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Abstract. Identifying cells in microscopic images is a crucial step to-
ward studying image-based cell biology research. Cell instance segmenta-
tion provides an opportunity to study the shape, structure, form, and size
of cells. Deep learning approaches for cell instance segmentation rely on
the instance segmentation mask for each cell, which is a labor-intensive
and expensive task. An ample amount of unlabeled microscopic data is
available in the cell biology domain, but due to the tedious and exorbi-
tant nature of the annotations needed for the cell instance segmentation
approaches, the full potential of the data is not explored. This paper
presents a weakly supervised approach, which can perform cell instance
segmentation by using only point and bounding box-based annotation.
This enormously reduces the annotation efforts. The proposed approach
is evaluated on a benchmark dataset i.e., LIVECell, whereby only using a
bounding box and randomly generated points on each cell, it achieved the
mean average precision score of 43.53% which is as good as the full super-
vised segmentation method trained with complete segmentation mask.
In addition, it is 3.71 times faster to annotate with a bounding box and
point in comparison to full mask annotation.

Keywords: weakly supervised · cell segmentation · point annotation ·
deep learning.

1 Introduction

Cell segmentation is regarded as the cornerstone of image-based cellular research.
Studying cell migration, cell count, cell proliferation, cell morphology, cellular
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interactions, and cellular events like cell death are all possible with adequate
cell segmentation. Deep learning approaches for instance cell segmentation [3, 7,
8, 16, 17, 19, 20] are showing promising results, but they rely heavily on precise
full mask supervision for training. Manually annotating a groundtruth mask
for each cell is a very labor-intensive, expensive, complex, and time-consuming
task. For the natural object dataset like COCO [10], it takes on average 79.2
seconds per instance to create a polygon-based object mask. The bounding box
for the objects is approximately 11 times faster i.e., 7 seconds [13]. When it

Fig. 1. Point2Mask-based instance annotation combines object bounding boxes
with points that are sampled randomly inside each box and annotated as the cell (blue)
or background (red). We demonstrate that 6 annotated points per instance are faster
to collect than the standard cell masks and such groundtruth is sufficient to train the
proposed pipeline to achieve 99.2% of its fully supervised performance on the LIVECell
dataset.

comes to image-based cellular research, the LIVECell dataset [3] is the largest
dataset of its kind to date. LIVECell is composed of more than 1.6 million
cells. On average it contains more than 313 cells per image, which is way more
than any other label-free cell segmentation dataset [17, 19]. Some images in the
LIVECell dataset contain more than 3,000 cell instances, which can be overly
complex, time-consuming, and labor-intensive to manually annotate each cell
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Table 1. Annotation time for different supervision types on the LIVECell dataset.
Labeling as many as 6 points per cell instance instead of the fully supervised (segmen-
tation mask) annotation takes 26.96% of the total time spent on annotating the full
mask for each cell and is 3.71x faster, assuming that it takes 7 and 0.9 seconds to draw
the bounding box and point annotation respectively.

Annotation
supervision

Total time (sec)
(mask/bbox+points)

Percentage of time
spent on full mask

Times faster
than full mask (x)

