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Abstract Video Object Segmentation is a fundamental task in com-
puter vision that aims at pixel-wise tracking of one or multiple fore-
ground objects within a video sequence. This task is challenging due to
real-world requirements such as handling unconstrained object and cam-
era motion, occlusion, fast motion, and motion blur. Recently, methods
utilizing RNNs have been successful in accurately and efficiently seg-
menting the target objects as RNNs can effectively memorize the object
of interest and compute the spatiotemporal features which are useful
in processing the visual sequential data. However, they have limitations
such as lower segmentation accuracy in longer sequences. In this pa-
per, we expand our previous work to develop a hybrid architecture that
successfully eliminates some of these challenges by employing additional
correspondence matching information, followed by extensively exploring
the impact of various architectural designs. Our experiment results on
YouTubeVOS dataset confirm the efficacy of our proposed architecture
by obtaining an improvement of about 12pp on YoutTubeVOS compared
to RNN-based baselines without a considerable increase in the compu-
tational costs.

Keywords: Video Object Segmentation · Recurrent Neural Networks ·
Correspondence Matching.

1 Introduction

One-shot Video Object Segmentation (VOS) is the task of densely tracking the
intended foreground objects in a video, given the first mask of the object’s ap-
pearance. VOS plays an important role in various applications such as video
editing, autonomous driving, and robotics.

During the last years, a wide variety of learning-based solutions have been
proposed for VOS trying to maximize the segmentation accuracy via addressing
different challenging scenarios such as tracking smaller objects, handling occlu-
sion, fast motion, crowded scenes with similar object instances, etc [45,47,1,4,49].
The suggested approaches in the literature can be roughly categorized to three
main groups.

The first category naively tries to extend an image segmentation model to
video domain [9,29]. During inference, these models try to adapt the trained
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network to the specific scene and foreground object. This is usually done via
further finetuning the network using the single object mask provided for the
first frame (this process is known as online training). Therefore, these models
are relatively slow and their performance is sub-optimal as training on a single
image can result in overfitting behavior.

The second class deploys a memory component for memorizing the object of
interest and processing the motion information [47,1,40]. Although using mem-
ory is a natural choice for processing the sequential data and these methods
can achieve a good performance without requiring online training, their accu-
racy is limited by the functioning of the memory module. For example, their
performance considerably drops for longer sequences due to the limited memory
capacity and error propagation.

The third group is based on template matching [45,41,49]. These methods
capture the target in each frame through finding the correspondences between
the frame at hand and a reference frame (e.g. the given mask at t = 0). These
approaches can also obtain a good performance with a fast run-time; however,
their performance degrades in scenes with multiple similar object instances or
when the object appearance changes drastically with respect to the reference
frames. As it is expected, the model struggles to find the similarities in these
scenario, resulting in low segmentation accuracy.

In this paper, we extend our previous work [2] that builds on top of a
sequence-to-sequence (S2S) [47] baseline for VOS, due to its good performance
and straightforward design and training procedure. The S2S architecture is an
encoder-decoder network with an RNN module in the bottleneck which is respon-
sible for processing the spatiotemporal features and tracking the target object.
To improve the performance of this method in segmenting the longer sequences,
we take inspiration from the matching-based algorithms [45]. We hypothesize
that the matching-based methods complement S2S model by providing addi-
tional training signals that can enhance the segmentation accuracy and reduce
the adverse effect of error propagation. Utilizing the reliable information in the
reference frame can be especially useful in handling occluded scenes where the
RNN may struggle to lose the target object after several time steps. To this
end, we employ both RNN and matching branches and develop a fusion block to
merge the RNN spatiotemporal features with the template matching and refer
to our model as hybrid S2S (HS2S).

Additional to [2], we experiment with two architecture variants of our model.
In the first form, we explore the effectiveness of bidirectional design [33] where
in addition to utilizing the information from the past time steps, we integrate
the future frames via a bidirectional RNN network. In the second variation, we
explore a multi-task training setup by joint training the VOS model together
with the unsupervised optical flow objective. Our intuition is that since optical
flow and VOS are well-aligned tasks (in both cases the model has to learn pixel
motion between the consecutive frames), training the model with both objectives
might bring additional benefits via utilizing the optical flow-related constraints.
We perform extensive experiments and ablations on YouTubeVOS dataset [47]
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to study the role of different components in our HS2S model. Our experimental
results confirm the effectiveness of our hybrid design by obtaining an increase of
about 12pp in the overall segmentation accuracy compared to the RNN-based
baseline.

