
Towards an international standard on feature structure representation (2)

Kiyong Lee
�
, Lou Burnard

�
, Laurent Romary

�
, Eric de la Clergerie

�
Ulrich Schaefer

�
, Thierry Declerck

�
, Syd Bauman

�
Harry Bunt

�
, Lionel Clément

�
Tomaz Erjavec

�
, Azim Roussanaly

�
, Claude Roux

�
	

�
Korea University Linguistics, Seoul, Korea

klee@korea.ac.kr�
Oxford University Computing Services, UK

lou.burnard@oucs.ox.ac.uk

LORIA, France�

Laurent.Romary—Azim.Roussanaly � @loria.fr�
INRIA, France�

lionel.clement—Eric.De-La-Clergerie � @inria.fr�
DFKI, Germany

ulrich.schaefer@dfki.de�
Saarland University & DFKI, Germany

declerck@dfki.de�
Brown University, USA

syd bauman@brown.edu�
Tilburg Univeristy, The Netherlands

Harry.Bunt@uvt.nl�
Jozef Stefan Institute, Slovenia

tomaz.erjavec@ijs.si���
XEROX Research Center Europe, France

claude.roux@xrce.xerox.com

Abstract
This paper describes the preliminary results of a joint initiative of the TEI (Text Encoding Initiative) Consortium and the ISO Committee
TC 37SC 4 (Language Resource management) to provide a standard for the representation and interchange of feature structures. The
paper published in the proceedings of this workshop is in fact an extension of a paper published in the LREC 2004 proceedings, and
about 50% are identical with it.

1. Introduction
This paper describes some preliminary results from a

joint initiative of the TEI (Text Encoding Initiative) Con-
sortium and the ISO Committee TC 37/SC 4 (Language Re-
source management), the goal of which is to define a stan-
dard for the representation and interchange of feature struc-
tures. The joint working group was established in Decem-
ber 2002, and its proposals are now progressing to Draft
International Standard status.

1.1. TEI

Initially launched in 1987, the Text Encoding Initia-
tive (TEI) is an international and interdisciplinary effort the
goal of which is to help libraries, publishers, and individual
scholars represent all kinds of literary and linguistic texts
for online research and teaching, using an encoding scheme
that is maximally expressive and minimally obsolescent.
The TEI has also played a major role in the development
of European language engineering standards since the days
of EAGLES. Its recommendations, the “TEI Guidelines”,
underpin such key standards as the Corpus Encoding Stan-
dard, and address many other areas of language resource
documentation and description, as well as lexicographic

and terminological databases. Since 2000, maintenance
and development of the TEI has been managed by an inter-
national membership Consortium, which announced publi-
cation of a complete XML version of the TEI Guidelines,
known as P4 in 2002, and is now overseeing production of
a major new revision, known as P5.1

1.2. TC 37/SC 4
The research areas of ISO/TC 37/SC 4 include com-

putational linguistics, computerized lexicography, and lan-
guage engineering. Language resources consist of con-
tents represented by linguistic data in various formats (e.g.,
speech data, written text corpora, general language lexical
corpora). Text corpora, lexica, ontologies and terminolo-
gies are typical instances of language resources to be used
for language and knowledge engineering. In both mono-
lingual and multilingual environments, language resources
play a crucial role in preparing, processing and manag-
ing the information and knowledge needed by computers
as well as humans. With a view to mobile computing and
mobile content etc., the availability of language resources,
having to be considered as multilingual, multimedia and

1See also http://www.tei-c.org/

multimodal from the outset will be one of the key success
factors.2

1.3. Current topics of the joint group

The joint TEI and ISO activity has focussed on the fol-
lowing topics:

� articulation of a detailed technical proposal for an
XML format able to represent a feature structure anal-
ysis with a precise description of the underlying for-
mal mechanism to ensure the coherence and sound-
ness of the standard in line with major theoretical
works in this domain;

� provision of specific mechanisms to deal with re-
entrant structures, clearly distinguished from a generic
pointing mechanism;

� provision of a coherent description of the notion of
type, which will enable further development of the
standard to include a complementary set of proposal
relating to declaration of a Feature System.