Full mask 46 100% -

1-point 7.9 17.17% 5.82

2-point 8.8 19.13% 5.23

4-point 10.6 23.04% 4.34

6-point 12.4 26.96% 3.71

8-point 14.2 30.87% 3.24

10-point 16 34.78% 2.88

in a high cell density environment with overlapping cells. Annotating cells in
microscopic images is more challenging than the objects in natural images [10]
because cells overlap, and the cell boundaries are also very difficult to identify
in crowded images. When preparing LIVECell, it took 46 seconds on average
to create segmentation masks, which if we consider the total number of cells in
the training data for the LIVECell dataset is more than 13,213 hours spent on
annotating the masks.
It is important to mention that LIVECell dataset (which is the largest annotated
microscopic cell dataset) contains only 8 type of cells which is only a fraction
of more then 200 different cells types found in human body [14]. This means
that an ample amount of unlabeled image-based cellular data is available in the
cell biology domain, but due to the tedious and exorbitant nature of annotations
required for the cell instance segmentation approaches, the data is not being used
to its full potential. To boost the research in cell biology, it is pivotal to have high-
performing systems, which can accurately segment cells and for these methods, it
is necessary to have a large number of labeled datasets, which are unfortunately
labor-intensive. To tackle that issue, we have proposed a pipeline for weakly
supervised cell segmentation, Point2Mask, which considers the bounding box
for each cell and the point labels instead of the full mask. The point labels are
sampled randomly inside each bounding box as shown in Fig. 1. The annotation
required for the proposed Point2Mask can be divided into three steps. First, the
bounding boxes need to be drawn, which takes ∼ 7 seconds per cell. After that,
random point annotations inside each bounding box are automatically generated.
As the last step, random points generated inside each bounding box are classified
by an annotator as belonging to the foreground (cell) or background, which takes
around ∼ 0.9 seconds per point. Table 1 provides insights into the annotation
time required for different supervision types. If we only consider a single point
for each cell and the bounding box for training, it takes 17.17% of the total time
spent on the full mask annotation for all the cells in the LIVECell dataset and
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is 5.82x faster. For 6 points per cell type, it takes 26.96% of the fully supervised
annotation time. The main contributions of this study are as follows:

1. An end-to-end pipeline for weakly supervised point-based cell segmentation
using Mask R-CNN [5], Feature pyramid Network with ResNet-50 [6], and
bilinear interpolation.

2. Extensive evaluation of the proposed method by increasing point labels
for each cell instance to analyze the impact on the performance. Achieved
96.51% to 99.16% of the fully supervised performance using Point2Mask
weakly supervised cell segmentation with only 1- to 6-points label per cell
instance with a significant reduction in the time required for annotating the
data for training.

3. Performed per cell type evaluation to analyze the relationship between the
morphological characteristics of different cell cultures like size and the num-
ber of point labels required.

2 Related Work

Deep learning-based cell segmentation has evolved drastically in the last decade
with the development of the U-net proposed by Ronneberger et al. [16] in 2015.
With only 35 images trained U-net model, it outperformed all the other contes-
tants in the 2015 ISBI cell tracking and segmentation challenge. The success of
U-net prompted a chain of valuable research in the image-based cellular research
with the development of algorithms like DeepCell [22] and Usiigaci [20]. Khalid
et al. (2021) [7] proposed a pipeline for cell and nucleus segmentation using the
EVICAN dataset [17]. Edlund et al. (2021) proposed anchor-free and anchor-
based pipelines for the cell segmentation using the LIVECell dataset [3]. Khalid
et al. (2021) [8] proposed a pipeline to perform cell-type aware segmentation in
microscopic images using the EVICAN dataset.
Weakly supervised cell segmentation is an active area of research with many
different variations of the weak supervision i.e., image tags [25, 12], points [24,
2], missing annotations [4]. Zhou et al. (2018) [25] proposed a promising method
for weakly supervised instance segmentation using only class labels of objects
appearing in an image. Although this work does not primarily concern itself with
cell instance segmentation but object segmentation in general, the approach was
also tested on microscopy images and some underlying ideas were developed
further to fit the domain [12]. In this method, image regions that produce a
particularly high prediction response for a class called class peak responses are
backpropagated through a network and mapped to object regions that are high
in information. This procedure then allows for full instance masks to be retrieved.
Another popular method to make use of weak labels for cell segmentation is using
point annotations instead of full pixel-wise mask annotations. Zhao et al. (2020)
[24] propose weakly supervised training schemes that only use point annotations
to achieve results comparable to those of fully supervised models. In their pa-
per, they propose three distinct methods and compare them to several baseline
methods, such as U-Net [16] and the Pyramid-Based fully convolutional network
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[18]. The first approach, a self-training scheme, updates the output segmentation
mask by feeding back the current prediction of the network. For this task, the
network is pre-trained using the initial point annotations and a cross-entropy
loss, and then a self-training loss is introduced which composes the network’s
previous prediction with the previous label and uses it as a new label in a feed-
back loop. The second approach is a co-training scheme that uses two subsets
of the initial dataset and self-trains two networks on them separately. The re-
sulting models then supervise each other’s learning process, guided by a newly
defined co-training loss that combines the predictions of both models. A third ap-
proach is a hybrid approach, leveraging the advantages of the better-converging
self-training approach and the potentially better segmentation results of the co-
training scheme. Guerrero-Pena et al. (2019) [4] introduce a method to tackle
the frequent problem of missing or incorrect annotations in microscopy images.
The method introduced in the paper proposes three key points to improve the
effectiveness of deep learning models when trained on incomplete annotation.
The first point is to introduce a loss function that helps separate cells by op-
erating in three distinct classes and classifying underrepresented regions. The
second point is introducing a weight-aware map model which is especially useful
for contour detection and generalization. The third point consists of data aug-
mentation specifically crafted for the weaknesses of a typical microscopy dataset,
i.e. strengthening potentially weak signals on edges by adjusting the intensity of
regions that contain shared edges of multiple cells.
All these approaches for weakly supervised cell segmentation are trained on small
scale datasets like the PHC [11, 21] and Phase100 [23] dataset used in [24], con-
tains 230 and 100 images respectively. This amount of data is too small to enable
a trained CNN (Convolutional Neural Network) model to generalize to images
beyond its training dataset or for a valid comparison between different supervi-
sion approaches. In addition to that, these approaches for weakly supervised cell
segmentation are overly complex.

