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Figure 1: Visualizations of Motion Sequences of Virtual Characters Performing Various Intended Actions with Different Objects, as
Generated by Our Method. We synthesize the full-body pose sequences along with the 3D object positions from textual inputs. Our method
can synthesize single-handed as well as two-handed interactions depending on the intent and the type of the object used.

Abstract
Can we make virtual characters in a scene interact with their surrounding objects through simple instructions? Is it possible to
synthesize such motion plausibly with a diverse set of objects and instructions? Inspired by these questions, we present the first
framework to synthesize the full-body motion of virtual human characters performing specified actions with 3D objects placed
within their reach. Our system takes as input textual instructions specifying the objects and the associated ‘intentions’ of the
virtual characters and outputs diverse sequences of full-body motions. This is in contrast to existing works, where full-body
action synthesis methods generally do not consider object interactions, and human-object interaction methods focus mainly
on synthesizing hand or finger movements for grasping objects. We accomplish our objective by designing an intent-driven
full-body motion generator, which uses a pair of decoupled conditional variational auto-regressors to learn the motion of the
body parts in an autoregressive manner. We also optimize for the 6DoF pose of the objects such that they plausibly fit within
the hands of the synthesized characters. We compare our proposed method with the existing methods of motion synthesis and
establish a new and stronger state-of-the-art for the task of intent-driven motion synthesis.
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1. Introduction

Humans regularly use and interact with objects in numerous ways
in the real world. Interactions like eating a fruit or brushing the
teeth, as shown in Fig. 1, are part of our daily-routines. Being able
to synthesize such interactions in a virtual 3D environment through
textual instructions has widespread applications in several areas,
including computer graphics and robotics [ALNM20; HTBT22;
WLK*22], movie script visualization [HMLC09] and game de-
sign [SSR07]. For instance, in a digitally created movie scene or
a virtual role-playing game, it is natural for the character to interact
with the scene objects based on a set of instructions, such as yield-
ing tools, using objects, or eating various items. Manually mod-
eling such 3D character-object interactions or intentions is time-
consuming and laborious, when we desire to synthesize variety of
possible motions with the same intention and object.

In this context, many recent methods automatically synthesize
motions for virtual characters by encoding control signals such as
music [LYL*19; LRX*21; LYC*20], speech [BCRM21; HXM*21;
HES*22] or text, either as sentences [BRB*21; GCO*21; PBV22;
GZW*20] or as high-level action descriptions [AM19; LWC*18;
AHC*18]. Methods synthesizing full-body pose sequences typi-
cally follow an autoregressive approach to maintain continuity in
the synthesized motions [LZCvdP20; RBH*21; GZZ*22]. These
autoregressive motion synthesis frameworks predict short-term fu-
ture sequences from a short history. There also exist several meth-
ods for hand-object interactions [JLWW21; CKA*22; KYZ*20;
TGBT20; ZYSK21], which focus on generating only the wrist and
finger movements for grasping various objects. However, to create
a plausible motion sequence for an intent-driven virtual character,
modeling hand motion alone is not sufficient. Instead, we believe
it is crucial to operate in the space of full-body motion synthe-
sis. There are two prime reasons for this. Firstly, synthesizing full
body movements allows for a broader range of interactions (Fig. 1).
For several intents (like eating, drinking, exchanging objects be-
tween hands, inspecting, passing, etc) the head, the arms, and the
torso are also part of the complete action sequence [TGBT20].
Secondly, trivially attaching the synthesized hand motion to the
remaining body [PRB*18] leads to an uncanny and physically
implausible motion generation (see suppl. video). Further, recent
works [TCBT22; WWZ*22] have demonstrated the ability to gen-
erate whole-body grasping motion starting from a T-Pose till the
moment of the grasp. However, synthesizing a plausible motion se-
quence after the first grasp moment, especially based on an intent
guiding the human-object interaction remains unaddressed.

In response to these limitations, we propose IMoS—a novel
framework to synthesize diverse, full-body motion sequences of
various character-object interactions. Crucially, the motions are
synthesized based on the input textual instructions consisting of
actions (intentions) and objects (Fig. 2). We learn generalizable in-
tent encodings from the input intent-object pairs using a CLIP en-
coder [RKH*], which is a large-scale language model trained on
a large corpus of text-image pairs. Given the initial body poses
and the 3D object positions, we design an intent-driven full-body
motion generator model to autoregressively generate full-body mo-
tions (Sec.3). We follow a decoupling approach and model the arms
and the body motions using separate Conditional Variational Au-

Figure 2: Overview of Our Intent-Driven Full-Body Motion
Generator. Our model takes in initial 3D body poses and object po-
sitions (upper-left), and instruction labels (upper-middle) describ-
ing the object types and the intended actions. We design a pair of
decoupled conditional variational auto-regressors, the Arms Syn-
thesis Module and the Body Synthesis Module (lower-middle), to
separately synthesize the arms and the rest of the body. We also
design a Condition Encoder (middle) to condition our decoupled
autoregressors based on the input instruction labels and the body
shape parameters. We concatenate our synthesized arm and body
motions, and use our Object Optimizer Module (lower-right) to op-
timize for the 6-DoF parameters of the object such that it satisfies
grasping constraints. Our model outputs the synthesized full-body
motion sequence along with object positions (upper-right).