� integration of this proposal into the on-going revision
of the TEI Guidelines (TEI P5) due for publication in
2004;

2. Goal of the paper
The paper first introduces the basic concepts of the fea-

tures structure formalism. Section 4 briefly describes the
proposal currently being developed as an ISO Standard and
its relation to other ongoing work relating to the deploy-
ment within ISO TC 37 of a general data category registry
for linguistic description. The current proposals will in-
clude this and other external sources for use, as a reference,
in the declaration of particular feature sets. Finally some
conclusions are drawn.

3. Feature structures
Feature structures (FSs) form an essential part of many

language processing systems, whether their focus is on the
description, enrichment, storage, or management of lin-
guistic data. The FS formalism itself has a formal back-
ground in graph theory, and supports powerful unification
mechanisms for combining elementary structures, which
have facilitated its use in many real-world applications.
There are many possible ways of representing FSs, but the
basic notions have an intrinsic legibility which make them
very useful for representing linguistic information in inter-
change situations, both between people and between pro-
cessing systems. To take full advantage of this capability,
a standard way of representing such structures in electronic
format should be made available so that a) specialists from
diverse application fields can share detailed expertise from
diverse domains and b) implementers can share basic li-
braries dedicated to the manipulation of FSs, thus reducing
the overall cost of application development.

FSs are uniform objects that can be used to represent a
wide range of objects, ranging from very simple structures

2See also http://www.tc37/sc4.org/

consisting of simple lists of feature-value pairs, to highly
complex typed and nested structures with reentrancy, as
found for instance in HPSG (Pollard and Sag, 1994b),
LFG (Bresnan, 1982), etc. More recently, FSs have also
been used as the internal representation for shallow and ro-
bust NLP systems based on finite state technologies, or for
merging information sources coming from distinct modali-
ties in multi-modal systems.

4. The proposal
This proposal combines a basic set of tags for repre-

senting features and feature structures covering in a uni-
form way the full range of complexity attested by current
implementations, together with additional mechanisms to
describe libraries of values, feature value pairs and feature
structures. As an example, consider the following sim-
ple morpho-syntactic annotation for the word ‘vertes’ in
French:

<fs>
<f name=’token’>

<string>vertes</string>
</f>
<f name=’lemma’>

<string>vert</string>
</f>
<f name=’pos’>

<symbol value=’adj’/>
</f>
<f name=’gender’>

<symbol value=’fem’/>
</f>
<f name=’number’>

<symbol value=’plural’/>
</f>

</fs>

In this XML representation, the element <fs> is used
to encode a feature structure, and the <f> element is used
for each of five feature-value pairs making up this structure.
Each feature-value pair has a name, given by the name at-
tribute, and contains a primitive or atomic value, marked
(in this case) by either a <string> or a <symbol> ele-
ment, depending on its datatype. Other possible child ele-
ments for the � f � element include � binary � for binary- or
boolean-values such as PLUS or MINUS, and � numeric �
for various kinds of numeric values and ranges. Complex
values can also be represented: collections or multivalues
such as lists, sets or multisets (bags) are tagged using a

� coll � element; feature structures may also be used as
feature-values, thus providing a recursive ability. The com-
ponents of particular feature structures may be represented
directly or referred to by using pointers to previously stored
“libraries” of features or feature values. We believe that
this XML representation has equivalent expressive power
to the classical AVM (Attribute-Value-Matrix) notation, but
is more readily processed.

In developing the XML representation, the work group
was able to simplify considerably the original TEI propos-
als as described in (Langendoen and Simons, 1995b), by fo-

cussing on applications of the formalism in linguistic anal-
ysis alone. The availability of new XML-based tools, in
particular the relax-NG schema language now used to ex-
press the TEI markup scheme, also proved beneficial for
developing a powerful and expressive formalism, adequate
to the needs of those using feature structure analysis.