3 Point2Mask: The Proposed Approach

Fig. 2 provides a system overview of our Point2Mask weakly supervised cell
segmentation approach. The proposed pipeline is composed of Feature Pyramid
Network [9] with ResNet-50 [6], Region Proposal Network, and Mask R-CNN [5]
as the prediction head, which is detailed below.

3.1 Backbone Network for Feature Extraction

The purpose of this block is to extract feature maps from the input image at
different scales. The feature extraction module of the proposed methodology is
composed of Feature Pyramid Network [9] along with ResNet-50 [6]. Feature
Pyramid Network (FPN) extracts features from the images using a pyramid
scheme. It utilizes deep convolutional networks (CNNs) for computing features.
FPN combines low resolution, semantically strong features with high resolution,
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Fig. 2. System overview of the Point2Mask pipeline for weakly supervised cell segmen-
tation. Input image is passed to the proposed pipeline and the output image with cell
detection and segmentation is produced.

semantically weak features. It takes a single-scale image as an input and outputs
feature maps of proportional size at multiple levels by operating on a bottom-up
pathway, top-down pathway, and lateral connections. The bottom-up pathway
uses a normal feed-forward CNN architecture to compute a hierarchy of features
consisting of feature maps at various scales. The output of each CNN layer is
used later in the top-down pathway via lateral connections. The output of each
convolution layer of ResNet-50 is used in the top-down pathway which constructs
higher resolution layers from the semantic rich layer. As the final task, the FPN
applies a 3x3 convolution operation on each merged map to overcome the aliasing
effect after the upsampling to generate the final feature map.

3.2 Region Proposal Network for Cell Region Detection and
Groundtruth Matching

Following the extraction of multi-scale features from the backbone network, these
features are then passed onto a Regional Proposal Network (RPN) [15]. The
primary focus of RPN is to detect regions that contain objects and match them
to the groundtruth. This process is performed by generating anchor boxes on the
input image which are then matched to the groundtruth by taking Intersection
over Union (IoU) between anchors and groundtruth. If IoU is larger than the
defined threshold of 0.7, the anchor is linked to one of the groundtruth boxes and
assigned to the foreground. If the IoU is greater than 0.3 and smaller than 0.7, it
is considered background and otherwise ignored. The anchor strides and aspect
ratio parameter used to detect and segment objects in MS-COCO[10] dataset
overlooks most of the small cell instances when transferred to this task. Unlike
MS-COCO [10] and other commonly used image datasets, the area of some cells
especially BV-2 cell culture in the LIVECell[3] dataset is exceedingly small.
After extensive experimentation, the anchor sizes and anchor aspect ratios were
selected that fit adequately for the task. The details about the anchor parameters
are given in Section 6. Now that we have the anchor boxes which are assigned to
the foreground having shapes like the groundtruth boxes, the next step is anchor
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deltas calculation which is the distance between groundtruth and anchors. At
the final stage of RPN, we choose 3,000 region proposal boxes from the predicted
boxes by using non-maximum suppression[1].

