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Abstract. About 1,600 bio-geo-chemical Argo oats (BGC-Argo), equipped with
a variety of physical sensors, are currently being deployed in the ocean around
the world for proling the water characteristics up to a depth of 2,000 m. One of
the parameters measured by the Argo is the radiometric measurement of down-
ward irradiance, which is important for primary production studies. The multi-
spectral Ocean Color Radiometer measures the downwelling irradiance at three
wavelengths 380 nm, 412 nm and 490 nm plus the photosynthetically available
radiation (PAR) integrated from 400 nm to 700 nm. This study proposes a method
to reconstruct the PAR sensor values from readings of the remaining onboard sen-
sors, independent of the location the BGC-Argo is being deployed. This allows
for the PAR channel being replaced by a fourth band in the visible range. Stahl
et al. [1] have already shown, that a machine learning approach, based on a multi-
ple linear regression (MLR) or on a regression tree (RT), is capable of predicting
the PAR values based on other parameters measured by the physical sensors of
the BGC-Argo oat. In this study, a nonlinear Articial Neural Network (ANN)
was used for the prediction of PAR. The ANN achieved a better coefcient of
determination R2 of 0.9968, compared with the MLR approach, which achieved
an R2 of about 0.97 for a combined dataset consisting of measurements from three
different geographical locations. Therefore, it was concluded that the ANN was
better suited to generalise the underlying transfer function.

Keywords: BGC-Argo oat · Photosynthetically active radiation prediction ·
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1 Introduction

Due to a dramatic increase in environmental challenges, such as climate change and the
associated rise of the sea level, new methods for monitoring environmental parameters
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are needed to gain a better understanding of the complex interactions in the environ-
ment. Anthropogenic activities are rapidly changing the ocean, contributing to pollu-
tion, deoxygenation, ocean warming and the resulting rise in sea level [2, 3]. To monitor
these changes, modern operational oceanography uses numerous types of autonomous
platforms [4]. One of these autonomous platforms is the Argo oat [5–7]. Over 1,600
BGC-Argo oats have been deployed by June 2022.

A typical 10-day cycle mission of BGC-Argo oat is shown in the left part of Fig. 1.
It starts with a descent to a depth of 1,000 m and subsequently maintains this level while
drifting away due to the ocean’s currents. After nine and a half days, the oat dives up
to 2,000 m. After reaching the target level, the sensors begin to acquire data. When the
oat eventually resurfaces, it begins to transmit the data acquired via Iridium satellite
communication into the Argo network [6]. The transmitted Argo oat data is publicly
and freely available via two global data assembly centers (GDAC) typically within 24 h
(see Argo website https://argo.ucsd.edu).

Modern versions of BGC-Argo oats are, unlike older Argo oats with a three-sensor
setup, equipped with a variety of additional physical, chemical and bio-optical sensors
[8, 9]. Due to this increase in sensors, accompanied by data management and quality
control processes, demand for machine learning has been rising [9, 10].

Fig. 1. Left: A typical mission of a Biogeochemical-Argo (BGC-Argo) oat (adapted from [6]),
Right: BGC-Argo oats ready for deployment

The BGC-Argo community suggested to re-congurate the Ocean Color Radiometer
to dismiss the fourth channel, which is designed to record PAR, since this parameter could
potentially be predicted from the three remaining channels, which measure the intensity
of radiant energy at wavelengths at 380 nm, 412 nm and 490 nm, and the pressure. It
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was shown previously that both, MLR [11] and RT [12], are capable of reconstructing
the PAR sensor readings [1].

This study compares the machine learning algorithms recently utilized in [1] with a
new approach, based on ANNs.

2 Related Work

Due to its inuence on the botanical photosynthesis process, PAR plays a fundamental
role in modeling vegetation growth [13, 14]. Several studies have already shown that PAR
values can be predicted by using different meteorological and radiometric parameters.
López et al. [15] and Jacovides et al. [16] developed ANN models, which use global
irradiance and the solar zenith angle as inputs to estimate the global PAR. Jacovides et al.
achieved for their best model an accuracy of R2 0.979, whereas the best model trained by
López et al. achieved an accuracy R2 of about 0.999. Yu et al. [17] already showed that
both, ANN models and conventional regression models, can predict PAR on the surface
from incoming solar radiation and that the ANN models have a higher accuracy R2 of
about 0.999 compared with the regression models with R2 = 0.994. These results show
that the PAR radiant ux is strongly correlated with the broadband global radiant ux. In
these studies, PAR was predicted on the surface, using the global irradiance and the solar
zenith angle, whereas in this study only wavelengths in a specic narrowband together
with the pressure are used to predict PAR. A review of radiometric measurements on
Argo oats was recently published by Jemai et al. [18].

