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Abstract: Handwritten circuit diagrams from educational scenarios or historic sources usually exist on analogue me-
dia. For deriving their functional principles or flaws automatically, they need to be digitized, extracting their
electrical graph. Recently, the base technologies for automated pipelines facilitating this process shifted from
computer vision to machine learning. This paper describes an approach for extracting both the electrical com-
ponents (including their terminals and describing texts) as well their interconnections (including junctions and
wire hops) by the means of instance segmentation and keypoint extraction. Consequently, the resulting graph
extraction process consists of a simple two-step process of model inference and trivial geometric keypoint
matching. The dataset itself, its preparation, model training and post-processing are described and publicly
available.

1 INTRODUCTION

Handwritten circuit diagrams still occur nowadays,
for example in educational contexts, when commu-
nicating swiftly sketched ideas or viewing historic
schematics. In most scenarios, automatic means for
digitization are desired, i.e. the extraction of electri-
cal graphs from scanned or photographed images for
further analysis in computer-aided engineering soft-
ware.

While the pipelines for graph extraction from en-
gineering diagrams adopted more machine learning
over time, they still tend to involve computationally
expensive computer vision. At the same time, the pro-
vision of datasets for training these models is costly.

The approach described in this paper aims to move
more functionality to the machine learning model, al-
lowing for a simplified graph extraction during test
time. For both electrical symbols and their intercon-
nections being detected as objects along with their
connector points, detailed knowledge on their layout
is required during training. The costs for providing
the complex training data necessary are mitigated by
a modular method.
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2 RELATED WORK

2.1 Existing Approaches

While early approaches to digitize electric circuit di-
agrams were based on computer vision (Bailey et al.,
1995) and limited to printed diagrams, later works in-
corporate machine learning like support vector ma-
chines (Lakshman Naika et al., 2019), allowing to
also process handwritten diagrams. Recently, the
trend shifted to deep artificial neural networks (Reddy
and Panicker, 2021) (Dai and Braytont, 2017). How-
ever, all these approaches rely on rather complex and
computationally expensive pipelines in which sym-
bols and their connections are processed in individ-
ual steps. For example, a dedicated neural network
is used for electrical symbol classification (Rabbani
et al., 2016).

Similar trends can also be observed in the closely
related domain of piping and instrumentation dia-
grams for the chemical industry (Mani et al., 2020)
(Nurminen et al., 2019) (Rahul et al., 2019) (Sierla
et al., 2020).

Unfortunately, most literature rely on small
datasets, simple circuits, is restricted to special cases
like digital logic circuits (MAJEED et al., 2020) or
does not use publicly available datasets at all, prevent-
ing reproducibility and comparability.



Figure 1: Dataset Preparation Workflow

2.2 Mask RCNN

Mask R-CNN (Dollár and Girshick, 2017) is an artifi-
cial neural network architecture, allowing for the pre-
diction of bounding boxes, instances masks and key-
points. For the paper at hand, the Detectron 2 (Wu
et al., 2019) implementation is used.

2.3 CGHD

CGHD (Thoma et al., 2021) is a publicly available
dataset of handwritten circuit diagrams with bound-
ing box annotations for the contained electrical sym-
bol, texts (for e.g. component names, electrical prop-
erties and circuit headings) and structural elements
like junctions and crossovers (wire hops). Since its
first description, it has been extended in sample count,
the set of classes has also been extended and hier-
archically structured. Every circuit is drawn twice,
photographed four times and hence occurs as eight
samples of pairs of images and annotations in the
dataset. This allows for automatically verifying inter-
annotator agreement. The individual images are taken
under varying conditions of lighting and physical
degradation to maximize sample variation. In its cur-
rent form, it contains 2.208 raw images with 185.641
bounding box annotations of 58 object classes.

3 METHODOLOGY

The CGHD dataset is extended by instance segmen-
tation ground truth in a set of separated and semi-
automated processing steps, which significantly low-

ers the manual annotation overhead, allows for future
reuse and adaptation and avoids annotation ambigui-
ties (see fig. 1). The extended dataset along with the
processing scripts are publicly available 1 2.

A Mask-RCNN model is trained on these exten-
sions to demonstrate the viability of the proposed ap-
proach.

The tool set developed in conjunction with this pa-
per allows for graph import and hence links instance
segmentation and graph processing.

3.1 Dataset Preparation

Figure 2: Raw Image Sample from CGHD.

Since the original CGHD dataset (see fig. 2) pro-
vides bounding box annotations only for object de-
tection of electrical symbols (and basic structural ele-
ments), a graph extraction pipeline built on a respec-

1https://zenodo.org/record/7355865
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tive object detection model requires additional pro-
cessing for connection extraction. This is computa-
tionally expensive and challenged by structured back-
ground paper as well as overlaps between bounding
box Annotations (see fig. 3).

Figure 3: Sample Excerpt showing Overlapping Bounding
Box Annotation and Challenging Background.

3.1.1 Binary Segmentation Maps

Figure 4: Binary Segmentation Map.