3.3 Prediction Head

After the successful generation of proposals, the next block in our pipeline is the
prediction head. At the prediction head, we have groundtruth boxes, proposal
boxes from RPN, and feature maps from FPN. The job of the prediction head is
to predict the class, bounding box, and binary mask for each region of interest.
We are using Mask R-CNN [5] as the prediction head, which is an extension of
Faster R-CNN [15] by adding a mask branch. Faster R-CNN gives two outputs for
each object in an image, classification of the object in an image, and a bounding
box around the object. In Mask R-CNN, a third branch is added that outputs an
object mask in addition to the other two outputs. The extra branch is composed
of Fully Convolutional Network (FCN) which predicts the mask for each RoI in
a pixel-to-pixel manner.
In a fully supervised training setting with a mask available for each cell, Mask R-
CNN is trained by extracting a matching regular grid of labels from groundtruth
masks. On the contrary, for point supervision, predictions are approximated in
the locations of groundtruth points from the prediction on the grid using bilinear
interpolation (see Fig. 3). Bilinear interpolation is a resampling method that
estimates a new pixel value by using the distance weighted average of the four
nearest pixel values. When we have prediction and the groundtruth labels at the
same points, similar loss as with full supervision can be applied and its gradient
will be propagated with bilinear interpolation. Once we have predictions and
groundtruth labels at the same points, a loss can be applied in the same way
as with full supervision and its gradients will be propagated through bilinear
interpolation. In our experiments, we use cross-entropy loss on points.

4 Dataset

LIVECell dataset [3] has been used in this study, which is the largest fully anno-
tated dataset in image-based cellular research. It contains more than 1.6 million
cells in 5,239 images. The images in the dataset are from eight morphologically
distinct cell cultures. On average, the LIVECell dataset contains 313 cells per
image which is exceedingly high as compared to the EVICAN dataset [17], which
contains an average of 5.7 cells per image. That is the reason we opted for the
LIVECell dataset for this study. LIVECell train set contains 3,188 images with
over 1.03 million cell instances. The validation and the test data contain 539 and
1,512 images with 1,84,371 and 4,67,874 instances, respectively.
For fully supervised training, original LIVECell data with full masks are used
for training. For Point2Mask, the mask from the LIVECell dataset is discarded
and six different point labels (1, 2, 4, 6, 8, 10) are generated automatically and
randomly for each cell of the training data. The point can either be on the cell
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Point outside

Cell
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Fig. 3. Point2Mask supervision illustration. For a 6x6 prediction mask on the
regular grid (green color indicates foreground prediction i.e, cell), the predictions are
obtained at the exact location of the groundtruth points (Cell and the background
groundtruth points are indicated by red and blue respectively) with bilinear interpo-
lation. The cell contour line is only for illustration purposes.

or anywhere inside or on the edge of the bounding box. If the point annotation
is on the cell, it is assigned a point label of 1, and otherwise 0.

5 Evaluation Metrics

To evaluate the performance of the proposed pipeline we are following the stan-
dard COCO evaluation protocol[10] with some modifications as reported in [3]
for the area ranges. Average Precision (AP) is the precision averaged across
all unique recall levels. Mean Average Precision (mAP) is the mean of aver-
age precision across all N classes. For the evaluation, we have reported mean
average precision for both object detection and segmentation tasks at different
IoU thresholds of 0.5 (mAP50), 0.75 (mAP75), and 0.5:0.95 in the steps of 0.05
(mAP). To identify the performance of the model on objects of varied sizes, we
have also included mAP for different area ranges. Objects with area less than
320 µm2 (corresponding to 500 pixels) belong to APs (small). APm (medium)
is for the objects in area ranges of 320µm2 to 970 µm2 (corresponding to 1500
pixels) and APl (large) is for objects with area larger than 970 µm2.