The BGC-Argo measured the PAR in the water column and has no information
about the solar zenith. Nevertheless, Stahl et al. [1] showed the correlation between the
irradiance under water at several spectral wavelengths and the PAR value.

The model by Stahl et al. [1] uses MLR and RT to estimate the PAR value on the
BGC-Argo with the irradiance of three other spectral wavelengths at 380 nm, 412 nm
and 490 nm.

3 Vertical Radiometric Measurement of the Water Column

One of the six essential variables measured by the BGC-Argo oat is the underwater
light eld [6]. The Ocean Color Radiometer (OCR-504) from SATLINC Inc./Sea-Bird
Scientic is used for measuring the downward irradiance at three bands 380 nm, 412 nm
and 490 nm plus PAR integrated from 400 nm to 700 nm [19]. It can be seen in the right-
hand side of Fig. 2 how the four sensors are arranged. These three wavelengths were
selected, because they are related to the main variations in underwater optical properties
[20, 21]. The information from the PAR sensor is commonly used to make predictions
about the light available for primary production in natural waters [22].
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Fig. 2. OCR-504 mounted on the BGC-Argo oat

In this study, the same dataset as in [1] was used to allow for a fair comparison of
the methods. Float data was collected and made freely available by the International
Argo Program and the national programs that contribute to it (http://www.argo.ucsd.edu
and http://argo.jcommops.org). Table 1 shows the datasets from the three different sites
used in this work. The sites can be identied by the World Meteorological Organization
(WMO) number. The WMO number also identies the platform type.

Table 1. Datasets

Identier Location No. of instances

WMO 7900585 North Atlantic 4,403

WMO 7900562 Mediterranean Sea 13,068

WMO 7900579 Baltic Sea 1,373

WMO 7900580 Baltic Sea 1,274

4 Data Interpretation

Each instance of each dataset consists of 7 attributes. The rst one indicates the cycle,
the second the current number of the cycle, the third the value of the pressure in dbar,
the fourth, fth and sixth contain the different wavelengths at 380 nm, 412 nm, 490 nm
and the seventh attribute represents the value of the PAR sensor.
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Due to errors in the datasets, for example missing values, the associated instances
were removed, leaving 1,331 instances in the WMO 7900579 dataset and 1,268 instances
in the WMO 7900580 dataset. No errors were found in the other two datasets. Figure 3,
4, 5 and 6 show the correlations of each sensor with the PAR sensor. It can be seen
that all sensor readings from all geographical locations, except for the pressure reading,
show a good correlation with PAR. It can also be seen for readings above 100 dbar
that PAR had low values. The reason for this is that light at this depth is fully absorbed
by the water [1]. The fact that the pressure does not correlate with the other sensors
was subsequently conrmed by the Institute for Chemistry and Biology of the Marine
Environment. Therefore, Stahl et al. [1] decided to exclude the pressure from their
modelling. In contrast to MLR and RT, ANNs are able to learn and interpret non-linear
relations [23]. Since a non-linear relationship between PAR and the remaining parameters
was expected, it was decided to use an ANN and to include the pressure values in the
training set.

Fig. 3. Correlation between PAR and Pressure
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Fig. 4. Correlation between PAR and 380 nm

Fig. 5. Correlation between PAR and 412 nm
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Fig. 6. Correlation between PAR and 490 nm

5 Architecture of the Developed ANN

The aim of this study was to establish whether an ANN is better suited for the general-
ization of the underlying relationships between PAR and the other parameters compared
with MLR or RT. All error-free instances were used for modelling. The wavelength
parameters at 380 nm, 412 nm and 490 nm and the pressure were used as the features
for training and the PAR as the target value.

