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ABSTRACT
A hybrid machine learning method is proposed for wildfire sus-
ceptibility mapping. For modeling a geographical information sys-
tem (GIS) database including 11 influencing factors and 262 fire
locations from 2013 to 2018 is used for developing an integrated
multivariate adaptive regression splines (MARS). The cat swarm
optimization (CSO) algorithm tunes the parameters of the MARS
in order to generate accurate susceptibility maps. From the
Pearson correlation results, it is observed that land use, tempera-
ture, and slope angle have strong correlation with the fire sever-
ity. The results demonstrate that the prediction capability of the
MARS-CSO model outperforms model tree, reduced error pruning
tree and MARS. The resulting wildfire risk map using MARS-CSO
reveals that 20% of the study areas is categorized in the very low
wildfire risk class, whereas 40% is under the very high class of fire
hazard.
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1. Introduction

Wildfires is a natural agent affecting land cover and plays an important role in regener-
ation of flora and maintaining the health of ecosystems. The number of fires occurring as
a result of human inattention has risen significantly, leading to danger in forests and has
been increased across the world over the last decade (Schoennagel et al. 2004). Climatic
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changes, such as higher temperatures, less rainfall, longer dry seasons, as a result of
human interventions, in many regions of the planet, the extent and number of forest fires
have increased to a worrisome level (Foster, 2001). Many bush and forest fires extending
across thousands of hectares have occurred in Iran annually. Such incidents are not new,
but the number of fires in this year is higher than that in 2019 by 2.5%. As reported by
the Forests, Range and Watershed Management Organization of Iran, forest fires were fre-
quent in Iran, leading to the loss of 5000 to 6000 hectares of forest area per year (Adab
et al. 2013). Besides, many other counties around the globe were also experiencing these
incidents (Marchal et al. 2017; Herawati and Santoso 2011; Wu et al. 2015; Schweizer and
Cisneros 2017; Yao et al. 2018; Tariq et al. 2021; Tariq et al. 2022). Owing to the devastat-
ing effect of forest fire on ecosystems and the socioeconomic situation, preventing and
suppressing this phenomenon have turned to a shared priority of governments and scien-
tists across the globe (Nami et al. 2018). Establishing an efficient fire suppression and pre-
vention strategy requires drawing a fire susceptibility map at a local scale. Such maps not
only render it easier to properly allocate resources required for preventing and suppres-
sion fires but also hugely help land use planning (Bax and Francesconi 2018; Naderpour
et al. 2019; Abedi Gheshlaghi et al. 2020).

Nowadays, geographic information system (GIS) and remote sensing (RS) data contrib-
ute significantly to natural risk assessment, especially in terms of developing forest fire
susceptibility maps (Vahidnia et al. 2010; De Moel et al. 2014; Rezaie-Balf et al. 2022).
Through GIS, many processes such as capturing, managing, analyzing, and presenting
geographic data can be performed with ease. The ability to display several information
layers on a single GIS-based map allows the assessment of forest fire risk of an area taking
into account several effective factors such as vegetation, climate, topography, as well as
human-related factors (Nami et al. 2018). For generating artificial intelligence (AI) mod-
els, the spatial relationship between these factors and the historical fire inventory of the
region can be employed, leading to precise forest fire susceptibility mapping (FFSM) for
all parts on the region (Bui et al. 2017). Accordingly, the preferred AI algorithms include
artificial neural network (ANNs) (Zhao et al. 2018), boosted regression trees (BRT) (Van
Boeckel et al. 2012), neuro-fuzzy inference system (ANFIS) (Wang et al. 2019), naïve
Bayes (NB) (Khosravi et al. 2019), decision trees (DT) (Tehrany et al. 2019), boosted
regression trees (BRT) and evidential belief function (EBF) (Shafizadeh-Moghadam et al.
2018; Rahmati and Pourghasemi 2017), multivariate adaptive regression splines (MARS),
support vector machine (SVM) (Tehrany et al. 2015), generalized linear model (GLM)
(Vandenberg-Rodes et al. 2016), maximum entropy (Maxent), and random forest (RF)
(Rahmati and Pourghasemi 2017).

AI-based techniques as well as advanced data-driven methods for modeling the natural
hazards, e.g., (Abedi Gheshlaghi et al. 2020, Arga~naraz et al. 2015, Bui et al. 2020,
Dodangeh et al. 2020, Ghorbanzadeh et al. 2019, Hosseini et al. 2020, Huebner et al.
2012, Khosravi et al. 2018, Littell et al. 2016, Motazeh et al. 2013, Nasi et al. 2002, Podur
et al. 2003, Sajedi-Hosseini et al. 2018) had been reported to be robust for spatially pre-
diction of naturally occurring phenomena and creating susceptibility mapping. However
overfitting, uncertainty, lack of memory, etc. are of their common drawbacks that were
not fully considered in many literatures. In forest fire susceptibility research, the recent
trend has included the combination or integration of the above approaches to produce
hybrid or ensemble models instead of employing single ones. For example, Sachdeva et al.
(2018) suggested using evolutionary optimized gradient boosted decision trees (EO-
GBDT) to develop wildfire susceptibility maps for the research region, including the dis-
tricts of Chamoli, Bageshwar, and Pithoragarh. According to the outcomes of their
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research, EO-GBDT generated susceptibility maps with an accuracy of 95.5%, exceeding
the accuracy of previous AI models. Gigovi�c et al. (2019) utilized a novel ensemble model
based on SVM and RF to map the susceptibility of the tara national park in Serbia to for-
est fires. They determined 126 forest fire occurrence areas among alternative sources using
satellite images, aerial photos, and comprehensive field surveys. Comparing the perform-
ance of the suggested ensemble model employing the Bayesian average to that of the
standalone AI models, they determined that the ensemble model seemed to have the
greatest results. Tuyen et al. (2021) used a locally weighted learning (LWL) approach in
conjunction with cascade generalization (CG), bagging, decorating, and dagging ensemble
learning strategies to determine FFSM in the Pu Mat National Park. Computational
results have shown that the CG-LWL and Bagging-LWL models with AUC ¼ 0.993 had
the highest training performance for predicting the spatial pattern of FFSM across the
study area. Mabdeh et al. (2022) employed two evolutionary algorithms, the genetic algo-
rithm (GA) and the shuffled frog-leaping algorithm (SFLA), to optimize the hyperpara-
meters of SVM and ANFIS models for forest fire susceptibility and risk mapping in
northern Jordan. The research’s findings indicate that the evolutionary-based SVR models
had AUC values approximately 5% greater than the ANFIS-based models.

