t between the stations are taken into account.
For simplification, the set up time is considered as a constant
with 20 time steps. Every time a robot picks a job the set up
process is triggered. The set up process is carried out as soon as
possible and retrospectively unused processing time could be
taken to speed up the operation. Also, the transport times are
specified to be constant with an initial value of 12 time steps.
The transport is divided into two processes, the pick operation
(transport 1) and the place operation (transport 2). An exception
occurs when the robots avoid collisions between each other
in the way, when one robot has to choose a trajectory above
the other one in order to reach its target. Through collision
avoidance, the transport time is increased to 20 time steps.
The processing time is chosen between 20 and 50 time steps
depending on the JSSP. The goal is to bring the different jobs
from the respective starting tray through a predefined station
sequence to the end tray. The target criterion is to minimize the
makespan Cmax, i.e., the time required to complete all jobs. We
use a neural network to assign the robots to transport operations
and to sequence the operations in the production units.

Since deadlocks between the robots can occur during grasping
procedure, our scheduling algorithm has to take restrictions

Fig. 1. Simulation environment of the production plant in
Gazebo.
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function. The step size τ is defined, whereby the weights
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4.2, a detailed description of Algorithm 1 is provided during the
introduction of the training procedure.

3.3 Online Motion Control

Online motion control is realized by applying the approach
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distributed model predictive control (DMPC). Each robotic ma-
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Initialize the JSSPs for y learning environments;
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Reset state S1 for every learning environment;
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With ε choose random action At considering

normal action space and reduced action space or
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Run action At , get reward Rt+1 and state St+1;
Store state transition (St ,At ,Rt+1,St+1) in e;

end
Get random stack (S j,A j,R j+1,S j+1) from e, calculate

the error with Q-function and train the neural
network with gradient descent procedure for x times;

Every τ steps reset Q∗ = Q;
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if ε > εend then

ε = ε − εdecay;
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end
Initialize the JSSPs for z validation environments;
for env=1,z do

while JSSP not solved or not terminated do
With policy (ε = 0) choose action

At = argmaxA Q(St ,A;wi j);
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nipulators are operating in a shared workspace, they have to
account for potential collisions between each other. Therefore,
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Furthermore, deadlocks between the robots are locally detected
by each robot and communicated to a coordinator that resolves
the occurring deadlocks. More details on the applied algorithm
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are two buffer stations in the middle of the workspace (Fig. 1:
circled black objects) that serve as an intermediate storage. A
starting and ending tray (Fig. 1: blue trays) are used as interface
to the working area. Within the context of discrete event sim-
ulation time is not modeled explicitly. Instead, discrete event
points are defined and their timing is computed within the
simulation by accounting for the duration of processing and
transport times between consecutive events. Set up times s and
transport times t between the stations are taken into account.
For simplification, the set up time is considered as a constant
with 20 time steps. Every time a robot picks a job the set up
process is triggered. The set up process is carried out as soon as
possible and retrospectively unused processing time could be
taken to speed up the operation. Also, the transport times are
specified to be constant with an initial value of 12 time steps.
The transport is divided into two processes, the pick operation
(transport 1) and the place operation (transport 2). An exception
occurs when the robots avoid collisions between each other
in the way, when one robot has to choose a trajectory above
the other one in order to reach its target. Through collision
avoidance, the transport time is increased to 20 time steps.
The processing time is chosen between 20 and 50 time steps
depending on the JSSP. The goal is to bring the different jobs
from the respective starting tray through a predefined station
sequence to the end tray. The target criterion is to minimize the
makespan Cmax, i.e., the time required to complete all jobs. We
use a neural network to assign the robots to transport operations
and to sequence the operations in the production units.

Since deadlocks between the robots can occur during grasping
procedure, our scheduling algorithm has to take restrictions

Fig. 1. Simulation environment of the production plant in
Gazebo.

into account, i.e., a minimum distance of 0.12 m between two
objects that have to be grasped at the same time. In our case,
this leads to the fact that not every station can be assigned,
depending on the current location of the robots. It is only
possible that one robot grasps objects from the starting or
ending tray. Also, it is not possible that the outer stations, which
are next to the trays, can be reached on both sides of the table at
the same time, i.e., that one robot moves from the bottom station
to the upper outer station while the other robot does it reversed.
Furthermore, resource allocation can lead to a deadlock since
the progress of the process is always dependent on a subsequent
machine or buffer station being free. In a deadlock situation,
each job is waiting for a resource occupied by another job. This
leads to a significant increase in the complexity of the JSSP.
At this point, it should be noted that these constraints are not
considered in the FIFO heuristic. Thus, the RL approach is
compared to a heuristic one with far fewer boundary conditions.