2 Related Work

In this section, we provide a summary of the traditional variational methods
based on energy minimization as well as more recent learning-based approaches
proposed for solving the VOS task.

In [16,7,39], the authors attempt to solve foreground object estimation us-
ing supervoxels to capture similar regions across space and time. These methods
cluster similar pixels across spatial dimensions into superpixel nodes and find the
edges between these nodes across time and space by employing motion and ap-
pearance similarities to form the supervoxels. Accordingly, the object masks are
obtained via processing and merging the connected supervoxels. In [8], Brox et
al. develop a bottom-up approach for segmenting the foreground objects and uti-
lize the optical flow motion information to enforce temporal consistency across a
video shot. The main idea here is that pixels with similar motion patterns should
belong to the same object. Similarly, Papazoglou et al. [25] propose a two-stage
segmentation algorithm where in the first stage, the initial segmentation masks
are obtained through processing the optical flow and motion boundaries. In the
next stage, the masks are refined by applying two smoothness constraints. The
first constraint enforces spatio-temporal consistency across video frames while
the second implies that the foreground objects should only change smoothly over
time. In [12], the authors suggest that optical flow only provides local informa-
tion across neighboring frames which is not optimal. To address this limitation,
they develop a model that integrates non-local information across space and
time.

With [11,20,14] and the release of specialized and large-scale VOS datasets
[47,30,29], the learning-based solutions for VOS have replaced more traditional
models during the last few years. In [9], the authors present a training strategy
to extend a network designed for medical image segmentation [22] for VOS.
Starting from VGG16 [34] weights pretrained on ImageNet [11], they further
train the network with segmentation objective on a VOS-specific dataset. During
the inference, they perform online training and additionally fine-tune the network
to be specialized for capturing the object of interest within the test scene. Perazzi
et al. [28] also only rely on static images; to track the target object, they guide the
network by inputting the object mask from the previous time step to the network.
This method also needs online training for achieving acceptable performance.
To address this limitation, [48] employs a modulator network that generates the
normalization values of the main segmentation network, specific to each video.

Another line of work suggests utilizing RNNs for computing the spatio-
temporal features, integrating the motion information, and memorizing the tar-
get object [47,38,1,40]. These methods achieve good performance without online
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training, however, their segmentation accuracy worsens for longer sequences due
to limited RNN memory and error propagation. This limitation is improved by
incorporation of an external memory in [23]; however, this causes additional
hardware memory constraints to the system. As a result, in practice, only a
fraction of the frames can be stored in the memory which can be suboptimal.

Differently, Wug et al. suggest detecting the foreground object via finding the
correspondences between each frame and reference frames using a Siamese archi-
tecture [45]. In [50], the authors propose a transductive approach that instead of
only relying on a limited number of reference frames, additionally integrate the
information from the past segmented frames while [17,6], develop a system that
learns the appearance model of the object of interest and using this model, it
captures the target throughout the rest of the video. These methods are efficient
with a good performance, but their accuracy degrades in the presence of multi-
ple similar objects as the model is confused by finding multiple correspondences.
To improve this challenge, [49] additionally incorporates background correspon-
dence matching. They demonstrate this design helps the model to better handle
ambiguities in the correspondence search.

3 Method

In this part, we describe our proposed architecture based on a hybrid propagation
policy, referred to as HS2S. Our model builds on top of S2S [47], a sequence-
to-sequence model for video object segmentation. Following a detailed study
on the performance of the S2S model, we address multiple shortcomings of the
S2S design by inserting additional information obtained from correspondence
matching.