The performance of MARS is susceptible to three hyper-parameters, including the
maximum number of BFs (Mmax), penalty parameter (c), and maximum interaction
between variables (Imax). Rezaie-Balf et al. (2019) reported that these hyper-parameters
control the complexity and generalization of MARS. Therefore, the determination of such
hyperparameters is crucial for the MARS prediction’s accuracy. The hyper-parameters, as
mentioned above, vary over a wide range, and their optimal values are problem-specific.
To accomplish this, it is possible to represent the task of identifying MARS’ parameters as
continuous domain optimization problems. The cat swarm optimization (CSO) method
was employed in the current work to optimize the abovementioned hyperparameters of
the MARS model for the aim of mapping wildfire susceptibility owing to its great accur-
acy and efficiency in large-scale handling issues.

In light of the discussion mentioned earlier, the main objective of the present work is
to establish a accurate hybrid model to provide wildfire susceptibility maps in the western
section of Zagros Mountains in Chaharmahal and Bakhtiari province, Iran. From the lit-
erature, multiple optimization and machine learning algorithms have been utilized for the
spatial modeling of wildfire across the globe; however, cat swarm optimization (CSO), to
the best of the authors’ knowledge, has not been previously examined to address wildfire
mapping. The western Zagros mountains which is a fire-prone area in southwestern Iran
is chosen as the area under study to collect and generate datasets for the modeling pro-
cedure. Additionally, various quantitative techniques are employed for model validation
and comparison, including statistical metrics and the receiver operating characteristic
(ROC) curve. To develop strategies to avoid fires or to utilize specialized techniques for
controlling existing fires, such maps might be utilized for early warning, fire suppression
resource planning, and allocation works, particularly in Iran.

2. Study area

The region under study is in the western section of Zagros Mountains in Chaharmahal
and Bakhtiari province, Iran, which is located in the latitude range of 320 6� N-320 43� N
and the longitude range of 500 20� E-510 11� E. It is mainly an elevated mountainous
region with a size of around 2933 km2 (0.2933 ha). The region has minimum and max-
imum altitudes of 1800 and 3304m, respectively. The mean slope angle is 15

�
, ranging
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from 0 to 69.39� (Termeh et al. 2018). The annual temperature mean in Chaharmahal
and Bakhtiari Province is 11.5 �C. It has a moderate semi-humid climate with mild
summers and severe winters. The annual rainfall mean level varies from 1400mm in the
northwestern to 250mm in the eastern and southeastern sectors, with a mean of 560mm
(Jaafari et al. 2018). The coldest month in this region is January, with August being the
hottest. The vegetation of majority of this region consists of Quercus persica, Olea euro-
paea L, Crataegus aronia, Pistacia khinjuck, and Prunus dulcis plants. Fire incidents
mostly happen in the dry season lasting from July to August (Fallah-Zazuli et al. 2019).
In this area, land cover pattern includes forest (21%), agricultural area (24%), pasture
(52%), urban (2%), and bare land (1%). Figure 1 shows the region under study as well as
the locations of fire incidents.

3. Material and methods

3.1. Inventory map of wildfire

It is known that two main groups of data are necessary to conduct the susceptibility analysis
of any natural incident, such as flash flood, landslide, and wildfire; these data are related to
independent and dependent factors. An inventory map that shows the location of the past

Figure 1. Location of the study area along with wildfire inventory map.
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incidents generally presents the dependent factor. Thus, an essential step toward susceptibil-
ity analysis is to prepare a valid inventory map of wildfire. The most efficient technique for
gathering these data has not been found yet (Gigovi�c et al. 2019). The fire inventory map of
the region under study is extracted from the literature (Nami et al. 2018; Pourghasemi;
Pourtaghi et al. 2016). Afterwards, to prepare the spatial database, the ignition sources asso-
ciated with this period are utilized. According to a number of semi-official accounts, past
fire incidents are mostly caused by natural factors, together with arson (at the forest-farm-
land interface) (Jaafari et al. 2019). Data about past fires are derived and analysis from vari-
ous sources, including the Natural Resource Bureau of Chaharmahal and Bakhtiari province,
MODIS hot spot products (http://earthdata.nasa.gov/firms) satellite images, and surveying
information in the period of 2013-2018. In total, 262 marked wildfire points were obtained,
of which 70% (183 incidents) are employed for training the applied models and the other
30% (79 incidents) for testing the model. Moreover, to establish the no-fire dataset, 262
points are chosen randomly from regions that have never experienced any fire events. The
no-fire data-set is separated into the training and testing samples in a similar manner
(Figure 1). It is worth mentioning that the division of all the fire and no-fire points into the
mentioned sets is conducted in a random manner.

3.2. Wildfire conditioning factors

Topographical factors including altitude, slope angle, and slope aspect are recognized to
affect the incidence of fire. Topographic features and the wind direction were also
reported to affect the probability of fire in the region (Jaiswal et al. 2002). The digital ele-
vation model (DEM) of the region is developed using the images of ASTER satellite with
a 30-meter spatial resolution. Afterwards, the ArcGIS10.3 software is used to prepare a
map of altitude, slope angle, and slope aspect. Changes in altitude affect the vegetation
and temperature; given that regions located at a higher altitude are generally more humid
and colder, the fire probability has an inverse correlation with altitude (Chuvieco and
Congalton 1989) (Figure 2a). In addition, the extent and direction of the fire are affected
by the slope angle, such that the destruction level is generally greater in steeper slopes
(Vadrevu et al. 2010) (Figure 2b). The amount of sunlight and heat affects the slope
aspect and is relevant to the dryness of the vegetation in the area. In this regard, the
southern and eastern faces generally receive the most sunlight and are thus more suscep-
tible to fire (Chandra 2005; Razavi-Termeh et al. 2020) (Figure 2c).