In the learning environment, the robots can perform three differ-
ent actions. A job can be placed at a machine station, at a buffer
station or a robot can wait 5 time steps at the current location.
Thus, for n jobs 2n+1 actions follow. After completion of the
action, another action is specified until the JSSP is solved or a
defined simulation time or number of actions threshold has been
reached. These boundaries are determined empirically. The ac-
tions are based on a global state that is normalized between
0 and 1 before passing through the neural network. This state
contains an entry for each next operation, each machine, each
buffer, each robot, the time for each robot and the jobs. The
next operation includes the current location of the job as well
as the next machine and the associated processing time. The
machines cover the remaining processing time, set up process
notifications and information if the machine is idle, process-
ing or blocked. The robots track their movement as well as
the required time for the transport operations. Also, the over-
all simulation time and the number of performed actions are
tracked. The jobs initially describe the general JSSP, whereby
the corresponding entry is set to 0 after a completed operation.

The presented approach and the associated actions result in dif-
ferent rewards and punishments. A distinction is made between
local rewards after each action and global rewards when the
JSSP has been solved. The statements and values are listed in
Tab. 1. Local negative rewards result in actions that can not
be executed. This includes a job that is already allocated to
the other robot or a possible deadlock situation between the
transportation units due to the current state. Another negative
reward is received when a job is chosen which next station is
already occupied. Thus, in a resource allocation deadlock, the
agent always receives a punishment until the termination crite-

Table 1. Explanation of the rewards

Statement Value

Action can not be executed -2.5
(e.g., movement of robot is not possible,
job is already assigned to a transportation
task)
Action can not be executed currently -1.25
(e.g., buffer stations are occupied,
target machine station is occupied)
Wait a time step -0.05
Job was placed at buffer station 0.04
Job was placed at machine/end station 0.08
All jobs were processed R∈ {r|1 ≤ r ≤ 11}

rion is reached and it therefore has to learn how to avoid these
situations. Local positive rewards follow up from actions that
lead to a successful pick and place process. The main objective
is to minimize the makespan, resulting in a time dependent
global reward. Since the optimal makespan is not known, the
robots strive for a makespan of 0. The reward is scaled between
0 time steps and the time steps of the termination criterion. A
high makespan results in a global reward of 1, while a schedule
with a theoretical makespan of 0 results in a reward of 11.

4.2 Training Procedure

Two different case studies are conducted to evaluate the pre-
sented approach. In the first case, we train the network with a
fixed JSSP, where the objective is to find a feasible schedule
and to evaluate the chosen parameters. In the second case, we
use arbitrarily generated JSSPs to train the network and to solve
random JSSPs.

Most hyperparameters of the learning process are fixed. Only
the learning rate, the batch size and the size of the neural
network are adjusted. These values are further explained in the
results section (Sec. 5). The values of the other parameters are
as follows: discount factor γ = 0.99, εend = 0.1, step size τ = 50.
Adam optimizer (Kingma and Ba (2014)) is applied to adjust
the neural network. As the error function the least squared error
method is used. The rectified linear unit activation function
is applied in the hidden layers of the network and the linear
activation function at the output. To speed up the process, a
distinction is made during exploration between a normal action
space and a reduced action space. The reduced action space
excludes actions that lead to obviously negative rewards based
on the current state. This is useful since in some cases only few
actions lead to a positive change of the system. The probability
of selecting the appropriate action space is 50 % in each case.
Considering the methods presented in Sec. 3.2, we employ a
deep Q-learning algorithm presented in Algorithm 1. The seq-
parameter (sequence) defines how many times the number of
learning environments y is reset and JSSPs are generated. At the
end, there is a validation phase with z environments to evaluate
the current policy. The algorithm is explained for the two use
cases in the following paragraphs.

Fixed JSSP To solve a fixed JSSP one learning environment
(y = 1), one validation environment (z = 1) and one sequence is
considered (seq = 1). The JSSP is saved for both environments
and restored in each sequence. The robots solve the JSSP with
the ε-greedy strategy. After the JSSP is solved, the training
takes place 5 times (x = 5). Within one episode, the JSSP is
solved several times. In the first episode, the JSSP is solved
2500 times with an unchanged εstart = 1. As long as the policy
does not lead to a solution in the validation phase, the εstart value
is set to 1, the JSSP is solved 1000 times and ε decreases by
εdecay = 1e-3. If the policy solves the JSSP, εstart = 0.5 and ε
decreases with εdecay = 5e-4.