toregressors to make our output arm and body movements more
precise. Since these autoregressor encoders are variational in na-
ture, they allow us to sample diverse motions from the latent space
at inference time. We also observe that regressing the motion from
a longer history is crucial in modeling long-term temporal depen-
dence between the joints. We use a position-encoded self-attention
mapping to model correlations between the different joints to allow
a broader range of interactions. Finally, we perform an optimization
routine to estimate the corresponding 6-DoF object positions, rela-
tive to the hand position in each frame (Sec 3.2.4). We also use the
recovered object positions to condition the future motion synthesis.

We train and evaluate our method on the recently introduced
GRAB dataset [TGBT20] (Sec. 5.1), consisting of ∼1.3K se-
quences of human-object interactions displaying multiple intents.
We quantitatively evaluate our synthesized sequences on metrics
like the Mean Per Joint Position Error, the Average Variance Er-
ror, and the Average Pairwise Distance to test the variability of the
model. More importantly, we conduct a visual perceptual study for
subjective evaluation of our synthesized motions compared to re-
cent conditional motion synthesis methods (Sec. 5.6).

In summary, our primary technical contributions are threefold:

• A new framework for generating diverse motion sequences
in which virtual humanoid characters interact with objects of
known shapes, placed within their reach, from text-based in-
struction labels. In contrast to previous works on character-
object interactions, our proposed method also optimizes for the
6-DoF object positions in 3D.
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Method
Motion Synthesis

Full
Body

Intent-
Driven

Only Till
Grasp

Object
Manipulation

GRABNet [TGBT20] ✗ ✗ ✗ ✗

D-Grasp [CKA*22] ✗ ✗ ✗ ✓

A2M [PBV21] ✓ ✓ ✗ ✗

ACTOR [PBV21] ✓ ✓ ✗ ✗

GOAL [TCBT22] ✓ ✗ ✓ ✗

SAGA [WWZ*22] ✓ ✗ ✓ ✗

Ours ✓ ✓ ✗ ✓

Table 1: Overview of the Problem Definitions of Existing Meth-
ods. Our approach is the only one combining three important char-
acteristics, and the first one to synthesize intent-driven full-body
pose sequences for motions with object manipulation.

• We place special focus on synthesizing interactions involving
both hands. This also includes sequences where the object is ex-
changed between the hands (“offhand”) – a setting that has not
been addressed before.

• To achieve this, we learn separate variational latent embeddings
for the arms and the rest of the body. These latent embeddings
are conditioned jointly on the types of objects used as well as the
intended actions to be performed with them. This enables diver-
sity in the synthesized motions and allows the accurate synthesis
of both-handed interactions.

2. Related Work

Our work aligns with past works on modeling 3D human-object in-
teractions. We study these works from four vantage points: human
pose forecasting and synthesis, human-object 3D interaction mod-
eling, hand-object grasp synthesis, and full-body grasp synthesis.

Human Pose Forecasting and Synthesis. Human pose forecast-
ing methods predict future motions from a sequence of past poses
as joint positions [MBR17] or joint rotations [PGA18; RBH*21].
Recent works on 3D human pose forecasting are stochastic meth-
ods [LLW*21; YK20] that use Variational Autoencoders [KW14]
or GANs [GPM*20] to bring some variability in the output motion
sequences. HuMoR [RBH*21] proposes a CVAE architecture that
learns a distribution of pose transitions in the latent space while also
ensuring physical plausibility through a post-processing optimiza-
tion. Motion-VAE [LZCvdP20] learns to drive a character based on
a goal position by decoding from a variational latent space. Char-
acteristic 3D pose [DFD22] uses probabilistic approach to predict
future 3D characteristic poses given short sequence of observations.

There also exist several human motion synthesis methods that
are trained to synthesize a motion sequence conditioned on se-
mantic action labels [PBV21; GZW*20; DFD22], or text sen-
tences [PBV22; GZZ*22]. Action2Motion [GZW*20] inputs an
action label to generate the human pose in an autoregressive man-
ner using a VAE-GRU. Differently, ACTOR [PBV21] employs
a VAE-Transformer to generate the full sequence in one shot.
TEMOS [PBV22] uses the VAE-Transformer concept on a multi-
modal setting to generate motions from text sentences. Our goal

is to not only synthesize full-body poses depending on a semantic
label, but also to take into account the object interactions.