The S2S model consists of an encoder-decoder network similar to U-Net
[31] that learns the mapping between the RGB color space and the object seg-
mentation mask. S2S uses a ConvLSTM [46] module between the encoder and
the decoder, intended for processing the spatiotemporal features and tracking
the target object. This memory component is accountable for maintaining the
temporal coherency between the predicted segmentation masks across several
video frames. To this end, S2S utilizes an initializer network that generates the
initial ConvLSTM hidden states through processing the first RGB frame and
foreground object mask. The S2S model can be summarized as follows [47]:

h0, c0 = Initializer(x0, y0) (1)

x̃t = Encoder(xt) (2)

ht, ct = RNN(x̃t, ht−1, ct−1) (3)

ỹt = Decoder(ht) (4)
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where h and c are the hidden and cell states for the ConvLSTM, t is the time
step, x is the RGB input, y is the ground-truth mask and ỹ is the predicted
output.

Having a closer look at the failure cases in the S2S model, we observed the
model’s performance degrades for longer videos. There are multiple factors that
can potentially contribute to this limitation. First, the limited memory of RNNs
is an inherent challenge for RNN-based architectures. Due to this issue, the model
struggles to fully capture the essential information in the scene as well as the
evolution of the object’s appearance. Moreover, as the video sequences become
longer, they tend to lose access to the information from the earlier time steps.
This is particularly problematic for the occluded scenes; as, if the model forgets
the occluded object, it will not be able to re-capture the object once it re-appears
in the scene. Finally, due to the feedback connection in the RNN module, the
erroneous predictions will flow to the future time steps. These results in drift
and error propagation in the final results, exacerbating the model’s accuracy for
segmenting the frames further in time.

3.1 Hybrid Sequence-to-Sequence VOS.

We propose to supplement RNN module with correspondence matching for track-
ing the object of interest in a video. The benefits of matching-based solutions
[45] for one-shot VOS gives the opportunity to solve some problems inherent in
RNNs. For example, Oh et al. design a siamese architecture that obtains a good
segmentation accuracy through matching with reference frames at t = 0 and
the guidance information from the previous mask [45]. However, these models
struggle in scenes with similar objects or when the object’s appearance changes
drastically over time as the model cannot detect the object via matching to the
reference frames anymore.

We hypothesize that the pros and cons of the RNN-based and matching-
based VOS solutions complement each other. The informative signals computed
from template matching are crucial for better handling the occluded videos; no
matter how long the occlusion duration, the model would still have the chance
to re-capture the object through matching it with the reference frames at t = 0.
Moreover, these additional training signals reduce the adverse effect of error
propagation thus improving the overall segmentation quality. On the other hand,
integrating the motion features and the spatiotemporal model learned by RNNs
can serve as prior for the approximate object location at time step t. This com-
bination helps the model to disambiguate the situations with similar objects by
employing the location prior.

Our proposed architecture is shown in Figure 1. We utilize one encoder for
the input frames and another encoder for the reference frames and masks. As
suggested by previous works [28,45], we utilize the time steps 0 and t − 1 as
our reference frames. Time step 0 is specifically important since the ground-
truth segmentation mask for this frame is available at inference; therefore, the
information from this step is highly reliable for the model. Moreover, integrating



6 F. Author et al.

S2S HS2S

Initializer Encoder

x̃tx̃t

RNN
h0, c0

Decoder

ht

Reference
Encoder

x̂0

Reference
Encoder

x̂t−1

Encoder

Decoder

ht

RNN

Fusion

0 t 0 t-1 t

GC

x̂0, ht

GC

x̂t−1, ht

GC

Weight sharing

ConvLSTM

RNN

Figure 1: The HS2S architecture combining the RNN-based and matching based
features for VOS. We utilize a fusion block consisting of multiple Global Convo-
lution (GC) [26] layers that merges the spatiotemporal features from RNN with
the reference frames from the first and the previous time steps.

the information from t− 1 serves as an additional signal about the approximate
object location.

To reduce the model complexity, we replace the initializer network with a
teacher-forcing training strategy [28]. Having the initializer network removed,
we simply initialize the memory hidden states with zero vectors. Next, we feed
the segmentation mask from the previous time step as an additional input to the
encoder [28]. By receiving the previous segmentation mask as input, the model
is informed about the approximate location of the target object.