Arbitrary JSSPs To solve arbitrary kinds of JSSPs 10 learn-
ing environments are created (y = 10). Within an episode, dif-
ferent kinds of JSSPs are solved. After each JSSP is solved,
the training takes place 5 times (x = 5). Each JSSP is solved
100 times then new ones are created. The validation phase
consists of 200 unseen JSSPs (z = 200). In the first episode, 16
sequences (seq = 16) and therefore 160 JSSPs are solved with
an unchanged εstart = 1. As long as 75 % of the JSSPs are not
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solved in the validation phase, εstart = 0.9 holds and decreases
with εdecay = 5.625e-4. If 75 % of JSSPs are solved, the number
of sequences is reduced to 8 (seq = 8). In this case, εstart is set
to 0.5 and decreases with εdecay = 6.25e-4.

The solutions of the validation phase are used to present the
results of the current policy in every episode in Sec. 5.

5. RESULTS

The learning environment is developed within the Python pro-
gramming language. Discrete event simulation is applied to
model the operations. To this end, the Python library SimPy
(2021) is used. The neural network is trained with TensorFlow
2 (Abadi et al. (2015)). The simulation environment is set up
in Gazebo (Koenig and Howard (2004)). Two UR3 manipula-
tors are employed and controlled by ROS (Stanford Artificial
Intelligence Laboratory et al. (2021)).

5.1 Fixed JSSP

In the first step, a fixed JSSP is considered. This should help
to assess whether the presented approach is at all capable of
generating a feasible solution. We start with a neural network
that contains 4 hidden layers, each with 512 hidden neurons.
The learning rate η is set to 1e-5 and the batch size to 256.
The learning procedure includes 3.875 million training steps. In
every episode, the current policy is used to evaluate the model.
The makespan of the JSSP created by the policy in each episode
is presented in Fig. 2. It takes over 200 episodes until the policy
can create feasible schedules. The makespan decreases strongly
from episode 200 to 300. After episode 300, the gradient
decreases and only a slight change in makespan is detected.
However, up to episode 700, the tendency is falling. The robots
reach the lowest makespan of 633 time steps in episode 703.
The FIFO heuristic achieves a makespan of 756 time steps.
Although the FIFO is a very simple heuristic, the difference
is very high, considering that the FIFO heuristic works without
significant restrictions. The resulting schedules of episode 703
of the different jobs and the robots are visualized in Fig. 3 and
Fig. 4. The numbers within the rectangles represent the job Ji.

Fig. 3 shows the utilization and the job sequence of the different
stations. The stations are divided into machine stations (M)
and buffer stations (B). For the sake of clarity, the starting and
ending trays are omitted. Set up times are represented by the
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Fig. 2. Makespan of a fixed JSSP with 5 machine stations.
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Fig. 4. Schedule of the robots of a fixed JSSP with 5 machines.

black rectangles within the figure. If no transport capacities
are free or other jobs are prioritized, it might be possible that
a job remains on a machine longer than necessary. This is
symbolized by a line dividing a rectangle. It is noticeable that
the jobs often remain at the machines longer than necessary.
Especially the jobs J1 (at M2, M3 and M5), J3 (at M2) and J5
(at M5) remain idle for a long time after processing. This can
be useful since the prioritization of other jobs can lead to a
lower makespan. Furthermore, the policy leads to the fact that
the buffer stations are used rarely. This occurs due to the time
required for transportation between the stations and staying on
unused machines leads to a better overall schedule. It should
also be mentioned that the job J3 is not placed at the buffer
station B2 before time step 400. After moving to the buffer
station, the job is transported away directly. However, a reason
for this might be to collect the additional reward for moving a
job to a buffer station (see Tab. 1). A similar behavior is also
noticed for the jobs J3 (at B1) and J1 (at B1). The jobs are
transported to the buffer station although their next machine
station is already free. To solve the problem, the local reward
for transporting a job to a buffer station might be reduced.