In recent decades, a population growth has been seen, which led to a significant inva-
sion of the forested lands for supplies, fuel, and agriculture. People living near forests are
dependent upon them (Jaafari et al. 2019). Another significant factor playing a role in for-
est fires is tourism (Arndt et al. 2013; Costafreda-Aumedes et al. 2018; Rodrigues et al.
2018). Hence, socio-economic factors selected here are distance to roads, distance to resi-
dential area, and land use. The probability of a fire is generally higher near roads
(Pourtaghi et al. 2016). To address this, 1:100,000 topographic maps are used to prepare
the map of roads in the study area, and buffers for the roads are specified at given inter-
vals (Figure 2d). Another factor affecting the probability of forest fires is closeness to a
settlement, e.g. rural and nomadic settlements. Given the dependency of residents on land
and forest to supply their need, they may start unintentional or deliberate fires (Razavi-
Termeh et al. 2020). In this regard, 1:100,000 topographic maps were used to prepare the
map of distance from a settlement (Figure 2e). In addition, to prepare the land use/cover
map, Landsat-7 images in the 2013-2018 period are employed. The land use/cover map
was prepared by extracting 400 training points from the Global Positioning System (GPS).

GEOCARTO INTERNATIONAL 5
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Out of these data points, 70% are employed to train and the other 30% were employed to
assess the map accuracy. By utilizing maximum likelihood estimation with an accuracy of
91%, the land use/cover map is prepared and divided into five categories: forest, agricul-
tural, grazing, wilderness, and urban areas (Figure 2i).

Figure 2. Wildfire conditioning factors: (a) altitude, (b) slope angle, (c) slope aspect, (d) distance to roads, (e) distance
to settlements, (f) rainfall, (g) air temperature, (h) wind effect, (i) land use/cover, (j) soil type, and (k) NDVI.
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Climate directly and indirectly contributes to forest fires, while indirectly affecting the
vegetation density and type (Vadrevu et al. 2010). Here, data gathered from 14 weather
stations in Chaharmahal and Bakhtiari in the 2013-2018 period are used to extract the
average annual rainfall, temperature, and wind speed and direction data. For preparing
the temperature and rainfall maps, the Kriging interpolation technique is employed. To

Figure 2. Continued.
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develop the wind effect map, Windward/Leeward indices are employed in the system for
automated geoscientific analyses with (SAGA)-GIS software. The input of these indices
includes the DEM, and wind speed and direction. A higher average temperature and a
lower rainfall are generally responsible for an incidence of fire (Figure 2f–h). Table 1
shows a summary of the mentioned variables, along with a description of the data and its
corresponding sources.

3.3. Methods

3.3.1. Frequency ratio (FR)
Numerous effective parameters must be considered for developing a forest fire susceptibil-
ity map (Adab et al. 2013). Ten contributing variables to forest fires are integrated into
GIS to develop a fire susceptibility map for the investigated area. These factors include
altitude, slope angle, slope aspect, elevation, land use/cover, distance to road, distance to
settlement, rainfall, temperature, wind speed, and soil. The existing vector data, including
polygons, polylines, and points, are converted into raster layers. In addition, the frequency
ratio (FR) theory is utilized for analyzing the spatial interactions of the fire and the sub-
categories of contributing factors. As FR increases, a greater correlation is obtained
between the fire and the considered sub-category (Termeh et al. 2018). Even though the
relative FR has simple mathematical terms and an understandable conceptual procedure,
its drawback is not considering variable interactions, which is a basic flaw of bivariate
statistical models (Ozdemir, 2011). Therefore, given that FR cannot assign weights, com-
paring various factors with one another is not viable. Another weakness stems from the
classification stage, mainly due to expertise. Thus, some bias may enter inevitably. By the
superposition (overlay function) of contributing factors and forest fire inventory maps
according to Equation (7), the FR model was applied in ArcGIS 10.3.

3.3.2. M5 model tree (MT)
Quinlan was the first to introduce the MT technique (1992). Decision trees seem ideal for
categorical data types; however, they may also be used for numerical data types. By apply-
ing linear regression models on the major leaf nodes (parent nodes), they were utilized to
determine the appropriate relationship between the input and output variables (Heddam
and Kisi 2018, Keshtegar et al. 2018).

To analyze the outcomes within the process, data sets are either linked with a leaf (par-
ent node) or divided into subsets in MT, depending on the ‘divide-and-conquer’ strategy.
In certain situations, such divisions result in complicated structures; hence, it is pruned

Table 1. Detail information of data source.

Variable Unit Source Resolution

Fire history – Historical archives and field surveys 1:25000
Soil Class Geological Survey and Mineral Explorations of Iran 1:100000
Temperature �C Meteorological Organization of Iran –
Wind effect m/s Meteorological Organization of Iran –
Land use class National Geographic Organization of Iran 30 m
Rainfall mm Meteorological Organization of Iran –
Distance to settlements m National Geographic Organization of Iran 1:100000
Slope aspect degrees Elevation Model (DEM) 90 m
Distance to roads m National Geographic Organization of Iran 1:100000
Altitude m ASTER Global Digital 30 m
Slope angle degrees Elevation Model (DEM) 90 m
NDVI ratio Landsat ETM 500 m
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back by a new subtree and leaf. The MT technique starts by calculating the data sets’
standard deviation (sd). Following that, they are separated to develop a decision tree. The
second phase in the MT approach is pruning, which involves eliminating over-fitted
results. Pruning methods depend on regression functions and may be used to eliminate
sub-trees. These procedures are used to compute the standard deviation (error) (Talebi
et al. 2017; Ghaemi et al. 2019),

SDR ¼ sd Tð Þ �
X Tij j

Tj j sd Tið Þ (1)

Where sd represents standard deviation; T seems to be the set of examples that
approach the node; Ti is the subset of patterns that have the ith result of the potential
data set. The MT approach selects a node by evaluating all results that reduce the error.
The ability to estimate the error in situations that have not been observed, use multivari-
ate regression techniques in every node, minimize linear models to reduce error and
smooth the projected value are all advantages of the MT approach.

