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Abstract—Discrimination between cell types in the co-culture
environment with multiple cell lines can assist in examining
the interaction between different cell populations. Identifying
different cell cultures in addition to cell segmentation in co-
culture is essential for understanding the cellular mechanisms
associated with disease states. In drug development, biologists
are more interested in co-culture models because they replicate
the tumor environment in vivo better than the monoculture
models. Additionally, they have a measurable effect on can-
cer cell response to treatment. Co-culture models are critical
for designing a drug with maximum efficacy on cancer while
minimizing harm to the rest of the body. In the past, there
existed minimal progress related to cell-type aware segmentation
in the monoculture and no development whatsoever for the co-
culture. The introduction of the LIVECell dataset has allowed
us to perform experiments for cell-type-aware segmentation.
However, it is composed of microscopic images in a monoculture
environment. This paper presents a framework for co-culture
microscopic image data generation, where each image can contain
multiple cell cultures. The framework also presents a pipeline
for culture-dependent cell segmentation in co-culture microscopic
images. The extensive evaluation revealed that it is possible to
achieve cell-type aware segmentation in co-culture microscopic
images with good precision.

Index Terms—biomedical, healthcare, deep learning, cell seg-
mentation, co-culture

I. INTRODUCTION

In drug development, biologists are interested in co-culture
models because they have a measurable effect on cancer
cell response to treatment. In the study [1], prostate cancer
cell proliferation is inhibited by several different drugs in
monoculture, but to a lesser extent in co-culture with stromal
cells. This suggests that monoculture conditions alone are
insufficient to select a suitable treatment for prostate cancer,
making co-culture much more relevant for drug discovery.
Deep learning-based approaches are showing promising results
in microscopic image analysis [2]–[4] and datasets to train
instance segmentation models in monoculture environments,

such as EVICAN60 [5] and LIVECell [3], are now available
to further explore deep learning-based approaches for cell-type
aware segmentation. In the cell biology domain, there is no
co-culture microscopic dataset and method available. To tackle
that issue, this paper presents a pipeline to generate multiple
subsets of synthetic co-culture microscopic images using the
LIVECell dataset.
Compared to multi-class segmentation in natural images [6],
segmenting multiple cell types in microscopic images suffer
from certain challenges including low contrast as well as
irregularly shaped and overlapping cells of different cell types,
making segmentation challenging. Multiple cell types in the
same microscopic image can possess comparable properties
like low contrast, overlapping cells, and unclear boundaries.
In the proposed pipeline, parameters for features extraction and
anchor sizes are proposed to detect, segment, and classify dif-
ferent cell cultures with good precision using variations of the
LIVECell [3] dataset. We propose DeepMuCS: a framework
for co-culture microscopic image analysis. DeepMuCS frame-
work is further divided into two modules i.e., for synthetic co-
culture microscopic data generation (DeepMuCS-Generation)
and to perform cell type-aware segmentation in co-culture
microscopic images (DeepMuCS-Segmentation). The main
contributions of this study are as follows:

• A framework to generate co-culture microscopic images,
and deep learning based cell type-aware segmentation in
co-culture environment.

• Extensive evaluation of proposed method using different
variations of the LIVECell [3] dataset.

II. DEEPMUCS-GENRATION: PROPOSED CO-CULTURE
MICROSCOPIC DATA GENERATION PIPELINE

Fig. 1 provides a system overview of the proposed co-
culture microscopic data generation pipeline. Synthetic co-
culture images are generated using the original LIVECell
dataset. Initially, cell instances from different cell cultures are
extracted using their segmentation annotations. Backgrounds
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Fig. 1: System overview of DeepMuCS-Generation. Images from different cell cultures are passed to the proposed pipeline,
which outputs the co-culture images.

are generated by initially filtering out the cells from the
original images. Subsequently, noise artifacts are extracted
from the original images and pasted on the filtered image on
a random basis to make the synthetic images realistic. As a
last step, extracted cell instances from different cell cultures
are pasted on the generated background images to obtain the
synthetic co-culture images.

III. DEEPMUCS-SEGMENTATION: PROPOSED CELL
SEGMENTATION PIPELINE FOR CO-CULTURE

MICROSCOPIC IMAGES

Fig. 2 provides a system overview of the proposed cell
segmentation pipeline for co-culture microscopic images. The
pipeline is divided into three blocks.