Applications for this formalism have demonstrated the
need for more complex mechanisms, which are needed to
handle elaborated linguistic information structures. Fol-
lowing on from reference works by Shieber (PATR-II)
(Shieber, 1986) or (Carpenter, 1992), there has been a
whole range of implementations of FSs in computational
linguistics applications. Examples include LOGIN/LIFE
(Ait-Kaci and Nasr, 1986), ALE (Carpenter and Penn,
1996), Profit (Erbach, 1995), DyALog (de la Clergerie,
2002), ALEP (Simpkins and Groenendijk, 1994), WAM-
like Abstract Machine for TFS (Wintner and Francez,
1995), etc. From another point of view, one can con-
sider the variety of linguistic levels concerned with such
representations, e.g. phonology, morpho-syntax, gram-
mars (unification grammars: LFG, HPSG, XTAG), linguis-
tic knowledge base or practical grammar implementation
guide (LKB, (Copestake, 2002)), underspecified semantics
(MRS, (Copestake et al., 1999)), or integration of NLP
components (Schaefer, 2003).

In our work, we have identified and discussed a cer-
tain numbers of concepts and topics introduced in the
works cited above and we are proposing an XML-based
way of representing the corresponding feature structures.
As examples, given for this short paper, we show the ac-
tual XML implementation of structure-sharing (also called
reentrency) and the XML treatment of types, two topics
mentioned in 1.3.:

4.1. Structure Sharing

As shown in most of the works cited above, structure
sharing (or reentrancy) requires the use of labelling for rep-
resentation in graphic notation such as AVM. For example,
to show that a given feature-value pair (or feature structure)
occurs at multiple points in an analysis, it is customary to
label the first such occurrence, and then to represent subse-
quent ones by means of the label.

In discussing how to represent this in an XML-based no-
tation, we first proposed making use of a global attribute
label or n, as in the following simple example:

<fs>
<f name="specifier">
<fs>

<f name="agr" n="@1">
<fs>

<f name="number">
<symbol value="singular"/>

</f>
</fs>
</f>
<f name="pos">

<sym value="determiner"/>
</f>

</fs>
</f>
<f name="head">

<fs>
<f name="agr" n="@1"/>
<f name="pos">

<sym value="noun"/>
</f>

</fs>
</f>
</fs>

The feature named “agr” is here labelled “@1”. Its first oc-
currence contains a feature-value pair (“singular number”);
its second references this same feature-value pair.

An alternative way of representing this phenomenon is
to use the XML ID/IDREf mechanism, as follows:

<fs>
<f name="specifier">
<fs>

<f name="agr" id="N1">
<fs>

<f name="number">
<symbol value="singular"/>

</f>
</fs>
</f>
<f name="pos">

<sym value="determiner"/>
</f>

</fs>
</f>
<f name="head">

<fs>
<f name="agr" fVal="N1"/>
<f name="pos">

<sym value="noun"/>
</f>

</fs>
</f>
</fs>

The working group has identified a need to distinguish
the case where co-reference implies copying (or transclu-
sion) of shared structures or values, from the case where
co-reference simply implies multiple references to the same
object, but has not yet reached a resolution as to which of
the possible approaches best meets this need.

4.2. Typed Feature Structure

The typed feature structure has become a key tool in the
linguistic description and implementation of many recent
grammar formalisms,

4.2.1. Types
Elements of any domain can be sorted into classes

called types in a structured way, based on commonalities of
their properties. Such linguistic concepts as phrase, word,
pos (parts of speech), noun, and verb may be represented as
features in non-typed feature structures. But in typed fea-
ture structure particular feature-value pairs may be treated
as types.

By typing, each feature structure is assigned a particular
type. A feature specification with a particular value is then
constrained by this typing. A feature structure of the type
noun, for instance, would not allow a feature like TENSE in

it or a specification of its feature CASE with a value of the
type feminine.3

4.2.2. Definition
The extension of non-typed feature structure to typed

feature structure is very simple in a set-theoretic frame-
work. The main difference between them is the assignment
of types to feature structures. A formal definition of typed
feature structure can thus be given as follows:4:

Given a finite set of Features and a finite set of
Types, a typed feature structure is a tuple ����� = ����	��

�������������

� such that

i. Nodes is a finite set of nodes.

ii. r is a unique member of Nodes called the root.

iii.
�

is a total function that maps Nodes to Types.

iv.
�

is a partial function from Features � Nodes into
Nodes.