For building the model, Python was used with the Matplotlib library (https://matplo
tlib.org) for visualization, Pandas (https://pandas.pydata.org) and Scikit-learn (https://
scikit-learn.org) for data pre-processing to detect and remove erroneous values from the
dataset and the Keras implementation of TensorFlow (https://www.tensorow.org/) for
implementing the ANN.

For testing the network, 30% of the data instances were randomly selected without
replacement and separated from the dataset as test data to guarantee that the ANN training
is not biased towards the test data. For the training phase, 20% of the training instances
were randomly selected without replacement for the validation set.

Figure 7 shows the topology of the ANN used. Since it was proven that feed-forward
networks with a single hidden layer are capable of approximating any given function
with any desired degree of accuracy [24], a three-layer feed forward ANN with one
input layer, which can take the four input features, one hidden layer with 100 nodes and
one output layer returns the predicted PAR value. The number of nodes in the hidden
layer were determined empirically. The rectied linear activation function was used in
the hidden-layer. For the training, Root Mean Squared propagation (RMSProp) with
a learning rate of 0.01was used. The Mean Absolute Error (MAE) was used as loss
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function. Each ANN was trained for 1,000 epochs, since the network tended to overt
when more epochs were used.

Fig. 7. Topology of the ANN

PAR =
m∑

j=1

(
max

(
0,

n∑

i=1

xi ∗ wi j ∗ learning rate

))
∗ wj PAR ∗ learning rate

with x1 = P, x2 = 380 nm, x3 = 412 nm, x4 = 490 nm, w = weights, learning rate = 0.01, n = 4, m = 100
(1)

Eq. (1) above shows how the neural network estimates the PAR value. The two weight-
matrices wij and wjPAR were determined by the ANN during the training phase. n and m
are equivalent to the input nodes and the hidden nodes.

6 Evaluation of the Articial Neural Network

Figure 8 depicts the correlation between the predictions and the ground truth for the test
sets for each trained ANN. The diagram in the top row on the left side shows the results
of the dataset from the North Atlantic (WMO 7900585) with an R2 value of 0.998 and
on the right side the Mediterranean Sea (WMO 7900562) with an R2 value of 0.999.
The row below the diagrams shows the results from the Baltic Sea. The dataset from the
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Fig. 8. Predicted vs. True PAR from each site

WMO 7900579 on the left side with a R2 value of 0.984 and on the right side the WMO
7900580 with a R2 value of 0.986. The diagram at the bottom shows the results for the
data combined from all 4 Argo oats. Here, the R2 value was 0.997.

When compared to MLR, the achieved R2 value for the combined dataset was approx-
imately 0.027 higher. This indicates that the ANN has generalised the underlying transfer
function better. The reason for that might be that in this work pressure was used as an
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additional input parameter for the ANN. In order to allow for a fair comparison with the
results from [1], another ANN was trained without using pressure as an input. It can be
seen from Table 2 that the performance degraded slightly when compared to the ANN
using pressure, but it performed still better or equal than MLR and RT, except for the
Baltic Sea Float 1 dataset.

Table 2. R2 values for the different models (MLR and RT from [1])

R2 values

Dataset ANN with pressure ANN without pressure MLR RT

Combined 0.997 0.987 0.970 0.960

Mediterranean Sea 0.999 0.998 0.997 0.989

Baltic Sea Float 1 0.984 0.977 0.981 0.973

Baltic Sea Float 2 0.986 0.983 0.983 0.963

Atlantic Ocean 0.998 0.997 0.996 0.988

7 Conclusion

Due to the purpose of replacing the PAR sensor with a fourth band in the visible range,
a method to reconstruct the PAR sensor values from readings of the remaining onboard
sensors, based on ANNs was proposed. These generalization properties of the com-
bined model developed make it possible to predict the PAR value independent of the
geographical location where the data was acquired, with high accuracy. This indicates,
that the environmental differences at those locations, for example salinity or turbidity,
have no effects on the model. Therefore, the PAR sensor can be replaced by fourth
band to measure the downward irradiance without losing the information about the
photosynthetically active radiation in the water column.

The next steps in this work are to further evaluate the ANN model with addi-
tional datasets collected from different ocean basins before nally using the model
operationally on the eet of Argo oats.
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