A. Feature Extraction

The purpose of this block is to extract feature maps from
the input image at different scales. The feature extraction
module of our proposed methodology is composed of Feature
Pyramid Network (FPN) [7] along with ResNeSt-200 [8].
FPN combines the low resolution, semantically strong features
with high resolution, semantically weak features. It takes a
single-scale image as an input and outputs feature maps of
proportional size at multiple levels by operating on a bottom-
up pathway, top-down pathway, and lateral connections. The
bottom-up pathway uses a normal feed-forward CNN architec-
ture to compute a hierarchy of features consisting of feature
maps at various scales. The output of each CNN layer is used
later in the top-down pathway via lateral connections. We are
using ResNeSt-200 [8] with deformable convolution [9] as
a feed-forward CNN architecture in the bottom-up pathway
of our approach. The output of each convolution layer of
ResNeSt is used in the top-down pathway which constructs
higher resolution layers from the semantic rich layer. As the
final task, the FPN applies a 3x3 convolution operation on
each merged map to overcome the aliasing effect after the
upsampling to generate the final feature map.

B. Object Region Detection and Groundtruth Matching

Multi-scale features from the backbone network are passed
onto a Regional Proposal Network (RPN), which detects

regions that contain objects and matches them to the
groundtruth. This process is performed by generating anchor
boxes on the input image which are then matched to the
groundtruth by taking Intersection over Union (IoU) between
anchors and groundtruth. If IoU is larger than the defined
threshold of 0.7, the anchor is linked to one of the groundtruth
boxes and assigned to the foreground. If the IoU is greater than
0.3, it is considered background and otherwise ignored. The
anchor strides and aspect ratio parameter used to detect and
segment objects in MS-COCO [6] dataset overlooks most of
the small cell instances when transferred to this task. Unlike
MS-COCO [6] and other commonly used image datasets,
the area of some cells especially BV-2 cell culture in the
LIVECell [3] dataset is exceedingly small. After extensive
experimentation, the anchor sizes and anchor aspect ratios
were selected that fit the task. The details about the anchor
parameters are given in Section V.

C. Prediction Head

The job of the prediction head is to predict the class,
bounding box, and binary mask for each region of interest.
We are using Cascade Mask R-CNN [10] as the prediction
head, which is an extension of Cascade R-CNN by adding a
mask branch to the cascade. Cascade Mask R-CNN addresses
the problem of making predictions that are more accurate on
a pixel level. Cascade Mask R-CNN [10] is a multi-stage
network with the IoU threshold increasing for each stage
to refine the final output. In the proposed methodology, the
segmentation branch is added at the last stage of the Cascade
R-CNN. The box head classifies the object within the ROI
and fine-tunes the shape and position of the box. The mask
head is composed of a small Fully Convolutional Network
(FCN) applied to each ROI, which predicts a segmentation
mask in a pixel-to-pixel manner to achieve the task of instance
segmentation.

IV. DATASET

In the cell segmentation domain, all datasets either have
images for one cell culture or do not differentiate between
different cell cultures. Only two datasets have multiple cell
lines in the monoculture microscopic images i.e., EVICAN60
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Fig. 2: System overview of DeepMuCS-Segmentation. Input image is passed to the proposed pipeline and the output image
with cell-type aware detection and segmentation is produced.

[5] and the LIVECell [3]. EVICAN60 dataset is partially
annotated and the instances per class are exceptionally low
[4]. LIVECell dataset, on the other hand, consists of 5,239
fully annotated, expert-validated, phase contrast microscopy
images with a total of 1,686,352 individual cells annotated
from eight different cell cultures. That is the reason we opted
for the LIVECell dataset for this study. Synthetic co-culture
images are generated using the original LIVECell dataset as
described in Section II. We have generated three different sub-
sets for training namely DeepMuCS800, DeepMuCS1600, and
DeepMuCS4000, each containing 800, 1600, and 4,000 images
with 10,137, 19,826, and 49,613 cell instances, respectively.
The validation and test sets are composed of 570 and 1,564
images, containing 7,120 and 19,408 instances, respectively.

V. EXPERIMENTAL SETUP

Different subsets of synthetic co-culture images are used
for training. The same validation and test set is used for
the evaluation of all the models trained on different training
subsets. Training for all the experiments is performed with a
base learning rate of 0.02 and momentum of 0.9. Anchor sizes
and aspect ratios were set to 8, 16, 32, 64, 128, and 0.5, 1, 2,
3, 4 for all the settings, respectively.
Evaluation Metrics: To evaluate the performance of the pro-
posed pipeline we are following the standard COCO evaluation
protocol [6] with some modifications as reported in [3] for
the area ranges. Mean average precision (mAP) is reported at
different IoU thresholds i.e., mAP50 and mAP75, and on three
different area ranges i.e., mAPs, mAPm, and mAPl.
Results: Table I gives the overall detection and segmentation
mAP scores averaged over all the eight-cell classes for the
different training subsets. For the model trained on Deep-
MuCS800, mAP scores of 70.17% and 69.31% are achieved
for detection and segmentation, respectively. By increasing
the images and cell instances in DeepMuCS1600, the model
performs approximately 7% better in terms of detection and
segmentation mAP. Further increasing the data for training
in DeepMuCS4000, the detection and segmentation scores
improve by around 1%.
Per class evaluation results for the models trained on the
three different synthetic co-culture training subsets show that
as the training data increases, the performance across all the
eight-cell culture classes improves. For the DeepMuCS800,
the best segmentation mAP score is achieved for the cell