First, each of the Nodes must be rooted at or connected
back to the root r. Secondly, there must one and only one
root for each feature structure. Thirdly, each of the Nodes,
including the root r node and terminal nodes, must be as-
signed a type by the typing function

�
. Finally, each of

the Features labelling each of Nodes is assigned a unique
value by the feature value function

�
.5

This type type of information can be encoded in an XML

notation, as an example (simplified, due to the length of the
paper) shows below:

<fs type="word">
<f name="orth">

<string>love</string>
</f>

<f name="syntax">
<fs type="verb">

<f name="valence">
<symbol value="transitive"/>

</f>
</fs>

</f>
</fs>

Note here that the line � f name=“pos” � � sym
value=“verb”/ � � /f � in the embedded feature structure

� fs � has been replaced by typing that � fs � as in � fs
type=“verb” � .

The use of type may also increase the expressive power
of a graph notation. On the typed graph notation, for
instance, multi-values can be represented as terminating
nodes branching out of the node labelled with the type set,
multiset or list. This node in turn is a terminating node of

3Note that atomic feature values are considered types, too.
4Slightly modified from (Carpenter, 1992).
5The unique-value restriction on features does not exclude

multi-values or alternative values because even in these cases each
feature ultimately takes a single value which may be considered
complex in structure.

the arc labelled with a multit-valued feature, say SLASH.
Each arc branching out of the multi-valued node, say set, is
then labelled with a feature appropriate to the type.

4.3. The Equivalence of the XML Representation and
the AVM Annotation

The proposed XML representation having equivalent
expressive power as the classical AVM notation for fea-
ture structures, from a semantic point of view the XML ex-
pressions can be interpreted as graphs in the classical way
(Carpenter, 1992). In this approach, feature structures are
viewed as a graphs, i.e., as a certain class of set-theoretical
constructs. Carpenter defines a typed feature structure as,
given a set Feat of features and a set Type of (hierarchi-
cally ordered) types, a quadruple

(1) ��� ��� � ����� � �

where � is a finite set whose elements are called nodes;
where

� ��� � , where
�

is a total function from � to Type
(typing) and where � is a partial function from � ����� �"! to� (defining arcs, labelled with feature names, that connect
the nodes). The node

� � is the root of the graph; every
node in � is required to be reachable from the root node.
Pollard and Sag (1987) use this view when they introduce
feature structures as semantic entities in the interpretation
of representations of linguistic information. They refer to
graphs as “modelling structures”, i.e., as structures that play
a role in models, and they introduce AVMs as structures in a
“description language” that is to be interpreted in terms of
feature structures-as-graphs: “Throughout this volume we
will describe feature structures using attribute-value (AVM)
diagrams”. (Pollard & Sag, 1987, 19–20).

This view corresponds to the following metamodel that
distinguishes nonterminal and terminal nodes and types:

nonterminal
nodes

?

?

(2)

(3)

(1)

(3)

?

types

6

terminal
nodes

Diagram 1: Metamodel with graphs as model elements

Relations of type (1) in this metamodel correspond to fea-
tures like HEAD-DAUGHTER in HPSG, those of type (2)
to atomic-valued features like GENDER, and those of type
(3) to the typing function

�
.

An alternative view is that of graphs as representations,
as a notational alternative to AVMs rather than as the ob-
jects interpreting AVMs. For example, Lee (2004) intro-
duces feature structures as ways of capturing information,
and mentions graphs as a notation for feature structures.
Aware of these alternative possible views, Pollard & Sag
(1987) note that “A common source of confusion is that
feature structures themselves can be used as descriptions
of other feature structures.” One way to avoid confusion
is to consider the metamodels corresponding to alternative
views.

In the graphs-as-representations view, the graph (2) and
the AVM (3) are seen as equivalent representations that can
both be interpreted as representing the complex predicate
(4).