3.3.3. Reduced error pruning tree (REPTree)
Reduced error pruning tree (REPTree) is a fast decision tree learning system based on the
theory of information gain computation with entropy and variance error reduction
(Mohamed et al. 2012; Kapoor et al. 2015; Pham et al. 2019). The technique’s pruning
process seeks to produce the smallest version of the most accurate tree by post-pruning in
response to the backward overfitting issue. The information gained from entropy, reduc-
tion in variance, and reduction in error pruning techniques affect the performance of this
method. Equation (3) calculates information gain (IG) values based on the entropy func-
tion.

IG x, Nð Þ ¼
E Nð Þ �Pn

i¼1EðNiÞ Nij j
�Pn

i¼1
Nij j
Nj j log2

Nij j
Nj j

(2)

In consecutive pruning phases, the information gain considers all predictors of FSMs
from the training dataset (N).

3.3.4. Multivariate adaptive regression splines (MARS)
The MARS model that was presented by Friedman (1991), appears to be a non-parametric
approach for the non-linear modeling of a knowledge system’s independent and depend-
ent variables. It uses a regression-based intelligence algorithm for such an objective. The
basis function (BF) is modified depending on the retrieved slope of the final model’s
regression line (one spline to more). Every spline has an endpoint represented by a knot
that denotes the start of one data area and the end of another.

Given the extraction of complicated data structures from multidimensional datasets,
MARS can search for plausible scenarios across all degrees and gives a solution for vari-
able interactions. In the next stage, a parameter could be studied further by describing the
highest allowable degree of interaction (Imax). Generally, the first and second interaction
orders are permissible; however, the facts may justify the usage of larger degrees of inter-
action. The general equation for the MARS function is as follows (Rezaie-Balf et al. 2019;
Bateni et al. 2019),

f xð Þ ¼ b0 þ
XM

m¼1
bmkm xð Þ (3)
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Where M indicates the number of basis functions, x, b0 and bm are expected constant
coefficients for achieving the optimal data fit, and f(x) is the projected response associated
with predictor variable x. Applying the least square error approach, the constant coeffi-
cients b and k in Equation (8) could be determined.

In MARS, BFs are generated via a stepwise search, and knot locations are determined
using an adaptive regression approach. MARS uses the forward stage and the backward
stage as its two-optimization phases. Many BFs are employed in the forward stage to min-
imize data overfitting. MARS uses the generalized cross-validation (GCV) approach to
remove pruned BFs, avoiding over-fitting in the backward step. The GCV formula is
shown below:

GCV ¼
1
N

PN
i¼1ðyi � fðxiÞÞ2�

1� Mþc � ðM�1Þ=2
N

�2 (4)

where M and N, respectively, are the number of BFs and the number of training data
sets, and c represented penalty for each BF (Rezaie-Balf et al. 2017; Zawadzka et al. 2020).

3.3.5. Cat swarm optimization (CSO)
In cat swarm optimization (CSO) method, two cat behaviors, when resting and chasing
prey, are emulated; these behaviors are referred to as searching and tracing mode. The
solution space is used to randomly distribute a population of cats, with each cat’s mode
(seeking or tracing) denoted by a flag (Orouskhani et al. 2013; Bahrami et al. 2018). For
specifying the seeking mode, four main parameters including seeking memory pool
(SMP), self-position consideration (SPC), seeking range dimension (SRD), counts of
dimension change (CDC), are introduced according which the responsibility of the each
parameters is specified in Ahmed et al. 2020. The processes described below are carried
out throughout the seeking mode, according to Chu and Tsai (2007) (Yusiong 2012;
Ahmed et al. 2020):

1. J copies of the present place of catk are created (j¼ SMP). Next, j ¼ (SMP – 1) is
taken, and the present place is kept as a candidate in case the value of SPC is true;

2. For each copy, random dimensions depending on CDC are chosen for every cat. The
SRD fraction of the current position’s value is added/subtracted to/from the chosen
dimensions, and the previous location is replaced employing Equation (5). 2016
(Majumder and Eldho 2016),

Xcn ¼ ½ð16SRD� RÞ� � Xc (5)

Where Xc is the present position; Xcn is a new position; R is a random value varying
in the 0-1 range;

3. Each candidate point’s fitness (FS) values are computed;
4. The probability of selection is computed according to the following conditions, if the

values of FS are not identical.
Equation (6) is calculated for each candidate point. Otherwise, the selection probabil-
ity for each candidate point is 1.

Pi ¼ FSi � FSbj j
FSmax � FSminj j 0 < i < jð Þ (6)

10 H. TAO ET AL.



In the above, Pi is the likelihood of the present candidate cati; FSi represents the fit-
ness value of cati; FSmax and FSmin give the maximum and minimum fitness values,
correspondingly; for minimization problems, FSb ¼ FSmax, and maximization prob-
lems, FSb ¼ FSmin; and

5. A point is randomly picked among the candidate points based on the probability val-
ues derived in the preceding step, and the position of catk has been replaced.

The chasing process of the cat is simulated in the tracing mode via the steps below:

1. The cat speeds are updated for all dimensions via Equation (7) (Chu and Tsai 2007),

#k, d ¼ #k, d þ r1c1ðXbest, d � Xk, dÞ (7)

Where c1 is a constant value and r1 is a random value between 0 and 1, Xbest;d

denotes the cat’s best position in dimension d, Xk;d denotes the cat’s location in
dimension d, and #k, d indicates the speed of catk in dimension d

2. It is determined whether the new speed is less than or equal to the maximum speed.
If it exceeds the speed range, it is considered the maximum speed;

3. Equation (8) is used to update the positions of the cat,

Xk, d, new ¼ Xk, d þ #k, d (8)

Where Xk;d; new is the new location of catk in dimension d; and
4. New locations is identified by the fitness function, and the best cat is stored in

memory.