Human-Object 3D Interaction Modeling. With the availabil-
ity of several human-object 3D datasets like [SZKS19], BE-
HAVE [BXP*22], PROX [HCTB19], D3D-HOI [XJMS21],
H2O [KTS*21], GraviCap [DSJ*21], BEHAVE [BXP*22], joint
human-object motion modeling has been an actively researched
topic. Among recent methods, PHOSA [ZPJ*20] reconstructs the
human and the object in the scene by jointly optimizing for
the reprojection error of the object and the human. Neural State
Machines [SZKS19] synthesizes human motion while interact-
ing with objects like chairs or a wall in the scene. Likewise,
SAMP [HCV*21] incorporates a path planning module to improve
the character’s motion in the scene. We, on the other hand, deal
with synthesizing fine-grained motions with handheld objects us-
ing instruction labels as inputs.

Hand-Object Grasp Synthesis. Grasp synthesis has been ex-
tensively studied in computer graphics [KP15; ES03; KYZ*20;
ZYSK21; LFP07] and robotics [DKB*10; HL06; LPX*19;
AGK18; BI05]. Some have approached this analytically by for-
mulating grasp synthesis to be a constrained optimization prob-
lem satisfying the properties of a grasp [KDCI10; SKK12]. Sev-
eral data-driven approaches [PG16; RA15] focus on learning the
representations for synthesizing grasps through machine learning
methods. More relevant recent approaches [KYZ*20; JLWW21;
TGBT20; BHHF19] predict the hand parameters of the MANO
hand model [RTB17] for synthesizing a grasp using neural net-
works. A large number of image datasets [BTT*20; LWM21;
ZLM*19; ZHT*21; HVT*19] featuring hand-object interaction
with contact maps are currently available. Taheri et al. [TGBT20]
further introduce the GRAB dataset, which captures not only the
contact map from hand, but also the full-body motion before and
during the grasp. They also propose GrabNet, a network that es-
timates MANO parameters at the moment of grasp for unseen
objects in a coarse-to-fine manner. [KYZ*20] proposes Grasping
Field, a method that learns an implicit representation of the hand-
object interaction using a generative model. Grady et al. [GTT*21]
derive physically plausible hand pose estimation by optimizing es-
timated hand meshes with contact prediction. We differ from all
the methods in that our work focuses on synthesizing full-body se-
quences. While modeling hand-object interaction is a meaningful
and well-researched problem, it is inherently limited in its abil-
ity to model several human-object interaction types which manifest
themselves only when the full human body is accounted for (e.g.,
tilting back the head when drinking from a glass).

Full-Body Grasp Synthesis. The recently proposed method,
GOAL [TCBT22], synthesizes full-body motion for grasping a
given object. They first estimate the whole-body grasping pose for
a given object and treat this pose as their goal for a motion infill-
ing module which interpolates the motion between a T-Pose and
the goal pose. Similarly, SAGA [WWZ*22] also follows a similar
strategy of motion infilling but uses markers to represent body pose
while also learning a contact map for the grasp for additional super-
vision. Both these methods synthesize full-body motions until the
point of grasping. Our method differs from these existing methods

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.



A. Ghosh, R. Dabral, V. Golyanik, C. Theobalt, P. Slusallek / IMoS: Intent-Driven Full-Body Motion Synthesisfor Human-Object Interactions

Figure 3: Architecture of Our Intent-Driven Full-Body Motion Generator Model. Given previous k frames of body poses and object
positions, we train the arms and the rest of the body separately using our Arm Synthesis (upper-middle) and the Body Synthesis (lower-
middle) Modules respectively. We jointly synthesize the entire motion sequences autoregressively, conditioned on the input intent, the object,
and the body shape, all encoded through our Condition Encoder (upper-left). We use position-encoded self-attention on the past k frames
for the body joints before passing them through our Body Synthesis Module. After generating the body pose, our Object Optimizer Module
(lower-right) optimizes for the 6-DoF pose of the given object such that it plausibly fits within the hands of the synthesized character.

(see Table 1), since we synthesize the motion taking place after the
object is grasped. We believe this is non-trivial and a more chal-
lenging setup. Conditioning human and object motions on a cer-
tain interaction type, while also ensuring diversity in the generated
motion sequences, requires additionally learning their intent-based
mutual interactions in an efficient and generalizable manner.

3. Intent-Driven Full-Body Motion Generator

We show the architecture of our intent-driven full-body motion
generator model in Fig. 3. Given a human character’s shape and ini-
tial 3D body pose, a rigid 3D object placed within their reach, and
an intended action to perform with that object, our goal is to syn-
thesize a full-body motion sequence of the character performing the
intended action with the object. We pose this problem as synthesiz-
ing the full-body motion sequence conditioned on the given object
and a textual instruction label indicating the intent. We solve this
problem through four modules. First, we encode the input instruc-
tion labels consisting of the type of the object and the associated
action using our Condition Encoder. We also input the subject’s
body shape parameters into our Condition Encoder. We use this
encoding as a conditioning signal for all the modules.

A key characteristic of our problem setting is that the arms are
the primary movers during human-object interactions. Therefore,
we use a pair of decoupled conditional variational autoregressor
networks to separately synthesize the arm movements and the rest
of the body movements, using an Arm Synthesis Module and a
Body Synthesis Module, respectively.

