
1 INTRODUCTION 

Within the last decades, the scientific field of artificial 
intelligence has been a rapidly growing field of re-
search. Its methods have been further applied in vari-
ous capacities and varieties in other areas, both for 
professional operators, e.g., recognition of abnormal-
ities in X-Ray images, and casual everyday users, 
e.g., text auto-completion of digital keyboards on 
smartphones. AI methods have also been applied 
within the architecture, engineering and construction 
(AEC) industry, mostly focusing on optimization dur-
ing the later stages of a construction process, e.g., fi-
nancial, temporal and performance (Abioye et al. 
2021). However, the architectural design process, es-
pecially the early stages, are rather untouched be-
cause of its complexity. The architectural design pro-
cess contains a lot of meaningful information of 
geometrical and semantic nature. Semantic building 
models (BIM) predominantly formalize the result of 
a design process. In contrast, we are tracking the steps 
of the design process that lead to the final design re-
sult.  

In this paper, we propose a novel Deep Learning (DL) 
approach as a design auto-completion method, to as-
sist the architect during the design decision making 
process. The overall goal of the methods developed 
within the ‘metis’ projects is to predict the current and 
the future design phase, based on design process seg-
mentation using design phases by Laseau (2000), 
Lawson (2005) and Barelkowski (2013), which is an 
extended version of the Analysis, Synthesis and Eval-
uation (ASE) model. Accessing the most recent 
changes in the design phase and the current status of 
the design phase, made tangible through the art of 
hand-drawn sketching (Lawson, 2004; Suwa & 
Tversky, 1997), the model is able to suggest possible 
continuations of the design direction. Furthermore, 
we aim to build an auto-completion pipeline that op-
erates in real-time and suggest design steps to the ar-
chitect, in which the user has an option to either reject 
or accept the proposition. 

2 BACKGROUND AND RELATED WORK 

AI assists humans in various domains of both profes-

sional and daily life. Having an intelligent assistant 

that will aid the architect during designing, is first 
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ABSTRACT: Recent advances in technology established artificial intelligence (AI) as a crucial domain of computer science for 

both industry and research, but also for everyday life. However, while computer-aided architectural design (CAAD) and digital se-

mantic building models (BIM) became essential aspects of the contemporary architectural design process, AI cannot be seen as a 

leading supportive computational method due to its absence in the established design software and the challenging acquisition of 

proper data. An option to acquire rich design data, for example in the form of time slices and relations of atomic design steps, is the 

reproduction of design protocol studies (Lawson, 2004). However, this data is still unstructured and requires a framework for pre-

processing and training artificial neural networks (ANN). 

In this paper, we present our research on BIM and AI, dedicated to autocompletion of design steps for architectural design, based on 

the methods of the ‘metis’ projects. Autocompletion is achieved through the suggestion of further design steps to improve the quality 

and speed of the design process of the early design stages. It is inspired by other autocompletion methods that have been applied for 

data-driven decision-making. 

Assuming the position of Lawson (Ibid.), we propose an approach for a recurrent neural network (RNN) model to predict future 

design steps through sequential learning. Thus, we propose a model based on cognitive sequences of the architectural design process 

as relational sequences (Lawson, 2004), using sketch data quantified through custom labelling via an open-source tool assigning the 

respective design phase (Lawson, 2004; Laseau, 2000). We adapt to the idiosyncrasies of the user by identifying the current cognitive 

processes to predict further mental activities and thus, future design steps. 



propounded by Negroponte (1973), which can both 

predict and suggest new ideas based on architectural 

design knowledge. First immediate obstacle for such 

approaches is to collect reproducible data. In order to 

overcome this drawback, sketch protocol studies have 

been used to trace the architect’s way of thinking dur-

ing a design process (Suwa & Tversky, 1997). As pre-

vious studies only produce qualitative data, a proto-

type tool was implemented and employed. It enables 

the development of quantitative results from retro-

spective sketch protocol studies, including custom 

categories for manual assigning (Bielski et al., 2022) 

Thus, both custom and common parameters, e.g., tim-

ing and pen pressure on a digital drawing board, can 

be included for analysing the design process through 

the art of sketching.  