(2)
AGR NUM

noun ———— � agr ———- � sing�
+————– � fem

GENDER

(3) ���� noun

AGR � NUM sing
GENDER fem �

� ��	
(4)
���
����������������������������! #"%$&��'(�)'+*,��-.*,/+�����! 10�*,�

(simplifying slightly). This interpretation reflects a similar
view on information as that of first-order logic, with two
kinds of individuals: the kind of things that 2 stands for
(words and phrases) and the kind of atomic attribute val-
ues like ‘fem’ and ‘sing’. These values are associated with
word-like individuals through two-place predicates that are
in fact functions; moreover, types such as ‘noun’ corre-
spond to unary predicates. This corresponds to the meta-
model visualized in Diagram 2.

words &
phrases

?

-

(2)

(1)

(3)

(4)

(2)

- atomic
feat. values

6

feat. value
complexes

?

Diagram 2: First-order metamodel for feature structures

Relations of type (1) in this diagram (1) correspond again
to features like HEAD-DAUGHTER; (2) to atomic-valued
features like GENDER; (3) to features like SYNSEM, and
(4) to features like AGR(EEMENT).

5. The role of feature structure markup
transformation for the integration of NLP

components
One of the main motivations for XML feature structure

markup is the interchange of linguistic data. This can be
done offline, e.g., for the exchange of lexica, grammatical
resources, or annotated documents.

A further application is online integration of NLP com-
ponents, where several, specialised modules contribute
to improved (e.g., disambiguated or more precise) lin-
guistic analyses. Examples for such hybrid architectures
are Whiteboard (Frank et al., 2003; Schäfer, 2003) and
DeepThought (Callmeier et al., 2004).

In both cases, online or offline integration, different rep-
resentations of linguistic data can be involved, where fea-
ture structures can either form the source or the target rep-
resentation or even both.

In general, conversion or translation of different XML
representations is required. In the case of XML, such
a translation is called transformation, and the established
W3C standard language for XML transformation is XSLT
(eXtensible Styleheet Transformation; (Clark, 1999)).

The input of an XSL transformation is always XML,
while the output can be of any syntax, including XML as a
well-supported target format.

To illustrate the use of XML transformation for of fea-
ture structure markup, we give concrete examples.

5.1. Feature structures as target representation
Construction of (typed) feature structures from

other XML representations that are e.g. produced by a
shallow NLP system. Specific elements with attributes are
translated to possibly nested feature-value pairs, e.g. for in-
put to a HPSG(Pollard and Sag, 1994a) parser etc. In the
following example, <infl num="singular"/> is trans-
lated to the corresponding feature structure. Of course, also
symbolic names e.g. sg to singular etc. can be translated.

<xsl:template match="infl">
<fs type="infl">

<f name="number">
<symbol value="@num"/>

</f>
</fs>

</xsl:template>

Grammar exchange format or meta syntax like in
SProUT (Drozdzynski et al., 2004), where a TDL-like
grammar syntax (Krieger and Schäfer, 1994) is translated to
an internal representation based on feature structure XML.
The internal representation is used as input for type check-
ing and compilation.

Data exchange between NLP components, e.g. the
so-called SProUTput DTD that is used for exchange of
typed feature structures with external NLP components (in-
put and output) in SProUT6.

<?xml version="1.0" encoding="UTF-8"?>
<!-- SProUTput DTD (2003) -->
<!ELEMENT SPROUTPUT (DISJ)* >
<!ELEMENT DISJ (MATCHINFO)+ >
<!ATTLIST DISJ id ID >
<!ELEMENT MATCHINFO (FS) >
<!ATTLIST MATCHINFO id ID #IMPLIED

rule NMTOKEN #IMPLIED
cstart NMTOKEN #IMPLIED

cend NMTOKEN #IMPLIED
start NMTOKEN #IMPLIED
end NMTOKEN #IMPLIED >

<!ELEMENT FS (F)* >
<!ATTLIST FS type NMTOKEN #REQUIRED

coref NMTOKEN #IMPLIED >
<!ELEMENT F (FS) >
<!ATTLIST F name NMTOKEN #REQUIRED >

5.2. Feature structures as source representation
Extraction or projection of information encoded in

feature structures such as morphology to other formats or
as API-like accessors. e.g. an XPath expression like

6Element names are uppercase in the SProUTput DTD

<xsl:template match="fs[@type=’infl’]">
<infl num="f[@name=’number’]/symbol

/@value"/>
</xsl:template>

is the inverse of example 5.1. above.
AVM visualisation tools or editors like the feature

structure renderer in SProUT or Thistle (Calder, 2000) both
take (different) descriptions of typed feature structures and
render a graphical representation of the feature structure.