Finally, we use an Object Optimizer Module to optimize for the
6-DoF pose of the given object such that it plausibly fits within the
hands of the synthesized character.

3.1. 3D Human Body and Object Representation

We represent the human mesh using the SMPL-X [PCG*19]
parametric body model. SMPL-X parametrizes the full human

body along with hands and faces as a differentiable function
SMPLX(β,r,Ψ, t) of the body shape parameters β ∈ R10, the root
translation t ∈ R3, the axis-angle rotations for the body joints
r ∈ RJ×3 (J = 55), and the face expression parameters Ψ ∈ R10.
It maps the parameters to a body mesh with 10,475 vertices. To
improve the stability and the convergence characteristics of our
model, we use the 6D continuous representations [ZBL*19] θ ∈
RJ×6 to represent body joint rotations. We downsample all the ob-
jects in the dataset to 300 vertices for faster optimization. The ob-
ject’s 6-DOF pose is represented using a rotation matrix R ∈ R9

and a translation vector T ∈ R3.

3.2. Model Design

We now discuss each of our modules in detail. Our synthesis
pipeline assumes that the human interacts with only one object at
a time. Interactions can be either one-handed or both-handed de-
pending on the type of action and the shape of the object.

3.2.1. Condition Encoder

We input the object’s category label using a one-hot vector wo ∈
R51. To represent the intended action information, we pass the
intended action label, given as an English word, through the pre-
trained CLIP [TGH*22] model and use the embeddings wa ∈ R512

that it outputs. The idea behind encoding the action labels with a
pre-trained text encoder is the general relevance between the action
semantics and the corresponding body movements. For example,
actions such as “drink” and “pour” typically invoke similar arm
movements and are also semantically close, whereas other actions
such as “inspect” and “pass” invoke different body movements and
are also semantically different. Therefore, their embeddings, given
by a large-scale language model such as CLIP, provide a regular-
ized, semantics-based distribution of the intended actions and sta-
bilizes further processing. Refer to the Appendix for more details.

We concatenate wo and wa with the body shape parameters (β ∈
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R10) and pass them into our Condition Encoder qc. Our Condition
Encoder uses a series of MLPs to encode these input signals and
projects them onto an encoded feature vector φ ∈ R400 as

φ = qc(wo,wa,β). (1)

3.2.2. Arm Synthesis Module

Our Arm Synthesis Module is a conditional variational au-
toregressor that synthesizes the arm movements, conditioned
on our condition encoder output φ and the previous k frames
of synthesized arm poses along with the 3D object positions.
The encoder of this module, qa, takes in the tuple qa

in ={
φ,θa

t−k:t−1,Tt−k:t−1,Rt−k:t−1
}

, where θ
a
t−k:t−1 are the rota-

tions for the arm joints synthesized by the past k frames, and
Tt−k:t−1, Rt−k:t−1 are the translation and rotation parameters of
the object for the past k frames. During training, qa uses a series
of MLPs on the inputs and maps them to the parameters of a la-
tent normal distribution, µa,σa ∈ R32. The decoder, q̂a, samples
za ∈ R32 from the latent distribution and uses the previous pose
information (qin

a ) to synthesize the arm pose for the current frame
(θ̂a

t ) through a series of MLPs with skip connections as

θ̂
a
t = q̂a(za,qin

a ). (2)

3.2.3. Body Synthesis Module

Similar to the Arm Synthesis Module, the Body Synthesis Module
is a variational autoregressor. We use the term ‘body’ to denote the
rest of the body parts apart from the arms, including the head, the
torso, the hips, and the legs. We also note that the movements of
all these parts are correlated when performing a full-body action.
For example, to drink from a cup, one has to tilt their head back
when bringing the cup to their mouth. To model such fine-grained
correlations, we first compute a self-attention mapping between all
the joints in each pose as

θ
pe
k = [Attn(Q,K,V)]k , (3)

where the query Q is a joint position and the key-value
pair (K,V) are information of all other joints provided as
J sinusoidal positional encodings for each of the k frames.
The encoder of the module, qb, takes in the tuple qb

in ={
φ, θ̂a

t ,θ
pe
t−k:t−1,Tt−k:t−1,Rt−k:t−1

}
. The structure of qb is simi-

lar to that of the Arm Synthesis Module encoder qa, and it maps
the input qin

b to the parameters of a latent normal distribution,
µb,σb ∈ R100. The decoder, q̂b, samples zb ∈ R100 from the latent
distribution and outputs the rest of the body poses as

θ̂
b
t = q̂b(zb,q

in
b ). (4)

We then concatenate θ̂
a
t and θ̂

b
t to obtain the full-body pose θ̂t at

time t. We pass θ̂t to our Object Optimizer Module, along with the
last predicted object position, to generate the object position for the
current frame.