In the next step, we merge the reference and the spatiotemporal RNN features
through a nonlinear fusion function. To properly combine the information from
these to branches, this module requires both local and global connections across
the spatial feature dimensions. Accordingly, one could design this module using
convolution layers with very big kernel sizes [26], or utilize attention mechanisms
to span the height and width dimensions and incorporate all the features [43,44].
Ablation on the impact of various designs for merge block architecture is provided
in Section 4.5.
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Finally, the output of the merge block is then passed through a decoder
network and transformed into the segmentation masks through a stack of up-
sampling and convolution layers. With the same notation as in eqs. (1) to (2)
and (4), the overall steps can be summarized into the formulation below [2]:

h0, c0 = 0 (5)

x̂0 = Reference Encoder(x0, y0) (6)

x̂t−1 = Reference Encoder(xt−1, yt−1) (7)

x̃t = Encoder(xt, yt−1) (8)

ht, ct = RNN(x̃t, ht−1, ct−1) (9)

ỹ = Decoder(x̃0, x̃t−1, h) (10)

As the architectures for encoder and reference encoder in Figure 1 are iden-
tical, we experimented with weight-sharing between the two encoders; however,
this architecture resulted in lower segmentation accuracy. This behavior can be
due to two reasons: First, reduction in model’s expressive power, and second,
the misalignment between the reference features and the teacher-forcing train-
ing strategy. As we can see in Figure 1, the RGB frame and mask fed to the
ref-encoder are from the same time step while the input to the encoder differs
by 1 (t − 1 and t). Therefore, the functions learned by these two encoders are
not the same and that weight sharing would not be applicable to this scenario.

Training Loss. We train our model with a combination of Balanced BCE
loss and an additional auxiliary term of border classification [2]:

Ltotal = λ Lseg + (1− λ) Laux (11)

The BCE term assigns either foreground or background label to each pixel in
the image. As in the image, the portion of background pixels usually outweighs
the foreground, the training will be biased towards paying higher attention to
the background. This issue is addressed by multiplying the loss terms with a
balancing factor [9]:

Lseg(W) =

T∑
t=1

(−α
∑
j∈Y+

logP (yj = 1|X;W)− (1− α)
∑
j∈Y−

logP (yj = 0|X;W))

(12)
with α being the ratio of background to foreground pixels. The Border classifi-
cation objective additionally classifies each pixel based on their relative distance
to the object border. As a result, this term provides finer information about
the pixel location and improves the quality of detected object edges. Further
explanation and an in-depth analysis of this loss-term’s effects can be found in
[1].
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3.2 Bidirectional Architecture

In HS2S architecture, the video frames are processed sequentially passing the
information from the past to the future. Bidirectional sequence-to-sequence ar-
chitectures enable the model to integrate information from the past as well as
the future; they have been effective in improving the performance of sequential
processing tasks such as Machine Translation [33,36,38,13]. Therefore, it is nat-
ural to conjecture that integrating the information from the future frames might
benefit the HS2S model. However, based on the task definition in VOS, we need
the object mask in the last frame (t = T ) to process the video backward in
time. Otherwise, the model will not recognize which object to track. To address
this challenge, we design the bidirectional HS2S (Bi-HS2S) architecture shown
in Figure 2. As explained earlier, there are two different ways to inform the net-
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Figure 2: The Bidirectional HS2S architecture. The hidden states from the for-
ward and backward RNNs are combined using a convolution layer and then
merged with the reference features and passed to the decoder.

work about the object of interest. One is through using an initializer network
that processes the first RGB and the mask frames and initializes the memory
hidden states. The second way is by simply feeding the segmentation mask from
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the previous time step to the encoder network as a guidance signal. The second
option does not fit the bidirectional design as in the backward processing of the
video sequence, we do not have access to the initial object mask. As a result, we
resort to the first alternative.

As illustrated in Figure 2, we initialize the memory hidden states with the
initializer network in the forward path. For the backward processing, we simply
initialize the backward memory with the last hidden state ht obtained from the
forward path. Our intuition is that ht contains information about the target
object at t = T and can serve as a reasonable initialization. Finally, we com-
bine the information from the forward and backward paths together with the
reference features via the fusion block and pass it to the decoder to predict the
segmentation masks.