culture SkBr3 (77.86), followed by A172 (76.15). The worse
performance in terms of segmentation mAP is seen for BV-2
(60.11) followed by SH-SY5Y (62.81). The best performance
in terms of segmentation mAP for the DeepMuCS1600 trained
model is seen across the cell culture A172 followed by SkBr3
and the worse performance is recorded against the cell culture
SH-SY5Y. Similar to DeepMuCS1600, the best performance is
seen for the cell culture A172 (83.24) in terms of segmentation
mAP, and the worst performance is detected for SH-SY5Y
(70.63).

VI. ANALYSIS AND DISCUSSION

This section discusses the results of the culture-dependent
cell segmentation in co-culture using the DeepMuCS frame-
work. It can be seen from Table I that by increasing the images
and cell instances for each cell culture, the segmentation
performance increases. These results manifest the potential of
the proposed framework for cell type-aware segmentation in
a co-culture environment in the microscopic images.
Fig. 3 shows the inference results on some samples where
our proposed pipeline performed adequately and inadequately.
The left column shows adequate results, and the right col-
umn represents the inadequate results. The red, blue, and
green background around each image depict the results
for DeepMuCS800, DeepMuCS1600, and DeepMuCS4000
trained models, respectively. The AP50 on top of every pre-
diction sub-image is the segmentation average precision score
at IoU threshold of 0.5.
First row in the adequate column represents the results for
the model trained on DeepMuCS800. The groundtruth of the
image contains a total of 18 cell instances from four different
cell cultures i.e., MCF-7, SkBr3, BT-474, and SH-SY5Y. All
the cell instances are accurately detected, segmented, and
classified according to their cell culture, hence the AP50 score
of 100%. In the second row, we have adequate results for
the DeepMuCS4000. It can be observed that all instances
are correctly predicted. In the inadequate column, we have
the results for the DeepMuCS800 trained model in the first
row. The groundtruth for the image contains 16 cell instances
from 4 different cell cultures. The model on a few occasions
confused the cell cultures SH-SY5Y and SkBr3, hence the
AP50 score of 61.0%. For the DeepMuCS1600 results, all the
cell instances are correctly segmented by the model, but on one
occurrence it confused the SH-SY5Y cell instance for MCF7,
hence the AP50 score of 66.7%.



TABLE I: Overall detection and segmentation results on different Intersection over union threshold and area ranges.

Train dataset mAP mAP50 mAP75 mAPs mAPm mAPl
Det. Seg. Det. Seg. Det. Seg. Det. Seg. Det. Seg. Det. Seg.

DeepMuCS800 70.17 69.31 84.38 87.53 79.07 83.92 64.72 59.37 75.04 75.00 61.32 81.44
DeepMuCS1600 77.22 76.14 90.18 93.45 85.54 90.94 76.97 70.63 80.82 79.97 64.63 84.12
DeepMuCS4000 78.84 77.04 90.65 94.09 86.62 91.63 77.00 71.63 82.33 80.93 66.58 84.67

DeepMuCS800

AP50 = 100.0 AP50 = 61.0

AP50 = 66.7AP50 = 100.0

Groundtruth GroundtruthPrediction Prediction
Adequate Results Inadequate Results

DeepMuCS1600 DeepMuCS4000

Fig. 3: Inference results of some samples where DeepMuCS-Segmentation trained models performed adequately and
inadequately. The red, blue, and green background around each image depict the results for different trained models.

VII. CONCLUSION

DeepMuCS provides a method to detect, segment, and
classify each cell instance in the co-culture microscopic
images, which helps better quantification of individual cell
appearance and behavior of different cell cultures. We have
validated with the help of the proposed pipelines that it is
possible to distinguish different cell cultures in the co-culture
microscopic images and achieve good performance. This study
can help biologists to study the interaction between different
cell populations and assist in drug research. The LIVECell
dataset used in this study is composed of cells from various
kinds of cancer. The future direction for this work would be to
validate the proposed workflow on a more clinically relevant
co-culture model, like cancer cells mixed with stromal cells.

ACKNOWLEDGMENT
This work was supported by SAIL (Sartorius Artificial

Intelligence Lab) project. We thank all members of the Deep
Learning Competence Center at the DFKI for their comments
and support.

REFERENCES
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