3.2.4. Object Optimizer Module

We have so far focused only on synthesizing the body poses for
a given instruction. For a complete synthesis, we also need to es-
timate the corresponding 6-DoF positions of the object. Although
fine-grained object synthesis is not the main goal of our work, we

Figure 4: Our Hand-Object Setup. We design the energy term Ed
to enforce that the distances between the hand and the object ver-
tices remain constant throughout the synthesis. Through the hand-
object contact term Ec, we also enforce that the points in contact in
the first frame remain in contact during the synthesis.

aim to produce plausible object trajectories faithful to the synthe-
sized full-body motion. To this end, our core assumptions are that
(a) at the moment of grasping in the initial frame, the object is at
rest in an upright position and (b) inter-vertex distances between
the vertices of the object and the hand remain constant throughout
our intent-driven motion synthesis.

With these assumptions, we optimize for the object’s rotation R,
translation T, as well as the pose parameters of the hand, Ph, in the
SMPL-X parameter space.

We first compute the matrix of Euclidean distances D ∈ RN×M

between the vertices in the hand, Vh ∈RN and those on the surface
of the object, Vo ∈ RM for the initial frame. We can retrieve the
hand vertices using the SMPL-X parameterization,

Vh = SMPLX(Ph). (5)

For each subsequent frame, we then minimize the objective:

R∗,T∗,Ph∗ = min
R,T,Ph

(λdEd +λcEc +λrEr) (6)

We use an energy term, Ed , to enforce the same inter-vertex dis-
tances between the hand and the object vertices in all the subse-
quent frames as in the first frame, as

Ed(R,T,Ph) =
∥∥∥dist(Vh,RVo +T)−D

∥∥∥
2
, (7)

However, this term alone does not guarantee that the object is in
contact with the hand in subsequent frames. This is mainly because
in practice, the hand joints do not converge to plausible poses using
Ed . We address this issue by introducing the contact term Ec, which
forces the distance between the in-contact vertex-pairs of the first
frame to be zero, as

Ec(Ph) =
∥∥∥δ.dist(Vh,RVo +T)

∥∥∥
2
. (8)

Here, δ(·, ·) is a contact indicator function for the elements of the
distance matrix for which the distance is less than a threshold:
δ(i, j)) = 1, if Di, j < τ and 0 otherwise, as we show in Fig. 4.

Finally, Er consists of L2 regularizers to ensure that the object
and hand poses do not deviate significantly from the previous frame
and thus enforce temporal consistency, as

Er(R,T,Ph) =
∥∥∥∆R+∆T+∆Ph

∥∥∥
2
, (9)

where ∆ signifies the difference in values between the current frame
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Figure 5: Object Position Optimization. We optimize for the 6-
DoF pose of the object such that it plausibly fits within the hands
of the virtual character. We show three snapshots of such fitting
after the 0th, 500th and the 1200th iteration of our optimization.

and the previous frame. We initialize the hand poses using a state-
of-the-art grasp estimator proposed in [TCBT22]. The optimiza-
tion routine course-corrects the initial estimates of the finger move-
ments while also placing the object within the person’s hands.
Fig. 5 illustrates the optimization routine.

4. Implementation

This section describes our training and inference routines, and the
implementation details for our generator network.

Training and Inference Routines. To maintain a fixed number of
input frames for computational stability, to reduce the parameter
load and associated training overheads, and to avoid overfitting to
redundant frames, we represent our ground-truth motion sequences
using T = 15 frames, taken at a sampling rate of 8-10 fps.

The encoders and the decoders inside our four modules use fully-
connected layers with skip connections, LeakyReLU activations
and batch normalization [Aga18; BGSW18]. We use k = 4 past
frames (optimized through experiments) to synthesize the next time
steps. We train our autoregressor based Arm Synthesis and Body
Synthesis Modules to minimize the KL divergence loss:

LKL =DKL
(
qa (za|xt−k:t−1,φ) ||N (0, I)

)
+DKL

(
qb (zb|xt−k:t−1,φ) ||N (0, I)

)
. (10)

We compute the pose and the velocity reconstruction loss between
the ground-truth rotations θ and the predicted rotations θ̂ as

Lrec =
∥∥∥θ− θ̂

∥∥∥
1
+
∥∥∥∆θ−∆θ̂

∥∥∥
1
. (11)

We train our model on the following weighted sum of these losses:

L= λKLLKL +λpLrec, (12)

where λKL and λp are the weight parameters. We can then use the
regressed body motion parameters p̂ to optimize the 6-DoF object
positions at every time step.

At inference time, we synthesize motions for novel intent-object
pairs and novel body shape parameters. We input an initial body
pose, a 3D object placed within reach of the character, and an in-
tended action to be performed with the object, and autoregressively
synthesize the intent-based, full-body motion sequence.