Furthermore, in order to process such information in 

the context of Machine Learning (ML), the data 

should be quantifiable, and categorizable. Lawson 

(2004) proposes both temporal and relational seg-

ments for classifying sketch protocols, while intro-

ducing the subclasses Analysis, Synthesis, Evaluation 

and Communication for defining the design phases. 

In addition to that, Laseau (2000) further partitions 

the Synthesis into two different subclasses as the Ex-

ploration and Discovery, while Barelkowski (2013) 

focuses on dividing the Analysis into Knowing and 

Understanding for a more distinguished look on the 

involved knowledge management. This also results in 

the separation of the Evaluation as a final decision, as 

well as a tool for creating more information as Eval-

uation - (informing) Knowing. Hence, the temporal 

categorization of the design decision making process 

can be enabled through the relational sequences of de-

sign phases. The state-of-art solution for such a cate-

gorization problem, is to make use of Artificial Neu-

ral Networks (ANNs). 
Recurrent Neural Networks (RNNs) are a subset of 
ANNs that include loops, hence it considers several 
previous input values, while calculating the output. 
Therefore, the knowledge can persist in the network, 
allowing the network to come up with predictions 
within sequential data, such as time sequences. One 
example of such a learning problem in real life can be 
predicting stock prices by looking at the previous and 
the current stock values, or predicting the weather in 
the following days by having access to the recent 
weather forecast. In that regard, they distinguish 
themselves from the ANNs or basic feed-forward 
neural networks through integrating loop connections 
in order to include data from the past. However, since 
neural networks rely on back-propagation that uti-
lizes partial derivatives, having a looped architecture 
with a long chain, can cause the gradients for the 
learning weights to either drastically increase, or 
shrink to 0. This phenomenon is called Vanishing 
Gradient Problem. Moreover, being vulnerable to the 

Vanishing Gradient Problem, RNNs are prone to fail-
ures while capturing the long-range correlations of se-
quential data (Hochreiter, 1998). 
There are several neural network architectures, which 
are subsets of the RNNs that is able to overcome the 
Vanishing Gradient Problem, such as Gated Recur-
rent Units (GRU) (Cho et al., 2014) and Long-Short 
Term Memory (Hochreiter, 1997). However, LSTMs 
are much more widely used in the state-of-art net-
works, which facilitates the development and the 
maintenance of the project for further improvements. 
LSTMs include specific gated cells, illustrated in the 
Figure 1, that allow to store and/or remove parts of 
the previous information, which enables the model to 
improve the handling of the long-term dependencies 
within the data. Hence, LSTM architecture provides 
a more robust learning scheme for sequential data. 

Figure 1. A vanilla LSTM cell that includes three different kinds 

of gates (Van Houdt et al., 2020). 

3 APPROACH 

In this section, we present the approach for our super-

vised learning pipeline. It includes the dataset, the 

pre-processing and augmentation of this data, the de-

tails of the proposed RNN architecture based on the 

cascaded sequential learning method and finally a 

learning criterion, resulting in an implemented cus-

tom loss function. 

3.1 Dataset 

The dataset consists of five different design processes 

made by architects that have been quantified through 

our open-source sketch protocol analyser tool (Biel-

ski et al., 2022). Each design process data consists of 

a feature vector, a design phase, and a specific 

timestamp. All data instances have varying numbers 

of timestamps, ranging between 4.000 and 18.000 

which spans across 15 minutes. Each data instance 

that corresponds to a specific timestamp includes a 

feature vector, and the design phase attached to it, 

which we will refer to as the label. The labels are 

unique, and have a value among our seven design 

phases (i.e. Analysis-Knowing, Analysis-Understand-

ing, Synthesis-Exploration, Synthesis-Discovery, 

Evaluation, Evaluation- Knowing,   Communication)   



that represent a more distinguished version of the 

phases (see Figure 2) of the common design model 

ASE (Analysis, Synthesis, Evaluation (Lawson, 

2005). The feature vector consists of distinct infor-

mation related to the design process for each 

timestamp. Namely, these information parameters are 

the pen pressure and geometric coordinates of the 

pen, gathered from a WACOM tablet used as a digital 

drawing board during the sketch protocol study, and 

the sketched elements (e.g. ‘symbol’, ‘line’) and ob-

jects (e.g. ‘door’, ‘wall’) that are present in the sketch 

at the respective timestamp.  