3.3 Multi-task Training with Optical Flow Prediction

In multi-task learning, several tasks are combined within a single problem formu-
lation and network architecture. This approach has been shown to be a successful
training technique when the combined tasks are aligned in the objective and can
provide supplemental information to each other [32]. In this section, we take
inspiration from RAFT [37], a recent state-of-the-art optical flow architecture
and design an architecture that combines video object segmentation with opti-
cal flow prediction, referred to as RAFT-HS2S. Our intuition is that VOS and
optical flow objectives are similar as they both tend to learn the pixel movement
from one frame to the next. Accordingly, we explore whether combining these
two learning objectives brings additional information to the model and enhances
the segmentation accuracy.

RAFT model [37] receives two consecutive images (It and It−1) as input
and generates the flow field capturing the pixel motion between the consecu-
tive frames. It consists of two encoders with the same architecture but separate
weights; The first encoder extracts the features ft and ft−1 while the second
encoder only processes It−1 to provide additional context to the network. In-
spired by traditional optical methods, RAFT iteratively refines the estimated
flow utilizing a ConvGRU [35] that produces the flow delta at each time step.

Motivated by the commonality in VOS and optical flow training objectives,
we adapt HS2S to accommodate the RAFT components as depicted in Figure 3.
As can be seen in this plot, the reference encoder additionally takes the role
of context encoding for the RAFT model, and the Encoder is employed for
processing It and It−1. For the optical flow loss which is added to the objective
in Equation 11, we use an unsupervised objective, namely photometric loss [18]:

Lphotometric =
∑

|I(1) − w(I(2))| (13)

Here Lphotometric is the photometric loss over all the pixels and w is the warping
operation that warps I(2) to I(1) using the optical flow between these two frames.
This term implies that having the precise motion, the pixel colors resulting from
warping one image to the other should match.
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Figure 3: The multi-task training setup in RAFT-HS2S, combining HS2S with
an optical flow method named RAFT. RAFT module computes the correlation
between frames at t and t − 1 using the inner product between the respective
feature vectors and generates an initial estimate of the optical flow between
these consecutive frames. Then, it iteratively refines the approximated flow using
a ConvGRU module that performs lookup operations based on the correlation
volume and a context feature vector computed from the frame at t− 1.

4 Experiments

4.1 Implementation Details

In this section, we explain the implementation and the training details of our
HS2S model explained in Section 3.1. We use the same experimental setup and
hyperparameters for the other architecture variants unless mentioned otherwise.
Additional ablations are provided in Sections 4.3 to 4.5.

The encoder backbone in Figure 1 is based on ResNet50 [14] architecture
pretrained on ImageNet [11], with the following modifications. We remove the
final fully connected layer which generates the image classification output and
add conv1×1 to reduce the number of channels in the bottleneck from 2048 to
1024. In the first layer, we add a convolution layer to process the segmentation
mask and combine it with the RGB features.

For the memory module, we use a ConvLSTM layer [46] with 3× 3 filters as
suggested in [47]. The merge module consists of a stack of two Global Convolution
layers [26] with a kernel size of 7× 7, following the setup in [45].
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The decoder consists of 5 upsampling layers followed by convolution layers
with 5×5 kernel sizes and 1024, 512, 256, 128, 64 number of channels respectively.
The last layer activation function is a sigmoid nonlinearity that outputs the
probability of each pixel belonging to the foreground or background. Moreover,
we utilize skip connections [31] and skip-memory connections [1] for obtaining
refined segmentation masks and better tracking the smaller objects.

As mentioned in Section 3.1, we use a teacher-forcing training strategy, feed-
ing the ground-truth segmentation masks from time step t− 1 as input in time
t. Since we do not have access to the ground-truth labels during the inference,
the masks predicted by the model are used instead. As pointed out by [5,3], this
training approach is problematic since the model predictions are often erroneous,
and the accumulation of errors result in a gap between the training and testing
phases. Following the recipe suggested in [5], we deploy a curriculum learning
policy to address this issue. At the beginning of the training when the model does
not generate high-quality masks, we use the ground-truth labels; once the train-
ing loss is stable, we follow a probabilistic scheme to decide whether to choose
from the ground-truth or use the model prediction as input. The probability of
selecting the model predictions is gradually increased from 0 to 0.5.

