
Exploiting Background Knowledge

when Learning Similarity Measures

Thomas Gabel1 and Armin Stahl2

1 University of Karlsruhe, Institute AIFB
tga@aifb.uni-karlsruhe.de

2 German Research Center for Artificial Intelligence DFKI GmbH
Research Group Image Understanding and Pattern Recognition (IUPR)

stahl@informatik.uni-kl.de

Abstract. The definition of similarity measures—one core component
of each CBR application—leads to a serious knowledge acquisition prob-
lem if domain and application specific requirements have to be con-
sidered. To reduce the knowledge acquisition effort, different machine
learning techniques have been developed in the past. In this paper, en-
hancements of our framework for learning knowledge-intensive similarity
measures are presented. The described techniques aim on a restriction of
the search space to be considered by the learning algorithm by exploiting
available background knowledge.

1 Introduction

Similarity measures are certainly one of the most import aspects of Case-Based
Reasoning. Since they are required for the first step of the CBR cycle [1], namely
the retrieval of useful cases [3], the quality of the employed similarity measure
strongly influences the entire problem solving process. For example, if suboptimal
cases are retrieved, the subsequent adaptation process will be more expensive,
might result in suboptimal solutions, or might even fail completely. In the most
commercial CBR systems applied nowadays (typically classification, diagnosis or
help-desk systems), the situation is even harder. Here, usually no case adaptation
functionality is provided at all. Hence, the quality of the final output of the CBR
system completely depends on the quality of the case data provided and the
systems’ ability to retrieve the best cases available.

One reason for the great success of CBR is certainly the reduced knowledge
acquisition effort. However, one also has to pay a price for this advantage of CBR:
correctness and high quality of the output cannot be guaranteed in general. Par-
ticularly when employing quite simple distance metrics (e.g. the Hamming or
the Euclidean distance), retrieval results are often unsatisfactory. While these
knowledge-poor similarity measures (kpSM) can be defined with little effort, the
drawback of them is, that they are “blind” regarding the application and do-
main specific requirements. Hence, in many applications more sophisticated and
domain specific heuristics to select accurate cases have been used. However,



when employing such knowledge-intensive similarity measures (kiSM), one is
confronted again with a serious knowledge acquisition problem. Domain experts
able to provide the mandatory domain knowledge and experienced knowledge
engineers able to model this knowledge by using formal similarity measures are
required. If such experts are available at all, this results in significantly increased
development costs for the CBR application.

In order to avoid this drawback of kiSM, we have proposed to support their
definition by applying machine learning techniques [9–12]. The basic idea of
this approach is to acquire feedback about the quality of retrieval results from
which learning algorithms can deduce proper similarity measures automatically.
Although experimental evaluations have shown that our framework allows to
facilitate the definition of high quality measures significantly, under certain cir-
cumstances some open problems might prevent its application in daily practice.

This paper presents some techniques leading to a broader and improved ap-
plicability of our framework. The major idea is to incorporate easily available
background knowledge into the learning process in order to avoid typical prob-
lems of machine learning, such as overfitting.

Section 2 provides some basics of our learning framework and points out
the objectives of the extensions presented in this paper. However, since these
extensions described in Section 3 and 4 directly put on our previous work, for
more details about our learning approach the reader is referred to [12]. Section 5
presents the results of an experimental evaluation demonstrating the power of
the described techniques. Finally, Section 6 concludes with some remarks on
related work and further research issues.

2 Learning Similarity Measures

In principle, learning similarity measures from some kind of training data is not
a novel issue. A lot of work in this direction has been done, for example, in
the area of nearest-neighbour classification [13]. Here, one tries to adjust feature
weights—which can also be seen as a simple form of a kiSM—by examining
pre-classified training data. However, our learning framework [9–12] particularly
addressed two novel issues:

Applicability Beyond Classification Domains. In the last years CBR has
become very popular in quite different areas, such as e-Commerce or Knowl-
edge Management. Here, traditional learning approaches originally devel-
oped for classification tasks are usually not applicable due to the absence
of pre-classified data required for learning. One of our objectives was the
development of a learning framework suited for a broader range of CBR ap-
plications. This framework is based on a particular kind of training data,
called utility feedback, where the cases’ utility has to be estimated by some
similarity teacher. This similarity teacher might be, for example, a human
domain expert, the users of the system or some software agent [9].

Learning of Local Similarity Measures. Besides the definition of attribute
weights, successful CBR tools applied nowadays also allow the specification
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– Especially when obtaining little training data, huge search spaces increase
the risk that the learner creates models (here, similarity measures) that fit
“too” good to the training data, while showing poor performance and little
ability in generalising on some independent test data set. This behaviour is
known as “overfitting” in many machine learning approaches.