Figure 2. The design process as an extended version of the ASE 

model (Lawson, 2005). 

 
An important step within our approach is the data pre-
processing. Even though the data is quantified 
through the sketch protocol analyzer, there are still 
categorical values both in the feature vector and the 
labels that have to be encoded as numeric values in 
order for the Artificial Neural Network (ANN) to 
work with the data. As mentioned before, there are 
seven design phases (see above) for the labels, while 
each timestamp is being labeled by only one of them. 
In order to map that textual information, we are using 
a categorical data embedding technique called 
‘Dummy Variables’ (Draper & Smith, 1998). In our 
case, dummy variables create a vector with a length 
of 7 units, where each unique design phase category 
is attached to a unique vector element for every 
timestamp. The resulting vector is a unit vector, 
where only the value that corresponds to the current 
design phase is 1, whilst all the remaining vector ele-
ments stay as 0. Therefore, after the embedding, in-
stead of having categorical values, the design phase is 
represented with seven unique unit vectors. For en-
coding the feature vector, a similar approach is being 
used, called ‘Multi-Hot-Encoding’, which is a gener-
alized version of dummy variables. This approach is 
being used, since each categorical feature can appear 
more than once in the data, therefore it requires an in-
teger variable rather than a binary variable. 

The different features have varying ranges for their 
values, which can cause the network to be influenced 
more by the numerically large values. To be specific, 
while the encoded features have small integer values, 
continuous variables like the pen pressure can take 
values up to a million, which might prioritize the pen 
pressure value during the learning process. Thus, a fi-
nal normalization routine must be performed. For this 
purpose, the last part of the pre-processing step is the 
L1 normalization, which maps the values of every 
feature between 0 and 1. This results in changing the 
feature dataset into a common scale, without deform-
ing the numeric relation between the values since it is 
a linear map. An exemplary conversion between raw 
data and the processed features is shown at Figure 3. 

 
Figure 3. An exemplary representation of the feature map-

ping. The values on the left shows the unprocessed features with 

both numeric and non-numeric values. The figure on the right, 

is the processed and the final version of the feature vector. 

3.2 Model 

As explained in the section 3.1 the training data in-

cludes features that are extracted from the design pro-

cess data, and each timestamp is labelled with a 

unique design phase. Our model proposes a sequen-

tial prediction scheme, using a fixed number of 

timestamps as an input, and aims to predict the cur-

rent and the next design phases as the output.  
In order to overcome the shortcomings of common 
RNNs, our cascaded model consists of a chain of 
“processing blocks”, which consists of an LSTM 
cell, followed by a fully connected layer and a Sig-
moid activation function. Each processing block co-
incides with the features in one timestamp, and they 
produce an output for their corresponding 
timestamps. The overall model comprises a chain of 
processing blocks, and the length of this chain is de-
fined with the parameter “processing window size”. 
The processing window size parameter is crucial, 
since we require a long enough chain that the model 
can capture the correlation between the features well, 
to predict the next design phase, but short enough that 
the training is tractable and feasible. The proposed 
processing window size value of this work is 50. The 
LSTM cells accept a total number of 41 features and 
produce 21 output values. The fully connected layers 



accept 21 features and produce 7 output values. Those 
7  output   values   are   indicated   with   the  parameter   
output size, and it refers to the probabilities for the 
predictions of all 7 design phase labels. Simply, the 
largest probability value is selected to be the model’s 
prediction. The reason why a fully connected layer is 
added on top of an LSTM layer is to even capture ex-
tra correlations that the LSTM model itself fails to de-
tect. The overall scheme of the learning model, con-
sisting of the chain of ‘processing blocks’, is 
represented at Figure 4.  