3.3.6. Integrated MARS with CSO algorithm
In AI methods, determining the relevant parameters and optimal framework of the applic-
able prediction model seems to be a challenging and crucial task that might affect the
accuracy and efficacy of the developed model. The issue arises because of the modeling
concept’s complexity and the size of the obtained database. Examining the literature and
searching for optimistic answers based on a restricted heuristic search is one method for
determining the appropriate parameters. The trial and error operation is unreliable and
could fail and provide unsatisfactory results due to the limited heuristic search.

Key parameters, including the penalty factor c, the maximum number of basis func-
tions Mmax, and the order of interaction Imax are used to develop the MARS approach.
Finding the optimum essential elements is challenging; however, finding the right parame-
ters may greatly improve MARS modeling performance. An intelligent non-parametric
model relying on the hybridization of CSO and MARS is proposed to aid scientists in
addressing such challenging issues. While CSO could discover a global optimum, original
MARS is more likely to converge at a local minimum. Consequently, the suggested CSO-
based MARS model incorporates the capabilities of CSO and MARS, with CSO searching
for optimum essential factors (c, Mmax, and Imax) in the search space. Figure 3 depicts the
suggested hybrid MARS-CSO flowchart.

The CSO-based MARS model’s training process starts with initializing a population of
cats, as demonstrated in Figure 3. Within the search space, population positions of cats
that symbolize the essential components of MARS are randomly allocated in this stage.
The MARS integrated with CSO algorithm is then trained to utilize initial c, Mmax, and
Imax values (initial position of cats). Then, the actual and anticipated values differences
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are computed. To reduce the calculated errors at every iteration, the position of the cats
is updated. The process is repeated until the termination requirements are satisfied.

MARS is used throughout the CSO optimization process to develop a new model for
every set of critical variables that each candidate solution has provided. The greedy
selector in CSO is used to evaluate the models’ performance based on the fitness function.
Once the calibration (training) step is complete, MARS is implemented for the validation
(testing) dataset. To optimize performance, the goal function is to minimize prediction
error (f),

f ¼ Etrain þ Etest (9)

Where, Etrain and Etest represent the 70-30% error in data evaluated during the training
and testing stages, correspondingly.

As an error measurement, the mean square error (MSE) of prediction is developed to
obtain a compromise between complexity and generalization. Consequently, the combin-
ation of training and testing errors might result in a model with the lowest MSE that is
both optimistic and balanced. Candidate solutions are typically moved inside the search
space during every iteration to reduce MSE. Subsequently, the MARS model is retrained,
and the error is recalculated with the assistance of the updated set of important factors
until an acceptable error is achieved. It should be mentioned that the search procedure’s
termination condition is considered the maximum generation number (Figure 4). Finally,
the proposed prediction model has the optimal parameters (Table 2).

4. Model performance assessment

4.1. Statistical metrics

In this study we employ Kappa index (k-index), standard error, accuracy (%), and 95%
confidence level (95% CL) for assessing the prediction ability of models, together with
classification precision, representing the model’s ability to correctly distinguish the fire
pixels from nonfire pixels (Baratloo et al. 2015). The k-index evaluates the correlation of

Figure 3. Methodological workflow for wildfire potential maps using CSO-based MARS and standalone models.
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two raters, each classifying the total number of fire and nonfire locations in two exclusive
fire and non-fire categories, respectively and as the nearly prefect agreement with the
observation, the acceptable range of this metric is 0.8-1 (Tariq et al. 2021).

4.2. Evaluation results using ROC curve

After models’ accuracy verification, we use each significant fire predictor for estimating
the wildfire probability.The significance of each incident predictor indicates an important
output of standalone and hybrid models, finally helping compute the wildfire probability
in the region under study. Rasters multiply each significant fire predictor after calculation.
Afterwards, with the associated importance in ArcGIS Map Algebra function, all rasters
sum up the probability of fire for each of the four models Thereafter, we use the receiver
operating characteristics (ROC) curve, that indicates the ability of the hybrid model for
the correct estimation of regions susceptible to wildfire, to assess the accuracy of the wild-
fire probability maps. We plot the sensitivity on y-axis versus the specificity on x-axis.
Also, AUC represents the main statistical index of the ROC curve. The closer the AUC to
1, the higher the performance of the model. The calculation of this parameter is
(Costache and Bui 2020),

AUC ¼
P

TPþP
TNð Þ

ðPþNÞ (10)

where N and P represent the total number of non-fire and fire pixels, respectively.

Figure 4. Training iteration versus prediction error of the proposed MARS model using CSO with various population
sizes.

Table 2. Optimum values of hyperparameters of CSO algorithm and MARS model for wildfire susceptibility
prediction.

Method Algorithm parameters Value

CSO Seeking memory pool
Counts of dimension to change
Seeking range of the selected dimension
Mutative ratio

5
0.8
0.2
0.9

MARS Maximum number of BFs
Penalty parameters

52
1

Maximum interaction between variables 2
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5. Results

5.1. Model performance and results comparison

Before going to models’ development, we applied Pearson coefficient analysis in this sec-
tion to indicate the prediction potential of various ignition factors. This will contribute to
the elimination of irrelevant factors, which in turn can enhance the ability of prediction
models (Tien Bui et al. 2016). Table 3 depicts the relationship of different factors with the
wildfire using the Pearson correlation method. From the Table 3, we found that land use/-
cover along with NDVI are the maximum predictive potential (0.461 and 0.438). The next
contributing factors in order are temperature (0.395), slope angle (0.347), distance from
settlements (0.276), altitude (0.269), and slope aspect (0.235). The findings are reasonable
since land use is indirectly associated with vegetation, the main factor governing the fire
potential.

Table 4 shows spatial relationships between explanatory variables and historical fire
location using FR model. According to results related to the altitude factor, an area higher
than 2400m is predominantly susceptible to fire occurrences, and almost 76% of all wild-
fires are experienced in the research area. The maximum FR (1.67) for slope corresponds
to slope angles between 15 and 20�. The southwest side has the highest FR (1.23) in the
slope aspect factor. The maximum FR for distance from the road is between 300 and 600
meters (1.42).