– Due to the chosen representation, the huge search space is populated with
plenty of (local) similarity measures whose usage in practice is highly im-
probable. Hence, the evolutionary algorithm wastes time searching regions of
the search space which do not correspond to “realistic” measures. Since evo-
lutionary algorithms are well-known to be very demanding regarding com-
putational resources, a speeding up of the learning process will increase the
applicability of our framework in commercial practice.

– Completely manual definition and fully automated learning of knowledge-
intensive similarity measures are two extremes of a wide spectrum of mod-
elling possibilities [10]. Both approaches are coupled with certain advantages
and disadvantages. For example, learning might result in suboptimal mea-
sures (e.g. caused by overfitting) while a manual definition might lead to un-
acceptable development costs. In order to benefit of the advantages of both
approaches, it seems promising to apply a hybrid approach. This means,
one should consider easily available knowledge by defining it directly, while
learning unknown or uncertain knowledge by applying our framework.

The three mentioned issues are the foundation of the extensions presented
in the following. Here, the basic idea is to exploit easily available background
knowledge in order to restrict the hypothesis space to be considered by the
evolutionary algorithm. Therefore, we identified two main sources of background
knowledge that can be exploited easily and utilised to improve the process of
learning similarity measures.

3 Determination of Knowledge Sources

The knowledge sources we employ to enhance the learning can be divided into
two groups: Firstly, the used representation of local similarity measures allows
us to define several forms of meta knowledge representing general demands on
the appearance of learnt measures. Secondly, the aid of a knowledge engineer
and the incorporation of his/her expert knowledge into the learning process may
be rewarding (see Section 3.2).

3.1 Similarity Meta Knowledge

Experience in the practical usage of CBR systems has shown that most of the
similarity measures that are applied feature certain characteristics. We refer to
that kind of experience as similarity meta knowledge.



3.1.1 Heuristic Constraints
There are awkward definitions for similarity measures (e.g. non-reflexive) which
actually contradict the CBR paradigm, according to which similar problems have
similar solutions, and which thus are very improbable to be used in practice. Nev-
ertheless, those peculiar measures are part of the search space and, accordingly,
have the chance of getting involved in the learning process. Defining a set of
basic heuristic constraints, that should be fulfilled by local similarity measures,
we intend to exclude unusual, highly improbable metrics from the search and
thus to restrict the search space.

Reflexivity Constraint Most similarity measures employed in practice are
supposed to be reflexive, as any entity can be characterised as being max-
imally similar to itself. Hence, if there is no justified reason to make use
of non-reflexive similarity measures, the constraint for reflexivity of a local
similarity measure simA for attribute A seems to be advantageous:

crefl = � simA(x, x) = 1 ∀x ∈ DA �
Symmetry Constraint The idea of introducing a symmetry constraint is invit-

ing, since its application would approximately halve the search space. In the
case of a symbolic attribute As with |DAs | = n, for example, the number of
alterable entries in the respective similarity measure (individual) sinks from
n2 to n2+n

2 . The symmetry constraint is denoted as follows:
csymm = � simA(x, y) = simA(y, x) ∀x, y ∈ DA �

Of course, in many application scenarios, asymmetric local similarity mea-
sures are indispensable (e.g. in product recommendation systems).

Monotony Constraint According to common understanding, larger distances
between the query’s and case’s value of an attribute make them more dis-
similar, while smaller ones let them appear rather similar. Based on that
foundation, we now define a constraint for monotony (only applicable to
distance-based similarity functions, i.e. for ordered data types):

cmon = � simA(x, y2) − simA(x, y1) ≤ 0 ∀x, y1, y2 ∈ DA

with 0 ≤ y1 − x ≤ y2 − x or x − y2 ≤ x − y1 ≤ 0 �

3.1.2 Mining Knowledge from the Case Base
Considering a single local similarity measure sim, one can say that the similarity
knowledge that is included in sim is distributed over several elements: in the case
of similarity tables over its n2 entries and in the case of similarity functions over
a few parameters or sampling points describing that function.

Without any doubt, some of the measure’s elements can be characterised
as carrying “more valuable knowledge” insofar as they are consulted more fre-
quently. That means they are more frequently used to determine a query’s and a
case’s similarity regarding the respective attribute. Therefore, we ought to aim
that those parts of the measure are outmost correct, as an erroneous similarity
definition in these regions would have a higher negative impact on the CBR
system’s overall performance. An example for such a region is, in the case of a
distance-based similarity function the area around the y-axis, i.e. all simA(x, y)



with |x− y| near zero. For a learning algorithm this implies that it should focus
more on such “high-importance regions”, searching more thoroughly there, while
it should be permitted to spend less effort in other “low-importance regions”.