Figure 4. The model as a chain of processing blocks: Blue shapes 

represent the feature vector for each timestamp fed into the 

LSTM cells, yellow blocks represent an individual LSTM cell, 

green blocks the fully connected layers, white circle the Sigmoid 

activation function, and finally the purple rectangles the proba-

bilities attached for each design phase for each timestamp, while 

numerically the largest value eventually becomes the prediction 

of the model, and w represents the processing window length. 

3.3 Learning Criteria 

Each individual data set per sketch data contains more 

than 10000 timestamps, but only a handful of design 

phase changes. The biggest learning obstacle is to not 

overfit the model through the exceeding timestamps 

with rare to no changes. Overfitting is a common 

problem in ML (Ying, 2019), which arises when the 

network specifically learns the training data instead 

of the solution to a general and much wider problem.  

Along with achieving low accuracy during the evalu-

ation, an overfitted network can be thought of as a 

memorizing model, instead of a learning model, 

therefore it should be avoided for a general ML prob-

lem. Instead, the most important functionality of the 

model is to be able to capture the internal dynamics 

of the periods where there is a design phase with bet-

ter accuracy. Thus, in order to mitigate and optimize 

the learning process, we implemented a loss function 

as a learning constraint. The reason for this is, since a 

large portion of the design process data continues to 

stay at the same design phase for a long period of 

time, and only at several instances, a design phase 

change can be observed. This fact makes the intervals 

that have a design phase change more crucial in the 

learning stage, since the architect’s thought process is 

most likely to stay the same, when the architect is still 

in the same design phase. 

Therefore, instead of using the binary cross-entropy 

(BCE) which can be seen in Equation 1, we are pro-

posing a custom loss function that augments the BCE 

loss function. Our loss function penalizes the input 

sequences that include a phase change, with a large 

penalty term that can be hyper-tuned. 

𝐵𝐶𝐸 = −∑𝑦𝑖

𝑁

𝑖

log 𝑦̂                                                  (1) 
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The custom loss function we propose, can be seen in 

the Equation 2. In the equation P denotes the set that 

includes the intervals, in which there is a design phase 

change. Therefore, our loss function, calculates the 

loss just like the BCE, if the processed batch is not in 

an interval where there is a design phase change, but 

it penalizes the term with another parameter when the 

batch is in an interval with a design phase change. 

4 EVALUATION 

The model has been implemented using the Tensor-
Flow (Abadi et al., 2016) framework and trained the 
final model with 10 epochs, and 3.500 steps per 
epoch. The optimizer being used is the Adam 
(Kingma & Ba, 2014) with default TensorFlow learn-
ing rate of 0.001. The convergence of the model can 
be seen from the loss graph in Figure 5. 

Figure 5. The loss function with 10 epochs. 



 
Having access to a limited number of design process 

data requires a pertinent evaluation method. We have 

selected the k-fold cross validation for our training 

and evaluation subroutine, where the data is split into 

training, validation and test data. Furthermore, there 

is no established or best practices evaluation method 

for temporal data, since the whole sequence is needed 

for the network to learn the pattern across the data. 

Hence, splitting the data instance into two sub-arrays 

as train and test sets can cause a significant loss of 

information. In order to remedy the shortcoming of 

splitting the data into train and test sets for temporal 

data, there are several techniques proposed, for exam-

ple successively enlarging both the train and the test 

data, across different epochs (Cerqueira, Torgo & 

Mozetič, 2020) However, due to the limited amount 

of data, we applied another evaluation method, in 

which the design processes from different architects 

are used for both training and evaluating the data 

without separating them into training and test 

sketches. Several time intervals, that include a design 

phase change, are selected from these sketches as 

evaluation intervals. Hence, in the evaluation, we ex-

amine if the model can capture the pattern, since pref-

erably the crucial time intervals are used. 

Our evaluation method consists of creating various 

numbers of intervals in different sketches, which will 

then be separated arbitrarily as training and test sets. 

The important difference is that the intervals are se-

lected among the time sequences which include a de-

sign phase change. That way it can be examined 

whether the model can capture the required pattern or 

not, since preferably the crucial time intervals are 

used while calculating the accuracy, as it was ex-

plained in Section 3.3 

Using the described approach, the accuracy is cal-

culated additionally to the prediction results of the de-

sign phases for the entire sketch data. 