Fig. 4 visualizes the job sequence of the two robots (U1 and
U2). A process of a robot includes the transportation task to
a specific job, the pick operation, the transportation task to the
next station and the placing operation. These operations amount
to overall time needed to carry out a specific operation with the
job Ji. If a robot has no immediate consecutive task, it moves to
its initial pose. It should be mentioned that up to time step 350
the jobs are well allocated between the two robots. After time
step 350, robot U1 only carries the jobs J3 and J4 and robot U2
only operates the jobs J1 and J5. This behavior is a consequence
of the boundary conditions. The remaining operations of these
jobs are spatially separated. During this time, the robots can
work undisturbed and need less time for transport operations.
Only the transport of the job J4 from the machine M3 to the
buffer station B1 and the almost simultaneous transport of the
job J5 between the machines M2 and M3 require additional time
steps to avoid collisions.
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solved in the validation phase, εstart = 0.9 holds and decreases
with εdecay = 5.625e-4. If 75 % of JSSPs are solved, the number
of sequences is reduced to 8 (seq = 8). In this case, εstart is set
to 0.5 and decreases with εdecay = 6.25e-4.

The solutions of the validation phase are used to present the
results of the current policy in every episode in Sec. 5.

5. RESULTS

The learning environment is developed within the Python pro-
gramming language. Discrete event simulation is applied to
model the operations. To this end, the Python library SimPy
(2021) is used. The neural network is trained with TensorFlow
2 (Abadi et al. (2015)). The simulation environment is set up
in Gazebo (Koenig and Howard (2004)). Two UR3 manipula-
tors are employed and controlled by ROS (Stanford Artificial
Intelligence Laboratory et al. (2021)).

5.1 Fixed JSSP

In the first step, a fixed JSSP is considered. This should help
to assess whether the presented approach is at all capable of
generating a feasible solution. We start with a neural network
that contains 4 hidden layers, each with 512 hidden neurons.
The learning rate η is set to 1e-5 and the batch size to 256.
The learning procedure includes 3.875 million training steps. In
every episode, the current policy is used to evaluate the model.
The makespan of the JSSP created by the policy in each episode
is presented in Fig. 2. It takes over 200 episodes until the policy
can create feasible schedules. The makespan decreases strongly
from episode 200 to 300. After episode 300, the gradient
decreases and only a slight change in makespan is detected.
However, up to episode 700, the tendency is falling. The robots
reach the lowest makespan of 633 time steps in episode 703.
The FIFO heuristic achieves a makespan of 756 time steps.
Although the FIFO is a very simple heuristic, the difference
is very high, considering that the FIFO heuristic works without
significant restrictions. The resulting schedules of episode 703
of the different jobs and the robots are visualized in Fig. 3 and
Fig. 4. The numbers within the rectangles represent the job Ji.

Fig. 3 shows the utilization and the job sequence of the different
stations. The stations are divided into machine stations (M)
and buffer stations (B). For the sake of clarity, the starting and
ending trays are omitted. Set up times are represented by the
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black rectangles within the figure. If no transport capacities
are free or other jobs are prioritized, it might be possible that
a job remains on a machine longer than necessary. This is
symbolized by a line dividing a rectangle. It is noticeable that
the jobs often remain at the machines longer than necessary.
Especially the jobs J1 (at M2, M3 and M5), J3 (at M2) and J5
(at M5) remain idle for a long time after processing. This can
be useful since the prioritization of other jobs can lead to a
lower makespan. Furthermore, the policy leads to the fact that
the buffer stations are used rarely. This occurs due to the time
required for transportation between the stations and staying on
unused machines leads to a better overall schedule. It should
also be mentioned that the job J3 is not placed at the buffer
station B2 before time step 400. After moving to the buffer
station, the job is transported away directly. However, a reason
for this might be to collect the additional reward for moving a
job to a buffer station (see Tab. 1). A similar behavior is also
noticed for the jobs J3 (at B1) and J1 (at B1). The jobs are
transported to the buffer station although their next machine
station is already free. To solve the problem, the local reward
for transporting a job to a buffer station might be reduced.

Fig. 4 visualizes the job sequence of the two robots (U1 and
U2). A process of a robot includes the transportation task to
a specific job, the pick operation, the transportation task to the
next station and the placing operation. These operations amount
to overall time needed to carry out a specific operation with the
job Ji. If a robot has no immediate consecutive task, it moves to
its initial pose. It should be mentioned that up to time step 350
the jobs are well allocated between the two robots. After time
step 350, robot U1 only carries the jobs J3 and J4 and robot U2
only operates the jobs J1 and J5. This behavior is a consequence
of the boundary conditions. The remaining operations of these
jobs are spatially separated. During this time, the robots can
work undisturbed and need less time for transport operations.
Only the transport of the job J4 from the machine M3 to the
buffer station B1 and the almost simultaneous transport of the
job J5 between the machines M2 and M3 require additional time
steps to avoid collisions.