Extraction of tree structures etc. from a a complex
HPSG feature structure, e.g. for further linguistic process-
ing or visualisation in Thistle.

Generation of semantics representation. An exam-
ple is a transformation of typed feature structures to RMRS
XML markup (Copestake, 2003) which e.g. forms the ba-
sic representation for the exchange of deep and shallow
NLP processing results in the DeepThought architecture
(Callmeier et al., 2004), cf. Fig. 1.

5.3. Feature structures as both source and target
representation

Translation between different feature structure syn-
taxes or systems. We give an example of list values
that can be encoded differently in typed feature structure
markup. The XSLT template below takes a list encoded
as nested FIRST-REST list typed *cons* and translates it
to the proposed <list> with embedded elements from the
FIRST attribute values in the input. The template works
recursively on FIRST-REST lists of any length.

<!-- ======================================
Initial template. Enclose list elements from
FIRST-REST list in <list> element
======================================= -->
<xsl:template match=’fs[@type="*cons*"]’>
<xsl:element name="list">
<xsl:call-template name="listlist">
<xsl:with-param name="node" select="."/>

</xsl:call-template>
</xsl:element>
</xsl:template>
<!-- ======================================
recursive template: list all list elements
======================================= -->
<xsl:template name="listlist">
<xsl:param name="node"/>
<xsl:copy-of select=’$node/f[@name=

"FIRST"]/fs’/>
<xsl:if test=’$node/f[@name="REST"]/fs/

@type="*cons*"’>
<xsl:call-template name="listlist">
<xsl:with-param name="node"

select=’$node/f[@name="REST"]/fs’/>
</xsl:call-template>

</xsl:if>
</xsl:template>

5.4. Reentrancies and Transformation

A general issue that arises for the case where feature
structures are source representations is reentrancies. Here,
‘dereferencing‘ is necessary on the basis of lookup in the
XML source in order to have access to every node in the

DAG (e.g. for feature path access); XML ID/IDREF dec-
larations support faster access as discussed already before.
If cyclic reentrancies are disallowed, copying of shared val-
ues when generating the features structure representation is
an easy and probably quicker way in order to get the full
access to shared values. Identity information is preserved
through the reentrancy attribute anyway.

6. Related work within the ISO framework
A distinctive feature of the TEI Guidelines is its use of

an integrated model of documentation and documentation
outputs. The ODD system used to produce its recommen-
dations, both as printed documentation and as formal syn-
tax expressed in XML Schema or DTD languages, has re-
cently been revised and re-expressed. This new modular
system for documentation is likely to have wide take up in
many different domains. In applying it to the expression of
the feature structure analysis language, we have identified a
number of potential areas of synergy with the ongoing ISO
work on data category registry7.

7. Conclusions
The work reported has proved to be an excellent oppor-

tunity for experimenting with the new descriptive frame-
work being developed for the TEI Guidelines themselves.
The feature structure activity has been a useful opportunity
to experiment with the creation of relevant tagging systems
and tools in a relatively limited but formally complex do-
main.

In general, the activity reported in the paper shows
that there is great scope for further convergence between
the TEI consortium and ISO committee TC 37/SC 4, and
many benefits to be gained from joint work on issues which
require complementary expertise in textual representation
methods and in the representation of linguistic concepts.