6 Experimental Setup

We have designed two different experimental settings to evaluate the perfor-
mance of the proposed pipeline for the point-supervised weak cell segmentation.



Point2Mask: A Weakly Supervised Approach for Cell Segmentation using Point Annotation 9

In the first experimental setting, namely point2Mask vs fully supervised method
and impact of validated annotated points, we have performed several experi-
ments with different annotation supervisions using the LIVECell dataset. In the
second experimental setting, namely impact of validated annotated points on
different cell cultures, the models trained in the first experimental setting under
different annotation supervisions are evaluated on test sets of individual cell cul-
tures to analyze the performance of the different numbers of point annotations
for each cell culture.
Training for all the experiments used a stochastic gradient descent-based solver
with a base learning rate of 0.02 and momentum of 0.9. The anchor sizes and
aspect ratios for all settings were set after careful consideration of the cell’s pixel
area in the images. Anchor sizes and aspect ratios were set to 8, 16, 32, 64, 128,
and 0.5, 1, 2, 3, 4 for all the settings, respectively. The checkpoints for evaluation
were chosen based on the higher validation average precision.
The pixel means and pixel standard deviation for the dataset were calculated
as 128 and 11.58, respectively. For data augmentation, images are flipped hori-
zontally on a random basis to reduce the risk of over-fitting. All training used
multi-scale data augmentation, meaning that image sizes were randomly changed
from the original 520×704 pixels to size with the same ratios, but the shortest
side was set to one of (440, 480, 520, 580, 620) pixels.

6.1 Point2Mask vs Fully supervised method and impact of validated
annotated points

In this experimental setting, the objective is to perform weakly supervised cell
segmentation for different point annotations as well as fully supervised cell seg-
mentation with a full mask for each cell. All the experiments are performed
under the same settings. For point-supervised cell segmentation, six different
training experiments are performed with 1-,2-,4-,6-,8-, and 10-point labels per
cell instance instead of a full mask.
The checkpoints at 3,000 have been chosen for 1-, 10-points, and full mask train-
ing settings, and 2,9500 for 4-,6-, and 8-point training settings on the basis of
higher validation average precision.

Results Table 2 shows the overall detection and segmentation average precision
scores of the proposed pipeline on the LIVECell dataset. For the full mask super-
vision setting, we are getting detection and segmentation AP scores of 43.12%
and 43.90% respectively. The area ranges scores show that the model is per-
forming best for the cells of larger areas. For the 1-point supervision, we are
getting AP scores of 42.67% and 43.27% for detection and segmentation tasks,
respectively. 1.01% improvement in performance is seen for 2-point supervision
in comparison to the 1-point supervision. Similarly, 1.01% gain in performance
is achieved for the 4-point supervision as compared to the 2-point supervision.
For the 6-point supervision, we are getting the best results with an AP score of
43.53% for segmentation. For the 8- and 10- point supervision, we are getting a
decline in the performance for cell segmentation.
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Table 2. Overall detection and segmentation results on different Intersection over
union threshold and area range for full mask supervision and N -point supervision.
The best results are represented in bold.

AP AP50 AP75 APs APm APlTrain
supervision Det. Seg. Det. Seg. Det. Seg. Det. Seg. Det. Seg. Det. Seg.