Figure 6. Exemplary evaluation graph: orange lines indicate the 

prediction values for the whole sketch data, while blue lines 

represent the ground truth values for the same sketch. 

Figure 6 illustrates the prediction values through two 

lines for all the data within one sketch. While the blue 

line represents the ground truth values for the respec-

tive sketch that indicate the actual design phases of 

the architect’s design process, the orange line shows 

the design phase predictions of our model. In this cat-

egorical line graph, the y-axis depicts possible design 

phases, while the x-axis shows the temporal progress 

with timestamps. As it can be seen in Figure 6, the 

model predicts the design phases with relatively high 

accuracy, i.e., 94%. Only a few errors occurred due to 

the similar patterns in transitioning between design 

phases. For instance, one repeating error was the 

model’s inability to capture the design phase Synthe-

sis-Discovery and instead it mistook said phase as the 

Evaluation. This shows that the transition between 

the Synthesis-Exploration and the Synthesis-Discov-

ery has similar dynamics to the transition between the 

Synthesis-Exploration and the Evaluation.  

Finally, Figure 7 highlights the effect of our custom 

loss function on evaluation and training success. For 

both testing and training, our custom function has im-

proved the accuracy of the predictions significantly, 

compared to the models that have been trained with 

the same characteristics, but without the BCE loss 

function. Therefore, the deep learning method, along 

with the custom loss function, achieves successful re-

sults for predicting the current and next design phase 

of a given design process.  

To sum up, even though, the model continues to oc-

casionally mistake design phase changes due to simi-

lar patterns, specifically Synthesis-Exploration to 

Synthesis-Discovery, and Synthesis-Exploration to 

Evaluation, the results show a high accuracy for the 

prediction of both the current and following design  

phase. By implementing a custom loss function, 

which emphasizes the use of temporal intervals for 

both training and evaluating, we improved the accu-

racy for both types of predictions by 6-8 percent. 

Figure 7. Comparison of the evaluation results, using the BCE 

loss function, and our proposed custom loss function. 



5 CONCLUSION AND FUTURE WORK 

The results of our model for both prediction and eval-

uation are visibly accurate with a percentage of 94 at 

the end. The implementation of the custom loss func-

tion improved the accuracy by 6-8 percent, compared 

to accuracy of the models trained without the BCE 

loss function. Thus, we contribute a successful ap-

proach for predicting the current and next design 

phase, based on the categorisation by Laseau (2000), 

Lawson (2004; 2005) and Barelkowski (2013), using 

an RNN trained with quantified design process data, 

to the research field. This novel approach includes the 

workflow for pre-processing of the design process 

data, quantified with the sketch analyser tool, the 

LSTM model architecture and finally, interventions 

to improve accuracy. Consequently, this novel ap-

proach is transferable for predicting custom temporal 

parameters of various nature of design process data, 

e.g., design intentions (Lawson, 2004), assigned as 

custom labels within the protocol analyser tool.  

However, the low number of design process data re-

mains a major limitation for training the model, but 

far and foremost for evaluating the model’s behaviour 

for projecting more general results and outlook. Since 

recruiting a large number of participants and prepar-

ing the dataset with manual labelling proves to be too 

resource-inefficient and cumbersome, Generative 

Adversarial Networks (GANs) (Goodfellow et al., 

2014) can be employed in the future. GANs are gen-

erative models and, trained with enough information, 

can be used to create novel and virtual data. That way, 

the data retrieval can be automated and fasten the pro-

cess of dataset preparation.  

Finally, the ‘metis’ projects aim to ultimately suggest 

the next design step to the user (e.g., ‘outlining par-

cel’) during the sketching process to support the ar-

chitectural design decision making. Thus, we plan to 

extend the current approach for predicting and sug-

gesting new design phases for further values, such as 

design intentions and design steps. The individual 

RNN models for each value type will be connected in 

a cascading series from the largest segmentation, the 

design phases, to the smallest, the design step.   
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