Through semi-automatic means (Peter Mattis,
2022) like noise filters, color enhancement, threshold-
ing and manual correction, binary segmentation maps
are created from the raw images in which intended
drafter’s pencil strokes related to the circuit are sepa-
rated from the (e.g. lined or ruled) paper background
and surrounding objects. As these maps are stored in-
dependently, they can be used for additional segmen-
tation purposes in future.

3.1.2 Coarse Polygon Masks

After the bounding box annotations have been con-
verted into polygons, they are manually reworked
with respect to avoiding overlaps between individual
polygons in stoke areas as well as excluding longer
parts of connecting wires (see fig. 5). LabelME (Rus-
sell et al., 2008) is used for this purpose.

Figure 5: Coarsely Reworked Polygons Avoid Overlaps
while Requiring Little Manual Effort.

Figure 6: Semantic Segmentation Map.

As a mean for simplified visual inspection and to
prepare for future semantic segmentation scenarios, a
function overlaying coarse polygons with binary seg-
mentation maps is used (see fig. 6).

3.1.3 Mask Refinement

Figure 7: Automatically Refined Polygons.

Refined polygons are created automatically by ap-
plying contour detection to maps obtained by bit-wise
and operation between a binary segmentation map
and individual coarse polygons. For discontinuous
binary map content inside the polygon area, convex
hulls are used instead (see fig. 7). As the refined



polygons are created algorithmically, they can conve-
niently be adapted by e.g. altering the polygon sam-
ple width. Apart from that, annotation ambiguities are
avoided by this step.

3.1.4 Addition Mask Generation

All stroke areas not covered by any existing polygon
annotation so far is considered an electrical intercon-
nection between components. Hence, wire polygons
annotations are created automatically by blacking the
polygon annotation areas before applying contour de-
tection, labeling the resulting polygons as wire.

3.1.5 Keypoint Generation

Based on the assumption that drafter’s strokes touch-
ing an electrical symbol’s shape are representing the
symbol’s electrical connections, the keypoints for de-
scribing the ports of electrical symbols are derived by
calculating intersections between stroke areas in the
binary segmentation maps with borders of the sym-
bol’s shape polygons. In order to avoid false posi-
tives, the morphological operation erosion is used be-
fore. Additionally, as there many direct stroke con-
nections between electrical symbols and texts (due to
inaccurate drawing styles) and texts are assumend not
to have electrical connections, areas of text strokes are
also removed before the actual keypoint generation.

3.1.6 Keypoint Port Assignment

In order to form a viable electrical graph, the extracted
keypoints need to be assigned respective electrical ter-
minals. For this purpose, rotation annotations are uti-
lized which represent the angle between a symbol in-
stance and its corresponding prototype in the symbol
port library. More precisely, a prototype’s ports are
geometrically transformed to the bounding box of the
polygon and before being matched. Since number of
ports and their position within the (idealized) proto-
type is known for the majority of symbol types, an
automated verification is performed in this processing
step.

3.2 Post-Processing

Constructing electrical graphs from target values or
predictions is done by treating all polygons but the
wire polygons as nodes, the wire polygons them-
selves as edges and geometrically matching the key-
points of the wire polygons against all other polygons
(see fig. 8).

Figure 8: Graph Structure Extracted From Polygon and
Keypoint Annotations.

4 EXPERIMENT

245 Binary segmentation maps with 18.276 polygon
annotations have been created as addition to the exist-
ing CGHD dataset.

A Mask RCNN trained with learning rate of
0.0005 and a batch size of 4 for 7000 iterations re-
sulted in a minimum training loss of 0.44, a maximum
training mask accuracy of 0.94 and a minimum vali-
dation loss of 1.39 (see fig. 9). A visual inspection
on validation set mask (see fig.11) and keypoint (see
fig. 10) predictions shows reasonable, yet incomplete
recognition.

Figure 9: Instance Segmentation Learning Curve.

5 CONCLUSIONS

The semantic and instance segmentation additons to
the CGHD dataset establish a new, flexible standard
for further research on graph extraction from hand-
drawn schematics, allowing for arbitrary new meth-
ods to be evaluated.

While the experiment demonstrated the general
viability of the approach, further model optimizations
are required to achieve error-free graph reconstruc-
tion.



Figure 10: Keypoint Predictions for Electrical Symbols on
the Validation Set.

Figure 11: Mask Predictions on Validation Set (junctions
and texts omitted).

6 FUTURE WORK

So far, the described approach is limited in various
ways: Most importantly, the types of individual com-
ponent connectors are not differentiated, which is crit-
ical for an accurate simulation of non-linear electri-
cal circuits. Adding a rotation prediction head to the
Mask RCNN as well as providing these information in
the dataset (which can in turn be semi-automated by a
classic template matching) can be used in conjunction
with a component library to identify these connector
types. Furthermore, drawing errors like discontinu-
ous wires need to be mitigated, which could be done
by post-processing with graph neural networks. Apart
from that, OCR information need to be incorporated
to predict not only the position but also the content of
the text labels. Additionally, edge types different from
electrical connections need to be identified like me-
chanical coupling of switches or inductive coil cou-
pling in complex transformers. Finally, as mask in-
formation could only be provided for a subset of the

original dataset, a join training with full dataset on
both masks and bounding boxes only need to be con-
sidered.
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