We use a batch size of 16 and Adam [19] optimizer with a starting learning
rate of 1e − 4. Once the training loss is stabilized, the learning rate is reduced
every 5 epochs by a factor of 0.9.

4.2 Experimental Results

We assess our method on YouTubeVOS [47], the largest dataset for VOS con-
sisting of 3, 471 and 474 videos in training and validation sets respectively. We
report F and J scores, the standard metric for evaluating VOS models [27].
YouTubeVOS evaluation additionally reports seen and unseen scores to sepa-
rately measure the model’s accuracy for the objects that have been present or
absent during the training. The unseen scores quantify the model generalization
to new object types.

In Table 1, we present the results obtained from HS2S model (plus its variants
as explained in Sections 3.1 to 3.2) as well as our baseline S2S, and the other
state-of-the-art models. The results provided in the upper half of the table are
for the methods with additional online training. Using the first object mask,
these approaches further train the network at test time; as a result, they often
achieve a better accuracy but they are considerably slower. As can be seen from
the results in Table 1, our HS2S method reaches a significant improvement in
comparison with the S2S baseline and outperforms this approach even when it
is fine-tuned by additional online training (S2S(OL)). Moreover, we observe that
utilizing the Bi-HS2S leads to further improvement of about 1pp while RAFT-
HS2S achieves similar performance as HS2S. This implies that the information
provided from the optical flow loss is already included in the VOS objective
and combining these additional terms does not bring additional benefits to the
model.



12 F. Author et al.

Method OL Jseen Junseen Fseen Funseen Overall

OSVOS [21] ✓ 59.8 54.2 60.5 60.7 58.8
MaskTrack [28] ✓ 59.9 45.0 59.5 47.9 50.6
OnAVOS [42] ✓ 60.1 46.6 62.7 51.4 55.2
S2S(OL) [47] ✓ 71.0 55.5 70.0 61.2 64.4

OSMN [48] ✗ 60.0 40.6 60.1 44.0 51.2
RGMP [45] ✗ 59.5 45.2 - - 53.8
RVOS [40] ✗ 63.6 45.5 67.2 51.0 56.8
A-GAME [17] ✗ 66.9 61.2 - - 66.1
S2S(no-OL) [47] ✗ 66.7 48.2 65.5 50.3 57.7
S2S++ [1] ✗ 68.7 48.9 72.0 54.4 61.0
STM- [23] ✗ 67.1 63 69.4 71.6 68.2
TVOS [50] ✗ - - - - 67.2
HS2S [2] ✗ 73.6 58.5 77.4 66.0 68.9
Bi-HS2S ✗ 74.9 59.6 78.0 66.7 69.8
RAFT-HS2S ✗ 73.2 58.7 77.3 66.1 68.8

Table 1: Comparison of the experimental results from the HS2S model [2] with
state-of-the-art methods on YouTubeVOS dataset. OL refers to methods with
additional Online Training.

In Figure 4, we provide a qualitative comparison between the segmentation
results from S2S [47] baseline and our HS2S model. As can be seen, our model can
successfully maintain the segmentation accuracy for later time steps. Moreover,
our method can handle scenes with multiple similar objects, which is challenging
for matching-based algorithms.

To quantify the impact of our hybrid architecture on the accuracy of longer
videos, we select a subset of sequences from YouTubeVOS training set that
consist of more than 20 frames for evaluation and use the rest for training. We
resort to using this subset since the ground-truth masks for the YoutubeVOS
validation set are not provided. Then, we calculate the segmentation accuracy
for earlier frames (t < 10) and later frames (t > 10) independently. As can be
seen in Table 2a, These two models have similar performance for earlier frames,
while HS2S significantly outperforms the S2S model for frames in the further
time steps. Additionally, we experiment with our HS2S model when using either
0th or (t−1)th frame as a reference in order to assess the role of each one in the
final performance. The results for this experiment are provided in Table 2b.

4.3 Ablation on the Impact of Encoder Architecture

The encoder networks in Figure 1 are responsible for extracting descriptive fea-
tures which will be then processed through the memory and decoded into a
segmentation mask via the decoder network. Thus, improving the quality of
the encoder network is expected to directly reflect on the segmentation quality.
In this section, we study the behavior of HS2S model when employing various
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Time

Figure 4: Visual Comparison between the S2S and HS2S results in the upper and
lower rows, respectively. We observe that our hybrid method can successfully
maintain the segmentation accuracy at the later time steps.

encoder architectures including VGG [34], ResNet50 [14], DeepLab [10], and
Axial-DeepLab [43].