7See for more details: http://jtc1sc36.org/doc/36N0581.pdf

<MATCHINFO rule="en_city" cstart="3" cend="7"> <rmrs cfrom="3" cto="7">
<FS type="sprout_rule"> <label vid="1"/>

<F name="OUT"> <ep cfrom="3" cto="7">
<FS type="ne-location"> <gpred>ne-location</gpred>
<F name="LOCNAME"> <label vid="2"/>

<FS type=""Paris""/> <var sort="x" vid="2"/>
</F> --> </ep>
<F name="LOCTYPE"> <rarg>

<FS type="city"/> <label vid="2"/>
</F> <rargname>CARG</rargname>

</FS> <constant>"Paris"</constant>
</F> </rarg>

</FS> </rmrs>
</MATCHINFO>

Figure 1: Transformation of feature structure XML markup (SProUT) to RMRS (DeepThought).

8. References

Ait-Kaci, H and R Nasr, 1986. Login: A logic program-
ming language with built-in inheritance. J. Log. Pro-
gram., 3(3):185–215.

Bering, Christian, Witold Drozdzyski, Gregor Erbach,
Clara Guasch, Petr Homola, Sabine Lehmann, Hong Li,
Hans-Ulrich Krieger, Jakub Piskorski, Ulrich Schäfer,
Atsuko Shimada, Melanie Siegel, Feiyu Xu, and
Dorothee Ziegler-Eisele, 2003. Corpora and evaluation
tools for multilingual named entity grammar develop-
ment. In Proceedings of Multilingual Corpora Workshop
at Corpus Linguistics 2003. Lancaster.

Bresnan, Joan (ed.), 1982. The Mental Representation
of Grammatical Relations. Cambridge, MA: The MIT
Press.

Busemann, Stephan, Witold Drozdzynski, Hans-Ulrich
Krieger, Jakub Piskorski, Ulrich Schäfer, Hans Uszko-
reit, and Feiyu Xu, 2003. Integrating information ex-
traction and automatic hyperlinking. In Proceedings
of ACL-2003, Interactive Posters/Demonstrations. Sap-
poro, Japan.

Calder, Joe, 2000. Thistle: Diagram Display Engines and
Editors. HCRC, U. of Edinburgh.

Callmeier, Ulrich, 2000. PET — A platform for exper-
imentation with efficient HPSG processing techniques.
Natural Language Engineering, 6 (1):99 – 108.

Callmeier, Ulrich, Andreas Eisele, Ulrich Schäfer, and
Melanie Siegel, 2004. The DeepThought core architec-
ture framework. In Proceedings of LREC-2004. Liss-
abon, Portugal.

Carpenter, Bob, 1992. The Logic of Typed Feature Struc-
tures. Cambridge University Press.

Carpenter, Bob and Gerald Penn, 1996. Efficient parsing
of compiled typed attribute value logic grammars. In
H. Bunt and M. Tomita (eds.), Recent Advances in Pars-
ing Technology. Kluwer, page Recent Advances in Pars-
ing Technology.

Clark, James, 1999. XSL Transformations (XSLT). W3C,
http://w3c.org/TR/xslt.

Clark, James and Steve DeRose, 1999. XML Path Lan-
guage (XPath). W3C, http://w3c.org/TR/xpath.

Copestake, Ann, 2002. Implementing Typed Feature Struc-
ture Grammars. Stanford, CA: CSLI publications.

Copestake, Ann, 2003. Report on the design of RMRS.
Technical Report D1.1b, University of Cambridge, Cam-
bridge, UK.

Copestake, Ann, Dan Flickinger, Ivan Sag, and Carl Pol-
lard, 1999. Minimal recursion semantics: An introduc-
tion. Draft.

Crysmann, Berthold, 2003. On the efficient implementa-
tion of german verb placement in HPSG. In Proceedings
of RANLP-2003. Borovets, Bulgaria.

Crysmann, Berthold, Anette Frank, Bernd Kiefer, Stefan
Müller, Jakub Piskorski, Ulrich Schäfer, Melanie Siegel,
Hans Uszkoreit, Feiyu Xu, Markus Becker, and Hans-
Ulrich Krieger, 2002. An Integrated Architecture for
Deep and Shallow Processing. In Proceedings of ACL
2002. Philadelphia, PA.

de la Clergerie, Éric Villemonte, 2002. Construire des anal-
yseurs avec dyalog. In Proceedings of TALN ’02.