Implementation Details. We train our model for 1500 epochs
using the Adam Optimizer [KB14] with a base learning rate of
5× 10−4, and a batch size of 64, which takes roughly four hours
on an NVIDIA A100-PCIE-40GB GPU. We decay the learning

rate (LR) using a Reduce-on-plateau LR scheduler with a pa-
tience of 3 epochs and a decay rate of 0.999. We set λKL = 0.001,
λp = λd = 1.0 and λc = λr = 0.005. During inference, synthesiz-
ing the full-body poses and the corresponding object positions for
a motion sequence of 15 frames take approximately 1-1.5 minutes.
Finally, we perform a linear interpolation on our generated frames
to up-sample the motion to 30 frames per sequence for cleaner vi-
sualization. We have implemented our network, training, and infer-
ence using the PyTorch framework [PGC*17].

5. Experiments and Results

This section reports results of our experimental evaluation, includ-
ing the dataset and the evaluation metrics we use and our ablation
studies. Since there are no existing methods for generating full-
body human-object interactions, we use existing methods that gen-
erate full-body poses based only on action labels as our baselines.

5.1. Dataset

We use the GRAB dataset [TGBT20] consisting of whole-body
grasping sequences performed by ten different subjects. The sub-
jects interact with 51 different objects via four basic intents namely
“use”, “pass”, “lift”, and “off-hand”. “Use” further has a sub-
category of 26 different actions depicting plausible intent-object
interactions such as drinking or pouring from a cup to taking pic-
ture with or browsing a camera. Following the split of [DFD22], we
take subject ‘S1’ for validation, ‘S10’ for testing, and the remaining
subjects ‘S2’ through ‘S9’ for training.

The data split ensures that 1) we test on novel subjects with
different body shapes and 2) our inference contains novel (intent-
object) pairs such as off-handing a flute or a water bottle, which are
not present in our training set. We discard the sequences with “lift”
intention because of inconsistent movements and finally our train,
validation and test splits respectively consist of 790, 158 and 116
sequences.

5.2. Baselines

We compare our results with ACTOR [PBV21], Ac-
tion2Motion [GZW*20] and TEMOS [PBV22]. Since these
methods have originally not been trained on the GRAB dataset,
we retrain all of them for our setting. We re-train ACTOR and the
Action2Motion methods for 1500 epochs (the same number of
epochs we train our own model for, see Sec. 4) conditioned only on
the action labels with no object information. For comparison with
TEMOS, we create sentences of the form “A person <action> the
<object>”(e.g., “a person eats the apple”) to use as input sentences,
and re-train the TEMOS model for 1500 epochs as well. For all the
three motion synthesis methods, we apply our Object Optimizer
Module to also generate the object positions for visual comparison.

5.3. Evaluation Metrics

We evaluate our method using the Mean Per Joint Positional Error
(MPJPE), which measures the mean joint error over all time steps
and the Average Variance Error (AVE) [GCO*21], which measures
the variance error between the joint positions.
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Method MPJPE (↓) AVE (↓) FID (↓) Accuracy (↑) Diversity (→) Multimodality (→)

Real Motions (GT) - - - 0.97±0.001 1.15±0.015 0.30±0.010
ACTOR 0.09±0.005 8.05±0.002 0.67±0.002 0.78±0.010 1.06±0.015 0.19±0.010
Action2Motion 0.11±0.003 8.26±0.002 1.08±0.002 0.69±0.011 1.10±0.010 0.22±0.010
TEMOS 0.10±0.005 9.98±0.001 1.21±0.004 0.23±0.010 0.83±0.010 0.09±0.010

Ablation 1 0.05±0.002 4.41±0.002 0.39±0.002 0.78±0.012 1.06±0.015 0.21±0.010
Ablation 2 0.04±0.005 4.77±0.002 0.38±0.002 0.82±0.010 1.10±0.020 0.24±0.020
Ablation 3 0.05±0.005 5.41±0.002 0.42±0.002 0.82±0.010 1.08±0.010 0.25±0.010
Ours 0.03±0.005 3.82±0.004 0.27±0.002 0.87±0.011 1.11±0.015 0.28±0.015

Table 2: Quantitative Evaluation. We compare with other motion synthesis methods, namely ACTOR [PBV21], Action2Motion [GZW*20]
and TEMOS [PBV22], and three ablated versions of our model (Sec. 5.4). We evaluate the methods on the MPJPE, AVE, FID, recognition
accuracy, diversity and multimodality metrics. “↓” means lower values are better, “↑” means higher values are better and “→” means motions
are better when the metric is closer to the ground-truth values.

Figure 6: Perceptual Study Evaluation. We conduct a user study
where participants answer two questions: “Which animation looks
more realistic?” and “which animation best corresponds with the
input instruction label?”. We show them 30 randomly sampled
motion sequences synthesized by our method and the two base-
lines, ACTOR [PBV21] and Action2Motion [GZW*20]. We see
our method is chosen more than 80% times compared to ACTOR
and Action2Motion.