The DeepLab backbone is a modified ResNet50 with less pooling operations
resulting in increased spatial feature dimension at the output (Higher spatial
dimensions are presumably beneficial for dense prediction methods due to pre-
serving fine local information). Furthermore, it consists of an Atrous Spatial
Pyramid Pooling (ASPP) module composed of a stack of convolution layers with
various dilation rates. We experiment with a DeepLab backbone pretrained on
image segmentation, with and without the ASPP module. Different than CNN-
based backbones, Axial-DeepLab [43] consists of fully-attentional blocks. In this
model, the authors propose to break the attention into horizontal and vertical
attentions to reduce the computational cost of the attention-based backbone
(from quadratic to linear). However, this model still requires significantly higher



14 F. Author et al.

Method Fl<10 Jl<10 Fl>20 Jl>20

S2S* 74.4 73.7 54.5 54.6
HS2S (ours) 77.1 76.3 65.5 64.2

(a) Performance comparison consider-
ing shorter (t < 10) and longer (t > 10)
sequences [2].

Method Jseen Junseen Fseen Funseen

HS2S0 72.6 55.4 76.7 61.2
HS2St−1 72.2 55.1 76.1 61.3

(b) Performance of HS2S model when
either the first or previous frame is used
as reference [2].

Table 2: (a) Comparison of our model with S2S baseline for shorter and longer
sequences (S2S* is our implementation of this model with ResNet50 backbone
which achieves about 1pp higher accuracy compared to [47]). We observe that
our method significantly improves the performance for frames in later time steps.
(b) The performance of HS2S model when either the first frame is used as
reference (HS2S0,t−1 shows the accuracy of our model when either 0th or the
t− 1th frames are used as reference). We observe that both frames contribute
to boosting the segmentation accuracy and the best results are obtained when
using both reference frames.

memory compared to the CNN-based backbones. Due to memory limitation, we
experimented with small Axial-DeepLab architecture as elaborated in [43]

Backbone Jseen Junseen Fseen Funseen overall

VGG16 [34] 71.4 56.0 74.9 64.8 66.8
ResNet-50 [14] 73.6 58.5 77.4 66.0 68.9
ResNet-101 [14] 73.9 58.5 77.3 66.2 69.0
ResNet-50-DeepLab (without ASPP) [10] 73.3 59.1 77.2 66.0 68.9
ResNet-50-DeepLab (w/ ASPP) [10] 72.3 56.9 76.5 64.2 67.4
Axial [43] 70.5 55.0 73.1 61.8 65.1

Table 3: An ablation on the impact of backbone network.

As can be seen in Table 3, we obtained the best results when applying the
ResNet-based encoder. Surprisingly, integrating the additional ASPP module
from the DeepLab architecture resulted in lower performance. This behavior
can be due to the added complexity from combining the spatiotemporal RNN
features with multi-scale processing in the ASPP module resulting in a more
challenging optimization problem and sub-optimal performance.

4.4 Ablation on the Impact of RNN Architecture

One of the main blocks in the HS2S architecture is the RNN block, accountable
for memorizing the target object. In this section, we provide an ablation studying
the HS2S performance when deploying three different RNN-based memories.



Rethinking RNN-based Video Object Segmentation 15

The first variant is ConvLSTM [46]. This module is developed for processing
sequential visual data by replacing the fully connected layers in LSTM with
convolution layers, adjusting the LSTM layer for visual pattern recognition.

As the second model, we study DeepRNN [24]. In this model, the authors
address the challenges in training deep RNN models. Although deeper networks
are expected to learn better representations compared to their shallow counter-
parts in the case of CNNs, deep RNN architectures designed by simply stacking
the RNN layers does not lead to considerable improvement in the model accu-
racy. In [24], Pang et al. suggest this behavior roots in the complex optimization
operation when dealing with RNNs. Processing the entangled spatial and tem-
poral information in sequential visual data leads to the optimization process
becoming overly complex. This condition could become even more extreme for
deeper RNNs, resulting in sub-optimal performance. To this end, they propose
to disentangle the information related to the spatial flow from the temporal
flow. They design a Context bridge module (CBM) which is composed of two
computing blocks for processing the representation and the temporal flows. By
enforcing these sources of information to flow independently, the optimization
process could potentially be simplified. In our experiments, we deployed a stack
of 5 RNN layers following the setup proposed in [24].