Additionally, distance from the settlements showed a definite difference between areas
situated within 1500m (experiencing merely 5% of every fire) and that > 1500m from
the settlements, which is reported in literary works (Vilar et al. 2016). The spatial rela-
tionship between land use/cover type and historical fires revealed that pastures, which
comprised 58% of the landscape and experienced 44% of all fires, are more prone to fire,
indicating that human activities are prevalent in such areas.

Table 5 shows the usability of the proposed MARS-CSO model compared with bench-
mark methods, namely MT, REPTree, and MARS. Based on results in the validation stage,
the MARS, in which the CSO algorithm optimizes its hyperparameters, had higher accur-
acy (0.89%) and k-index (0.784) than those of the four benchmark methods. The pro-
posed MARS-CSO model has the lowest standard error (0.067) for the validation dataset,
followed by the MT (0.031), REPTree (0.0301), and MARS (0.0339). Previous studies sup-
port the outcomes of the present study on the reliability and robustness of integrative
machine-learning approaches for environmental studies (Jaafari et al. 2019; Gholamnia
et al. 2020).

Additionally, the accuracy of the wildfire susceptibility map is evaluated using the area
under the curve (AUC), a synthetic metric derived for receiver operating characteristic

Table 3. Predictive ability of the factors effective in wildfire by Pearson correlation analysis.

No. Participating factor Pearson coefficient Standard deviation

1 Soil 0.017 0.014
2 Temperature 0.395 0.010
3 Wind effect 0.105 0.016
4 Land use/cover 0.461 0.012
5 Rainfall 0.057 0.007
6 Distance to settlements 0.276 0.021
7 Slope aspect 0.235 0.025
8 Distance to roads 0.192 0.014
9 Altitude 0.269 0.024
10 Slope angle 0.347 0.032
11 NDVI 0.438 0.014
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(ROC) curves and broadly implemented in numerous types of study (Figure 5). The AUC
value, which ranges from 0.5 to 1, is the chance that a positive event will be assessed as
positive using the test. According to Table 5, all of the obtained AUCs for proposed mod-
els in the validating (>80%) phase are highly accurate for the generated susceptibility
maps of wildfires. In this regard, MARS-CSO with the maximum prediction accuracy for
the fire incidents (89%) outperforms standalone MARS (84.3%). After this, REPTree
(85.1%) demonstrates proper learning ability for the spatial relationship of fires and igni-
tion sources. Thus, the prediction performance of the model employed in this study is
superior to those used in previous works.

Table 4. Performance results of the FR model for wildfire potential prediction.

Class

No. of
pixels in
domain No. of fires FR Class

No. of
pixels in
domain No. of fires FR

Altitude
<2000
2000–2200
2200–2400
2400–2600
>2600

43836
380953
402336
208605
113617

0
9
35
88
51

0
0.14
0.54
2.64
2.81

Land use
Forest
Agriculture
Pasture
Urban
Bare land

239286
285290
589141
23535
11785

69
33
81
0
0

1.8
0.72
0.86
0
0

Slope angle
0–5
5–10
10–15
15–20
>20

476815
269176
158124
100963
134369

34
52
40
27
30

0.48
1.21
1.58
1.67
1.4

Distance to
settlements
0–500
500–1000
1000–1500
1500–2000
>2000

8989
25606
40986
56353
101741

3
3
3
11
163

2.096
0.73
0.45
1.22
1.006

Distance to roads
0–300
300–600
600–900
900–1200
>1200

84252
70352
68477
62709
633557

18
16
13
11
125

1.34
1.42
1.19
1.1
0.9

Rainfall
<450
450–550
550–650
650–750
>750

741900
162761
107151
65937
71598

30
29
17
39
68

0.25
1.11
0.99
3.71
5.96

Temperature
< 8
7–9
9–10
10–11
>12

138900
217489
312511
210520
269927

90
53
28
0
12

4.06
1.53
0.562
0

0.279

Wind effect
< 0.85
0.85–1
1–1.2
>1.2

109978
489524
428056
121789

6
28
106
43

0.34
0.35
1.55
2.21

Slope aspect
Flat
N
NE
E
SE
S
SW
W
NW

11412
161213
159845
166211
106608
162467
141008
147469
93114

1
21
22
26
21
28
25
30
9

0.55
0.81
0.86
0.98
1.23
1.08
1.11
1.27
0.6

Soil
Entisols
Inceptisols
Rock Outcrops
NDVI
�0.4–0.1
0.1–0.16
0.16–0.27
0.27–0.46
> 0.46

727652
319998
101392
1020039
1460083
447698
234783
101223

162
21
0
37
97
40
9
0

1.39
0.41
0

0.64
1.18
1.59
0.68
0

Table 5. Accuracy assessment of the proposed models using the validating data.

Parameters MT REPTree MARS MARS-CSO

k-index 0.734 0.742 0.767 0.795
Standard error 0.0436 0.0481 0.0389 0.0354
Accuracy (%) 0.912 0.883 0.932 0.955
AUC 0.892 0.87 0.917 0.944
95% CL Lower bound 0.832 0.807 0.863 0.896

Upper bound 0.935 0.918 0.955 0.975
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Despite the fact that different factors, such as environmental conditions, ignition sour-
ces, and computational parameters, need to be considered for comparing the present
results with those of other works, MARS-CSO, the most powerful model in this study,
can capture the relationship between fire incidents and ignition factors with a higher
accuracy. The integrated proposed model was more accurate than the standalone MARS.
Moreover, the hybrid MARS model coupled with CSO in this study demonstrates a better
performance relative to both tree-based MT and REPTree models.