Full mask 43.12 43.90 78.94 78.07 43.26 45.75 44.31 42.30 43.01 43.33 47.01 51.92

1-point 42.67 42.37 78.71 77.58 42.46 42.96 43.91 41.33 42.16 41.37 46.19 48.64

2-point 42.75 42.86 78.49 77.62 42.81 43.79 43.95 41.53 42.81 42.30 46.61 50.38

4 points 43.01 43.17 79.50 77.91 42.96 44.60 43.97 41.68 43.07 42.77 47.24 51.40

6 points 43.32 43.53 79.69 78.18 43.31 44.93 44.54 42.06 43.31 43.31 46.97 51.52

8 points 42.97 43.41 78.86 78.00 43.18 44.83 43.95 41.83 42.54 42.77 46.94 51.44

10 points 42.93 43.40 78.71 77.97 43.10 44.81 44.12 41.80 42.81 43.04 47.01 51.65

6.2 Impact of validated annotated points on different cell cultures

In this experimental setting, we are mostly concerned with finding the inter-
link between the morphological properties of the cells and the number of point
annotations required for each different cell culture. The models trained in ex-
perimental setting 1 are evaluated on the individual test set of each cell culture.

Table 3. Per class mask average precision results for full mask supervision and N -
point supervision. The best results are represented in bold.

Train
supervision

A172 BT-474 BV2 Huh7 MCF7 SH-SY5Y SkBr3 SK-OV-3

Full mask 35.45 38.13 52.88 49.90 34.66 21.56 65.20 50.67

1-point 33.39 37.24 51.99 46.98 33.64 19.26 64.03 47.29

2-point 34.80 37.43 51.97 48.89 34.07 20.55 64.08 48.97

4-point 35.17 37.97 52.23 49.61 34.07 20.92 64.65 49.82

6-point 35.26 38.78 52.20 49.57 34.91 21.32 64.80 49.82

8-point 35.11 37.67 52.27 49.65 34.29 21.08 64.52 49.83

10-point 35.18 38.01 52.13 49.76 34.31 21.61 64.66 50.21

Results Table 3 gives insights into per class AP scores for different point-
supervised training settings. For the cell culture A172 and BT-474, the best
performance is achieved by 6-point supervision. When we analyze the area of the
A172 cells in the LIVECell dataset, it is observed that more than 50% of the cells
belong to the medium area range (320µm2 to 970µm2). The best performance
is achieved by the 10-point supervision for the cell cultures Huh7 and SK-OV-3
because more than 48% and 59% of the cells in these cell cultures respectively
have cells in a large area range (larger than 970 µm2). For the cell culture BV-2,
the best performance is seen across the 6-point supervision, but the interesting
thing to notice is that for the 1-point supervision, we are getting 99.5% of 6-
point annotation performance with 6x less time spent on the annotation. From
these observations, we can conclude that the morphological characteristics like
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the size of the cells in the dataset can give insights into how many points are
enough to achieve the best performance for each cell culture.

7 Analysis and Discussion

Fig. 4. Training with a different number of points. Proposed approach trained
on LIVECell with as few as 6 labeled points per cell instance (P6) achieves 43.53%
mask AP with decline in the score for more labeled points.

In this section, we discuss the results of the point-supervised weak cell seg-
mentation pipeline for both experimental settings. In experimental setting 1
(Point2Mask vs Fully supervised method and impact of validated annotated
points), 6 different points and full mask annotation were used for training. Re-
sults in Table 2 show that we have achieved 96.51% to 99.16% of the fully super-
vised performance by using weakly supervised cell segmentation with only 1- to
6-points label per cell instance with a significant reduction in the time required
for annotating the data for training. Fig. 4 presents the mask AP scores on the
LIVECell test set with a different number of points used for training. For the
1-point supervision (P1), we have achieved a mask AP score of 42.37%, which
is 96.51% of the fully supervised trained model performance under the same
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Fig. 5. Inference results using the models trained on the different number of point
annotations and full mask. The solid yellow line represents the groundtruth mask for
each cell and the dotted red line represents the prediction made by the model. The
red, green, blue, and purple columns represent the inference results obtained from
the models trained on 1,2,6,10-point annotations and full mask respectively. Each row
represents the inference result from an image from different cell culture.