We further evaluate the naturalness and the overall diversity
of our generated motions using the Frechet Inception Distance
(FID) [HRU*17], recognition accuracy, diversity and multimodal-
ity. We train a standard RNN action recognition classifier on the
GRAB dataset, and use the final layer of the classifier as the motion
feature extractor for calculating FID, diversity and multimodality
as done in ACTOR [PBV21] and Action2Motion [GZW*20]. See
Appendix for further details.

5.4. Ablation Studies

We compare the performance of our model with the following ab-
lated versions:

• Ablation 1: Randomly initializing the input action labels with
512-d vectors: To study the effect of how the CLIP model influ-
ences the conditioning of the synthesized motion, we conduct
an ablation where we train our Condition Encoder with the ran-
domly initialized vectors of dimension 512 for the input action
labels instead of taking the CLIP embeddings.

• Ablation 2: Training the Body Synthesis module without us-
ing the self-attention mapping. In this ablation, we exclude our
position-encoded multi-head self-attention from the input of the
Body Synthesis module of our framework to see how it influ-
ences the quality of our motion.

• Ablation 3: Training the whole-body instead of decoupling to
the Arm Synthesis and the Body Synthesis Modules. We train
the whole body movements in one module instead of separately
synthesizing the arms and the rest of the body.

5.5. Quantitative Evaluation

Table 2 shows the MPJPE, AVE, FID, recognition accuracy,
diversity and multimodality on our test set compared with
the three state-of-the-art methods of ACTOR [PBV21], Ac-
tion2Motion [GZW*20], and TEMOS [PBV22]. We also include
the ablated versions of our methods (Sec. 5.4) in our evaluation. We
repeat each experiment 20 times as done in ACTOR [PBV21], and
report a statistical interval with 95% confidence. We observe that
our method shows significant improvements in each of the metrics
compared to the existing methods and the ablated versions.

5.6. Perceptual Study

To evaluate the visual quality of our motions, we conduct
a perceptual study where we compare our results with AC-
TOR [PBV21] and Action2Motion [GZW*20]. With the exception
of TEMOS [PBV22], which would quickly settle on the mean pose,
the other two methods generated plausible full-body motions after
retraining. We, therefore, exclude TEMOS from the user study. We
conduct our perceptual study in the following two sections.

Comparison with Motion Synthesis Methods. In the first sec-
tion, we displayed our results and the results from ACTOR and Ac-
tion2Motion side-by-side in a random order along with the input
instruction label. We asked the participants to answer these ques-
tions for each sequence: “Which motion looks the most realistic?”
and “Which motion best corresponds with the input instruction la-
bel?”. We collected answers for 30 such sequences from 75 partici-
pants. Fig. 6 illustrates the results of the study. In 80.7% responses,
participants marked our method as the most realistic compared to
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Figure 7: Qualitative Results Showing Diversity in the Synthesized Motions. The two rows depict two diverse motion sequences generated
by our model. We note that our method is able to generate different variations for the same instructions using either one or both hands along
with plausible coordination of the head and the body. Please refer to the supplementary video for more results.

ACTOR and Action2Motion. Likewise, 81.6% participants chose
our method to have the best semantic fidelity with the instruction
label. Upon examining the cases for which the participants pre-
ferred ACTOR instead of us, we found that it performed better for
few actions like “screwing” the light bulb or “toasting” with the
wineglass, where the motion does not need to have hand-to-eye or
hand-to-mouth coordination. These actions do not include signifi-
cant variations within the dataset and are, therefore, easy to overfit.

Comparison with Ground-Truth. While ACTOR and Ac-
tion2Motion are methodically the closest to our approach, they
were not originally designed to be conditioned according to our
intent-based motion synthesis paradigm. Therefore, to get an ad-
ditional perspective on to the performance of our approach, we
asked the participants to compare our best synthesis results with
the ground-truth in the second section. To establish an upper-bound
on our performance, we chose 10 best samples from various intent-
object pairings to compare with the ground-truth. Again, we dis-
played our motions and the ground truth side-by-side in a random
order. This time, we kept an extra option: “cannot distinguish”.
While our method is, expectedly, less preferred than the ground-
truth motion (15.6% vs 36.9%), 47.5% of the responses rate our
best syntheses as indistinguishable from the ground-truth in terms
of realism. We also note that participants rated our method to be
more realistic than the ground-truth when it involves actions such as
“eating” an apple with one hand, which has abundant training sam-
ples. On the other hand, our method encounters difficulties when
synthesizing intents involving high frequency wrist or finger move-
ments such as “shaking” or “squeezing”. We can attribute this to
the fact that our L1 loss function (Eqn. (11)) tends to smooth out
the high frequency components from the motion sequence and the
GRAB dataset does not have sufficient samples of these actions to
train them separately.