Drozdzynski, Witold, Hans-Ulrich Krieger, Jakub Pisko-
rski, Ulrich Schäfer, and Feiyu Xu, 2004. Shallow
processing with unification and typed feature struc-
tures — foundations and applications. Künstliche
Intelligenz, 1:17–23. Http://www.kuenstliche-
intelligenz.de/archiv/2004 1/sprout-web.pdf.

Erbach, Gregor, 1995. Profit: Prolog with features, inheri-
tance, and templates. In Proceedings of EACL ’95.

Frank, Anette, Markus Becker, Berthold Crysmann, Bernd
Kiefer, and Ulrich Schäfer, 2003. Integrated shallow and
deep parsing: TopP meets HPSG. In Proceedings of
ACL-2003. Sapporo, Japan.

Kasper, Walter, Jörg Steffen, Jakub Piskorski, and Paul
Buitelaar, 2004. Integrated language technologies for
multilingual information services in the MEMPHIS
project. In Proceedings of LREC-2004. Lissabon, Por-
tugal.

Krieger, Hans-Ulrich and Ulrich Schäfer, 1994. ����� —
a type description language for constraint-based gram-
mars. In Proceedings of the 15th International Confer-
ence on Computational Linguistics, COLING-94.

Langendoen, D. Terence and Gary F. Simons, 1995a. A ra-
tionale for the TEI recommendations for feature structure
markup. In Nancy Ide and Jean Veronis (eds.), Comput-
ers and the Humanities 29(3). The Text Encoding Initia-
tive: Background and Context, Dordrecht: Kluwer Acad.
Publ. Reprint.

Langendoen, Terence D. and Gary F. Simons, 1995b. A ra-
tionale for the tei recommendations for feature-structure
markup. Computers and the Humanities, 29:191–209.

Lee, Kyiong, 2004. Language resource management – fea-
ture structures part1: Feature structure representation.
Document iso/tc 37/sc 4 n 033, ISO.

Pollard, Carl and Ivan A. Sag, 1994a. Head-Driven Phrase
Structure Grammar. Studies in Contemporary Linguis-
tics. Chicago: University of Chicago Press.

Pollard, Carl J. and Ivan A. Sag, 1987. Head-Driven
Phrase Structure Grammar. University of Chicago
Press.

Pollard, Carl J. and Ivan A. Sag, 1994b. Head-Driven
Phrase Structure Grammar. University of Chicago
Press.

Sailer, Manfred and Frank Richter, 2001. Eine XML-
Kodierung für AVM-Beschreibungen. In Henning Lobin
(ed.), Proceedings der GLDV-Frühjahrstagung 2001.
Gesellschaft für linguistische Datenverarbeitung.

Schaefer, Ulrich, 2003. What: An xslt-based infrastruc-
ture for the integration of natural language processing
components. In Proceedings of HLT-NAACL 2003 Work-
shop: Software Engineering and Architecture of Lan-
guage Technology Systems.

Schäfer, Ulrich, 2003. WHAT: An XSLT-based Infrastruc-
ture for the Integration of Natural Language Processing
Components. In Proc. of the Workshop on the Software
Engineering and Architecture of LT Systems (SEALTS),
HLT-NAACL03. Edmonton, Canada.

Shieber, Stuart M., 1986. An Introduction to Unification-
Based Approaches to Grammar, volume 4 of CSLI Lec-
ture Notes Series. Stanford, CA: Center for the Study of
Language and Information.

Simpkins, N. and M. Groenendijk, 1994. The alep project.
technical report. Technical report, Cray Systems / CEC.

Thompson, Henry S. and David McKelvie, 1997. Hyper-
link semantics for standoff markup of read-only docu-
ments. In Proceedings of SGML-EU-1997.

Uszkoreit, Hans, 2002. New Chances for Deep Linguis-
tic Processing. In Proceedings of COLING 2002. Taipei,
Taiwan.

Wintner, Shuly and Nissim Francez, 1995. Parsing with
typed feature structures. In Proceedings of the Fourth
International Workshop on Parsing Technologies.