In the third variant, TensorLSTM [35], the authors attempt to improve
the learning of long-term spatiotemporal correspondences for processing longer
videos. They design a higher-order convolutional LSTM architecture named Ten-
sorLSTM that can better capture extended correlations. TensorLSTM consists
of a preprocessing and a convolutional tensor-train module. The preprocessing
module computes feature vectors from multiple overlapping sliding windows from
the previous hidden states. These embeddings are then further processed through
the convolutional tensor-train module and passed to the LSTM. Consequently,
they are able to efficiently integrate the information from the previous hidden
states and improve the capturing of long-term correlations.

Method Jseen Junseen Fseen Funseen overall

ConvLSTM [46] 73.6 58.5 77.4 66.0 68.9
DeepRNN [24] 72.4 57.3 75.8 64.9 67.6
Tensor-TrainLSTM [35] 74.7 60.2 78.5 66.4 70.0

Table 4: An ablation on the choice of RNN module.

As it can be seen from the results in Table 4, TensorLSTM achieves a better
segmentation accuracy compared to the other variants. This implies that in HS2S
architecture, we do not require deeper RNNs to carry the information about the
object of interest. However, accessing the information from multiple frames over
an extended time period is beneficial for the model. In a way, TensorLSTM
applies attention to a limited past context via the sliding-window mechanism in
the preprocessing module. This observation is in line with employing the dual
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propagation strategy in Section 3.1 where simply merging the information from
the time-step t− 1 improves the segmentation results.

4.5 Ablation on Various Designs for the Fusion Block

In this section, we study the model’s performance when working with three dif-
ferent fusion block architectures in Table 5. Intuitively, the fusion block needs to
provide global connections across the spatial dimensions as the object might be
displaced to a further location compared to the reference frames. Additionally,
it has to assign higher attention to the locations that belong to the foreground.
In HS2Ssim, the spatiotemporal RNN features are merged with the reference
features based on cosine similarity. HS2SGC merges these two branches using
global convolution layers as suggested in [26] while HS2Sattn replaces this oper-
ation with an attention layer [15]. We obtained similar performance for different
fusion architecture options, but the design using attention attained the highest
accuracy.

Method Jseen Junseen Fseen Funseen overall

HS2SGC 73.6 58.5 77.4 66 68.9
HS2Ssim 72.3 56.4 76.2 62.5 66.9
HS2Sattn 73.9 58.7 77.5 66.3 69.1

Table 5: An ablation on the impact of backbone network.

5 Conclusion

In this paper, we expanded our previous HS2S approach [2] to generate a hybrid
architecture for VOS that combines the merits of RNN-based and matching-
based methods. As before, we find that all of our hybrid approaches are es-
pecially beneficial for the segmentation of objects that are occluded and re-
appearing, as well as in cases where many similar objects need to be tracked
and segmented. In this paper, we have investigated two derived architectures: a
bi-directional and a multi-task (optical flow) extension of our previous approach.
Further, we expanded our previous ablation study by investigating further seg-
mentation backbones, RNN, and fusion blocks of the underlying architectures.
Resulting from these investigations, we found that our bi-directional extension
(Bi-HS2S) improves over our previous architectures by nearly 1 pp and more
than 12pp when compared to other state-of-the-art RNN-based baselines (such
as S2S(no-OL) [47]). To our surprise, our multi-task extension also taking optical
flow into account (RAFT-HS2S) failed to improve over HS2S. In the expanded
ablation study, we found that the ResNet-101 based backbone network, Tensor-
TrainLSTM RNN architecture, and attention fusion blocks seemed to be the
most beneficial design choices.
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For future work, we aim to investigate the potential benefit of utilizing depth
information either as input or as an unsupervised learning objective integrated
into our HS2S model.
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