5.7. Qualitative Evaluation

We show full qualitative results in our supplementary video. When
qualitatively compared with the ablated versions (Sec. 5.4), we find
that Ablation 1 (one-hot vector instead of CLIP) and Ablation 3
(training one module for whole-body) fail to synthesize precise
hand-mouth or hand-eye coordination for actions such as “drink-
ing” and “eating”. Ablation 2 (without using self-attention map-
ping) lacks subtle body movements such as tilting back the head
or bending the knee to pick up an object, which otherwise adds to
plausibility of the motion. We further analyse our generated mo-
tions under the following headings:

Diversity Analysis. As we discussed initially (Sec. 1), generat-
ing diverse motion sequences for the same input instruction label
is crucial for an immersive user experience. Fig 7 shows our re-
sult for two different sequences (left and right). Sampling from the
variational latent space allows us to synthesize diverse motion se-
quences. In Fig. 7 we show two different sequences: “taking pic-
ture” with a camera (left) and “eating” an apple (right). We show
two variations of the same motions (upper and lower rows). We
note that the variations are diverse in terms of the head, arms and
torso movements, especially in the way they are angled to use the
object. Our method benefits from the fact that we operate in the full-
body space and produces more natural results compared to naïvely
performing a fixed mapping from the global hand pose parameters
to the end effectors of the remaining body.

Synthesis of Both-Handed Interactions. Our method is the first
to accurately synthesize full-body motions for both-handed inter-
actions. We achieve this by decoupling the arm synthesis from full-
body synthesis in our generator design (Sec. 3.2. The wrist and the
elbow joints play a crucial role for tasks such as picking up an ob-
ject with both hands or holding the object precisely. Learning the
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Figure 8: Examples of Imprecise Contacts in the GRAB
Dataset [TGBT20]. We show five (ground-truth) frames where the
body and the object are in contact. However, these contacts are not
precise. The fingers do not touch the object for grasping the mug,
the camera and the cup. For the cube and the toothpaste, we see
inter-penetration of the hand with the object.

arm motions in a separate latent space helps our generator focus
more on such precise synthesis.

Object Position Predictions for Off-handing Interactions. In
addition to both-handed interactions, we encounter sequences in
the GRAB dataset where the character passes an object from one
hand to the other. It is non-trivial to optimize for the accurate object
positions when the object switches hands. Here, we first compute
the most-likely frame at which the switching takes place, and then
transfer the optimized hand parameters to the other hand. Fig: 9
shows two such off-handing interactions with two objects.

Plausibility of Head Motions. Similar to the motion of the fin-
gers and the arms, the coordinated movement of the head and the
hands also determines the synthesis quality. While recent works
like GOAL [TCBT22] explicitly account for the head direction vec-
tor during network training and optimization, we observe that our
model learns visually plausible head orientations and hand-head
coordination without any explicit supervision. This raises the ques-
tion whether explicit supervision is indeed necessary.

6. Discussion and Limitations

Through quantitative evaluations and a perceptual study, we estab-
lish that our method synthesizes plausible motions corresponding
to intended actions by a virtual character with a given object. While
we can synthesize such motions for a variety of intents and ob-
jects, we observe certain failure cases for intents which are very
rare and have high frequency in the wrist motion, e.g., “squeeze”,
“shake” (see supplementary video). Additionally, our Object Opti-
mizer Module (Sec. 3.2.4) optimizes the fingers and the object po-
sitions based on an initial distance between them. This assumption
works well with the intents in the GRAB dataset as most of them in-
volve static grasps. However, dynamic grasping that involves hand
slipping and relative motion between the object and the hands like
“rotating” a cube or “stretching” an elastic band will be limited in
our setting. We also note that the contacts between the body and the
objects for all samples in the GRAB dataset are not fully precise,
possibly due to the sparse marker-based motion-capture. In many

Figure 9: Off-Handing. We show two interactions of “offhanding”
where the character passes the object from one hand to the other.
Such interactions pose a unique optimization challenge when the
object is switching hands.

sequences, we find that the fingers do not touch the object while
grasping, or have inter-penetrations between the hand and the ob-
ject (Fig. 8). Lastly, we do not address long term motion synthesis
(in the order of minutes) involving a series of sequential actions
performed with a given object.

Ethical Considerations Our method does not support texture and
fine appearance details and cannot be used to produce deceptive
content. Our results are not photo-realistic by design and cannot be
confused with real scenes. However, combining our technique with
a method supporting more realistic texture could potentially raise
ethical concerns in future.

7. Conclusion and Future Work

We presented the first full-body motion synthesis method for
character-object interactions. Such a motion synthesis pipeline can
become a useful practical tool in applications requiring large-scale
character animations. We demonstrate that a decoupling approach
that separately models the arms and the body motions using con-
ditional variational autoregression leads to measurable perceptual
improvements as well as advances the state-of-the-art on multiple
quantitative evaluations. Our method places a special focus on syn-
thesizing interactions involving both the hands, which also includes
sequences where the object is exchanged between the hands.

In the future, we intend to extend our model to synthesize dy-
namic grasps along with full-body poses, such that the virtual char-
acter can change the grasp within a sequence. We also plan to ex-
plore more descriptive sentence embeddings for the interactions
(e.g., “a person passes the bowl using the right hand”) in order to
generate more precise and controllable motions.
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