settings. Similarly, for 2- (P2) and 4-point supervisions (P4), we have achieved
97.63% and 98.34% of the full supervision performance. For the 6-point supervi-
sion (P6), we have achieved the best performance in terms of mask AP with the
score of 43.53%, which is 99.16% of the fully supervised performance. For the 8-
(P8) and 10-point(P10) supervision, the performance starts to decline compared
to 6-point(P6) with mask AP scores of 43.41% and 43.40% respectively.
In experimental setting 2 (Impact of validated annotated points on different cell
cultures), we aimed to find the connection between the morphological charac-
teristics of the cells and the N point supervision required to get the optimal
performance. From the analysis of the results in Table 3, it can be seen that for
the cultures which contain cells in the small area ranges like BV2, minimal point
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supervision yields optimal results. For the cells in the medium area ranges like
A172, BT-474, and SkBr3, the best performance is achieved with 6-point super-
vision. Similarly, 10-point supervision outputs the best performance for the cell
cultures in large area ranges like Huh7 and SK-OV-3. These findings can help
the annotators and the biologists in targeted point annotation according to the
morphological characteristics of the different cell cultures.
Fig. 5 shows the inference results on some samples using the models trained on
the different number of point annotations and full mask. The solid yellow lines
are the groundtruth mask for each cell and the dotted red lines are the pre-
dictions made by the model. The red, green, blue, and purple columns are the
inference results obtained from the models trained on 1-,2-,6-,10-point annota-
tions, and full mask, respectively. Each row shows the qualitative performance
of different supervisions on the identical image from different cell culture for
comparison. AP50 on top of every prediction sub-image is the segmentation av-
erage precision score at the IoU threshold of 0.5. For the image in the first row
belonging to cell culture A172, the 1-point supervision model performs best with
an AP50 score of 97.29%. The best performance for the image in the second row
(BV-2) is seen across the model trained with 6-point supervision. For the image
in the third row belonging to the SH-SY5Y cell culture, the best performance is
recorded against the 10-point supervision model. The last 2 images in the fourth
and the fifth row belong to SkBr3 cell culture. The best performance for both
the images can be seen against the model trained on 1- and 6-point supervision,
respectively.
We have achieved close to the full supervision performance by reducing the time
required to annotate the data by a significant amount compared to the full mask
annotation. In this study, quality assurance time has not been considered for
both the full mask and the point annotations. Quality assurance for point labels
in overlapping cells in crowded images can sometimes take more time than draw-
ing the full mask. Even with the 1-point supervision for training, we are getting
more than 96% of the fully supervised performance. As explained earlier, anno-
tation of cells in microscopic images is a very labor-intensive and expensive task
and requires expert knowledge of the biomedical staff. One single image of the
cell culture BV2 can contain up to 3,000 cell instances, which can be very time-
consuming and complex to annotate. With the help of the proposed pipeline,
we can annotate the data semi-automatically by using the proposed pipeline for
weakly supervised cell segmentation to generate a mask for each cell, which can
then be improved by the annotators in case of false positive or missed detection.
Also, the findings of experimental setting 2 can help us decide how many point
annotations are required for specific cell culture according to its morphological
properties.

8 Conclusion

In this study, we have proposed a pipeline for weakly supervised cell segmentation
using point annotations. Point2Mask generates a mask for the cell, providing just
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the bounding box and the point labels. With the help of the proposed pipeline,
we have achieved 99.16% of the fully supervised performance with just 6-point
labels instead of drawing a full mask. With only 0.84% loss in the performance
compared to the fully supervised setup, significant amount of time required for
the fully supervised training can be saved. The performance achieved for a 1-
point label per cell instance e, 96.51%, is still adequate and can save an ample
amount of time spent on labeling the full mask for each cell. The findings of
this paper can help biologists and doctors to save enough time in labeling the
data and can expedite the field of medicine and disease diagnosis to a great
extent. With the help of the results in this study, we have proved that we can
not only reduce the time and the cost required for the full annotation, but we
can also reduce the amount of expert knowledge required from the biologists
to draw the boundaries of each cell. An abundant amount of unlabeled image-
based cellular data is available, which can be semi-automatically annotated using
the proposed pipeline for weakly supervised cell segmentation. Furthermore, we
have also pointed out the relationship between morphological characteristics
of different cell cultures and the number of point annotations required. These
findings can help biologists to design the targeted point annotation for specific
cell cultures.
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