Furthermore, we apply the Chi-Square test to assess the statistical difference between
wildfire susceptibility models. It is predicated on the ‘prior’ premise that there is no statis-
tically significant difference between suggested AI models for mapping wildfire suscepti-
bility (Tallarida and Murray 1987). The ‘prior’ hypothesis is not true. It, therefore, is
rejected since the Chi-square values are more than 3.841 and the significant level value
(p) is less than 0.05 (the threshold value), making the difference between the wildfire sus-
ceptibility models statistically significant (Kuncheva 2007). Table 6 displays the Chi-square
values and significance levels for several wildfire susceptibility models. As Chi-Square and
significant level values are much higher than threshold values, we perceive that all models
of wildfire susceptibility exhibit substantial variation.

5.2. Wildfire susceptibility map generation

In the next step, when the hyperparameters of MARS model are optimized with CSO algo-
rithm in training and validating stages, we use the integrated MARS-CSO model along with

Figure 5. Receiver operating characteristics (ROC) curves for the proposed MARS-CSO and benchmark models.

Table 6. The Chi-square values and significant levels of different standalone and integrated AI models for wildfire
susceptibility mapping.

Models Chi-square values P value Significant level

MARS-CSO vs MT 53038.226 <0.001 Yes
MARS-CSO vs REPTree 86862.584 <0.001 Yes
MARS-CSO vs MARS 48625.25 <0.001 Yes
MT vs REPTree 65285.621 <0.001 Yes
MT vs MARS 79521.105 <0.001 Yes
REPTree vs MARS 49682.197 <0.001 Yes
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other standalone classification and regression-based models to develop a susceptibility map
of wildfire for the region under study in Chaharmahal and Bakhtiari province. For the pur-
pose of developing the susceptibility maps, wildfire susceptibility indices created during the
model development phase are employed to assign all pixels of the area under study.

In this study, we use the natural break approach to classify data’s spatial attributes
based on the natural grouping inherent in the data. The natural break approach maxi-
mizes variance between groups and reduces within-class differences (making them as
similar as possible) (and makes data classes as different as possible). The natural breaks
classification identifies real classes within the data, which is a benefit. This is advantageous
since it creates choropleth maps that accurately depict data trends. Therefore, for building
final maps via the natural break classification method available in GIS software, we divide
the obtained indices into five categories of wildfire susceptibility: very low, low, moderate,
high, and very high (Figure 6). This figure also shows the scattering of each susceptibility
category on the maps developed using various methods.

According to Figure 7, an integrated MARS-CSO model demonstrates that about 20%
of past wildfires are shown on the very high susceptibility category of the maps (17.31%).
Evaluation of MT, REPTree, MARS models to predict fire inventory locations is carried
out, and the generated wildfire maps for the pixel category with a very high susceptibility
are 21.44, 16.23, and 19.19%. Although the models have different performances, all of
them indicated that the low-lying areas in the western part of the region are most

Figure 6. Susceptibility map of wildfire for the area under study via a) MARS-CSO, b) REPTree, c) MARS, and d)
MARS-CSO models.
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susceptible to fire, while the very low susceptibility areas are mainly distributed in the
southern part. Therefore, nearly 40% of this area has high and very high fire susceptibility
levels, indicating that mitigation measures, such as warning systems, and monitoring pro-
grams must mainly address these parts of the case study.

6. Discussion

Every year with the onset of summer, Iran faces pasture fires that yearly devastate the
country’s limited forest resources. Wildfire losses are projected to be equivalent to the
entire area of reforestation. The location and related climatic conditions affect the fire sea-
son. For instance, the worst fire season occurs between March and September in central
and southern Iran due to a rise in temperature and drought. In this sense, fire risk man-
agement must provide a precious tool/model for identifying the susceptibility of wildfire.
As this phenomenon has a complicated and non-linear structure, it seems to be an intel-
lectual challenge to estimate the probability of its recurrence using AI models (Ghavidel
et al. 2016). The present study’s novelty and objective are using CSO as an optimization
technique for finding optimum hyperparameters of the MARS model for modeling wild-
fire susceptibility mapping at a selected region of Chaharmahal and Bakhtiari province,
Iran. To evaluate the performance of the proposed ensemble model, we implement two
classification-AI models such as MT and REPTree to map the wildfire locations. For all
standalone and hybridized AI models, the 70% (183 locations) wildfire occurrences are
for training and 30% (79 locations) for test.

Depending on the spatial relationship established by the FR model between the effect-
ive factors and a fire location, it became clear that the highest value of RF for the altitude
factor falls into the category of more than 2600m, which could be connected to the prox-
imity of the forests to the mountainous regions in the study area. The maximum FR in
the slope angle factor for the class of 15–20 degrees, according to Pourtaghi et al. (2016),
stated that the likelihood of fires in sloped areas might rely on the higher vegetation dens-
ity in this class. The important point relies on the proximity to roads is for fire occur-
rence reduction when the distance to a road increases, as proven by Jaafari et al. (2018),
and we can conclude that more wildfires occur in the zone closest to roads (the first 600-
meters) than would be predicted by random distribution. Considering climatic conditions,
we discovered that fires occur more often in mountainous areas with lower temperatures

Figure 7. The susceptibility maps of wildfire natural hazard generated via MT, REPTree, MARS, and MARS-CSO.
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and more wind-driven precipitation. In addition, based on the land use/cover factor, for-
est classes are more prone to fires than pasture and agricultural classes.

According to Table 2, land use/cover and temperature had the greatest impact on wild-
fire vulnerability. Evidently, in the provinces of Chaharmahal and Bakhtiari, some farmers
burn portions of the forest close to their land to increase crop planting or out of competi-
tion with other landowners. In contrast, others prefer to utilize the land for other reasons.
Furthermore, fires have destroyed several forest areas in Chaharmahal and Bakhtiari prov-
inces due to severe heat and precipitation decreases, enhancing the fire risk and signifi-
cantly modifying fire behavior. In terms of slope angle, it can be said that the fire
typically climbs uphill more readily than it descends downhill, and the greater the inclin-
ation, the quicker the fire spreads. However, soil type and rainfall were the least important
factors in the incidence of wildfires. According to Hong et al. (2017), slope and tempera-
ture have a larger role in the incidence of fires, which is consistent with the present
study’s findings. Pourtaghi et al. (2016) also demonstrated that temperature and land use
had a stronger impact on the likelihood of a wildfire. According to Eskandari et al. (2020)
and this study, the potential for human-caused fires related to land use factors is
magnifying.