Fig. 5. Selected time frames from Gazebo simulation.

The schedule generated by the RL agent is transferred to the
simulation environment with the two robotic manipulators. We
can avoid deadlock situations and execute the obtained sched-
ule. Selected time frames from the simulation environment can
be seen in Fig. 5. The real benefit of dealing with RL occurs
when arbitrary problems can be solved. This challenge is faced
in the next subsection, where arbitrary and unseen JSSPs are
considered. The objective is to solve complicated schedules in
real-time after the training. So the required computation power
is only needed during the training phase.

5.2 Arbitrary JSSPs

In the second step, arbitrary and therefore unseen JSSPs are
considered. Since this leads to a larger complexity, the size
of the neural network is increased. The network consists of 6
hidden layers, each with 1024 neurons. The learning rate and
the batch size are adapted during the training. Starting with a
learning rate of 1e-5 and a batch size of 256, the batch size is
reduced in episode 120 to 128. In episode 170, the learning rate
is also reduced to 1e-7 and the batch size is reset to 256. This
should make the parameters more conservative with increasing
training time and promote stability. The training process leads
to 250 episodes and 12.8 million learning steps.

The results are calculated based on the schedules of the current
policy in the validation phase. In Fig. 6, two different char-
acteristics are considered: the average makespan of the 200
JSSPs at the left axis and the number of solved JSSPs on the
right axis. The average makespan decreases until episode 100
rapidly. Then, the gradient decreases and only a small change in
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Fig. 6. Number of solved JSSPs and average makespan of
arbitrary JSSPs with 5 machines.

makespan is observed. The average makespan of the schedules
is below 800 time steps. Looking at the number of solved
JSSPs, 75 % of the problem instances are solved after 100
episodes. Until episode 170, the oscillations are high. After the
change of the learning rate to 1e-7, the number of solved JSSPs
is nearly constant. This is associated with the low learning rate
and a small step size when updating the network. A general-
ization of 75 % is satisfactory but still needs improvement.
From this point on, higher learning rates lead to divergences,
suggesting that the training process should be improved. In the
end, the policy can not reach the average makespan of the FIFO
heuristic with around 670 time steps. Nevertheless, since the
schedules of the FIFO heuristic are calculated without noteable
constraints, the schedules can not be executed in the simulation
environment. Thus, the policy is compared to infeasible sched-
ules. If we take this fact into account, it becomes clear that the
level of the policy is not worse, as the FIFO heuristic merely
provides a lower bound on the makespan. It should also be
mentioned that the tendency of the makespan is still falling and
it can not be excluded that better schedules could be achieved
with longer training. To achieve significantly better schedules,
another exploration strategy than ε-greedy could be used. The
policy is based on random solutions and therefore unfavorable
schedules. The policy reaches the level of exemplary random
solutions after 75 episodes. However, after a certain point there
are no major improvements. Another exploration type like pri-
oritized experience replay (Schaul et al. (2015)) or the use of
noisy networks (Fortunato et al. (2017)) might result in a more
efficient training. Another approach is the use of priority rules
during exploration to achieve better initial solutions. In the end,
the presented approach leads to feasible schedules for most
instances of the presented JSSP.

6. CONCLUSION

The results imply that the presented approach leads to feasible
schedules in the developed simulation environment. A specif-
ically trained JSSP outperforms the FIFO heuristic by 20 %.
For solving more complex arbitrary JSSPs, a difference in the
performance of the applied deep Q-learning method and the
FIFO heuristic has been observed. Since the FIFO heuristic
can not always generate feasible schedules, the discrepancy
is not worse but the generalization of the policy should be
improved. The approach is able to solve 75 % of the prob-
lem instances. Due to combinatorics, another exploration type
might be promising. Exploration strategies like prioritized ex-
perience replay or noisy networks offer possibilities for a more
successful process. Furthermore, the RL approach offers other
methods like double (van Hasselt et al. (2016)), dueling deep Q-
learning (Wang et al. (2016)) or deep deterministic policy gradi-
ent (Lillicrap et al. (2015); Liu et al. (2020)) with possibly faster
convergence. Application of the presented approach offers high
potential for industrial processes since computation times for
schedules can be decreased and more dynamic creation of
schedules is possible. Feasible schedules with a trained neural
network can be generated within short computation times. In
future works, we plan to test different learning algorithms and
integrate them into our production environment.
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