In this region, land cover is changed to residential areas (about 50% of all fires) and
the agricultural sector (about 25% of all fires). Due to the obvious correlation between
land usage and fire that has been demonstrated, human-caused fires will also rise. One of
the influential factors that can improve the accuracy of the integrated model is the opti-
mal number of training set (Hughes, 1968).

Therefore, we should give special attention on the number of training data and the
complexity of the model (Pourtaghi et al. 2015; Tsangaratos and Ilia, 2016). In this inves-
tigation, the standalone MARS model needs a minimum of 150 training incidences (fire
and non-fire) to obtain accurate and consistent findings. In contrast, the optimized tech-
niques follow the needed training data depending on the existing training incidence.
Therefore, they are best prepared to provide more desirable predictions.

Jaafari et al. (2018) studied wildfire spatial analysis in the Zagros mountains, Iran.
They used 132 fire records between 2007 and 2014 for the studied area. The predictive
models for wildfire susceptibility mapping alternating decision tree (ADT), classification
and regression tree (CART), functional tree (FT), logistic model tree (LMT), and Naïve
Bayes tree (NBT). In another study, Eskandari et al. (2020) proposed four data-mining
algorithms including SVM, generalized linear model (GLM), functional data analysis
(FDA), and RF for mapping fire danger at Koohdasht County which is in the Zagros
region. They used data from 349 fires in the research region between 2001 and 2017 for
developing the four recommended models.

Comparing results of the present study with Jaafari et al. (2018) and Eskandari et al.
(2020), for wildfire spatial prediction shows that temperature is one of the important indi-
cators with assertion of both studies. Moreover, the candidate MARS-CSO models (0.924)
outperformed ADT (0.878) and CART (0.867) models from Jaafari et al. (2018) and GLM
(0.705) and FDA (0.714) models from Eskandari et al. (2020) in term of accuracy. AUC
which is calculated in all tree investigations, is recruited to compare the performance of
the models. AUC of the proposed ADT and FDA models, respectively, in Jaafari et al.
(2018) and Eskandari et al. (2020) studies were reported 82.57% and 0.77.7%. MARS-CSO
model improves the accuracy of the simulation in proving the required maps by about
7% and 15% compared with ADT and FDA models respectively. Although both previous
studies in achieving the simulation results are satisfactory, Their model’s reliability along
with the accuracy can be enhanced for better fire susceptibility detection in the studied
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area. In addition, k-index is improved by 29% and 5% compared to the best fitted models
of Jaafari et al. (2018) and Eskandari et al. (2020), respectively, since the MARS coupled
with CSO algorithm in this study. It seems that the superiority of the proposed MARS-
CSO model compared to those benchmark models in this study and also ADT and FDA
models from Jaafari et al. (2018) and Eskandari et al. (2020) was tuning the hyperpara-
meters of the standalone MARS model in order to better understanding of the relation-
ships between contributing factors and target variables. Although tree-based models in
this study had satisfactory performance for detecting wildfire, their training is relatively
expensive as the complexity and time has taken are more compared MARS and integrated
MARS techniques. In addition to pruning and other solutions in tree-based models, it can
be seen that the accuracy of the models for training due to the over-fitting problem is far
greater than testing set. However, in MARS model this problem is addressed by cross-val-
idation techniques along with forward and backward stages of calibration process.

It is important to remember that using the models suggested in the present research
has limitations. Most significantly, the models may not be as accurate as they are in the
presence of significant alterations in variable components because they were developed
employing geo-environmental data from a given period (e.g. rainfall). These conditions
need regular updating of the susceptibility maps that have been generated. In order to
estimate wildfire susceptibility with greater quality and consistency, it is also crucial to
invest in databases and accurate wildfire records that encompass key explanatory factors;
some of these variables were unavailable for use in this research. The developed ensembles
are also very complex because of the issue’s enormous size (i.e. taking into account 11
ignition factors), as demonstrated by the prolonged computation times of the elite models
(by comparison). Nevertheless, such limitations may be mitigated by optimizing the input
configuration, a powerful concept for future research. Furthermore, the quality of the
wildfire susceptibility mapping could be improved when other new optimization algo-
rithms with fewer parameters are selected for searching the best hyperparameters for the
MARS model.

7. Conclusion

Susceptibility analysis of natural hazards, like, flood, landslide wildfire, etc. is a basic pre-
requisite for future planning and management, early warning systems, and resource allo-
cation in any region. Modeling wildfires at the regional scale is a non-linear and common
complex problem, which is challenging to assess and predict. This research develops and
validates a new hybrid AI model, named cat swarm optimization-based multivariate adap-
tive regression splines (MARS-CSO), to predict wildfire for a case study of Chaharmahal
and Bakhtiari province, Iran. The proposed model is formulated by processing informa-
tion from 262 historical fires from 2013 to 2018 and a set of spatially explicit explanatory
variables. According to Pearson coefficient, land use/cover and NDVI with 0.464 and
0.432 respectively were two greatest contributing factors for fire occurrence lacations. By
developing MARS-CSO, CSO with population size ¼ 120 yielded the most consistent
results for wildfire prediction. In order to evaluate MARS model prediction when its
hyper-parameters were optimized with CSO algorithm and other benchmarked models,
namely MT, REPTree, and standalone MARS model, several performance metrics along
with ROC curve are used.

The results revealed that this algorithm overcomes the drawback of being trapped in
the local optimum of the traditional MARS via comparison of statistical metrics, and vis-
ual comparison of wildfire susceptibility maps. Results indicate that all four models
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developed in this study have acceptable accuracy in term of AUC (> 0.8) when predicting
future fire susceptibilities in the studied region. The most remarkable difference among
the performances of the models may be the interpretability. Overall, this study can help
other researchers develop fire susceptibility maps for other region and presents an
approach useful for geo-environmental problems other than wildfire assessment.
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