But, which regions are of high importance? We intend to answer that ques-
tion in the following by means of a statistical case base analysis. In so doing,
we want to find out (specifically for single attributes and local similarity mea-
sures, respectively) which entries within a similarity table and which regions of
a similarity function’s domain are more frequently consulted and which can thus
be considered to be of higher importance. We need to stress in prior, that all
considerations we are doing here, presume a sufficiently substantial case base
which in particular is also representative (in its attribute-value distributions for
all attributes) for queries occurring typically in practice.

Illustrating our idea of obtaining knowledge from analysing case data, we
present a little example regarding a local similarity measure for a symbolic at-
tribute AoptDrive, which describes optical disc drives and which might be used
in an application scenario where personal computers are described.

We assume a case base CB of 160 cases whose attribute values for AoptDrive

(with DAoptDrive ={CD-R,CD-RW ,DVD-R,Combo,DVD-RW }) are set accord-
ing to Figure 2. That distribution is called attribute-specific value frequency (cf.
Definition 1) and we proceed on the assumption that it is representative and re-
flects the frequency with which certain values from DAoptDrive occur in practice.

Definition 1 (Attribute-Specific Value Frequency). Let A be an attribute
with domain DA and CB = {c1, . . . , cm} a case base. The attribute-specific
value frequency hA is defined as hA : DA → N

x �→ ∑m
i=1 δ(ci.A, x)

where δ(x, y) = 1, if x = y, and δ(x, y) = 0, else.

To find out which combinations of certain case values and query values occur
how often (and thus to find out which elements of the respective similarity table
are supposed to be consulted how frequently), we pursue a leave-one-out test
strategy as formalised in Definition 2: Each c ∈ CB is used once as a query,
while being excluded from the case base at that point of time, and it is summed
up how many table look-ups (separately for each table element) have to be
performed when carrying out an entire retrieval with c as query.

Although our example was designed for a symbolic attribute we want to em-
phasise that this analysis can be applied to numeric attributes as well. Then,
however, the determined consultation frequencies refer to specific case-query dis-
tances, i.e. parts along the similarity function’s x-axis instead of single elements
within a similarity table.

Definition 2 (Local Similarity Measure Consultation Frequency). Let
CB = {c1, . . . , cm} be a case base and let A be an attribute with domain DA =
[Amin, Amax], if A is numeric, and DA = {d1, . . . , dn}, if A is symbolic, respec-
tively. Moreover, let simA be a local similarity measure for A an let hA be the
attribute-specific value frequency. Then, the consultation frequency of simA

and DA, respectively, is the auto correlation of hA, which is defined as



– if A is numeric: cn : DA → N

d �→
{∑∞

i=−∞ hA(i) · hA(i − d) if d �= 0∑∞
i=−∞ hA(i) · (hA(i) − 1) else

– if A is symbolic: cs : DA × DA → N

(x, y) �→
{

hA(x) · hA(y) if x �= y

hA(x) · (hA(x) − 1) else

In that definition the mentioned leave-one-out strategy is taken into consid-
eration by the “else” cases: If a certain case cj is used as query during (leave-
one-out) retrieval and in so doing is excluded from CB, the number of cases ci,
for which it holds ci.A = cj.A, must be decreased by one. Figure 2 summarises
the results for the given example and highlights high vs. low importance regions
of simoptDrive’s similarity table with different shades of gray.
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Fig. 2. Example for Low and High Importance Regions in a Similarity Table

3.1.3 Exploitation of the Knowledge
The crucial issue, after having defined heuristic constraints and/or conducted a
case base analysis, concerns the employment of the knowledge obtained. In the
former case a straightforward application of the constraints is possible: Local
measures not conforming to those heuristics are disregarded and excluded from
the search. For knowledge about high/low importance regions we have defined
two approaches by means of which the knowledge about consultation frequencies
cn or cs can be incorporated into the optimisation process.

a) Granularity Restriction
Each entry v in a similarity table as well as each sampling point’s similarity value
v can be chosen from [0; 1] ⊂ R. Accordingly, a self-evident strategy to efficiently
restrict the search space is to introduce a grid for the respective similarity value
v forcing it to be an element of {0, 1

g , . . . , g−1
g , 1}, where g ∈ N

+ determines the
allowed degree of granularity.

The results from a statistical case base analysis may be perfectly used to
determine appropriate granularities. On the one hand, the consultation frequency
cs(x, y) of a specific entry in a similarity table may be very high. So, this entry
is supposed to be consulted very frequently and therefore should be adjusted as
accurate as possible. Moreover, this reveals that the case base contains a lot of
information about the combination “x as query value and y as case value”. Then,



one may conclude that learning of simA(x, y) is less vulnerable to overfitting and
that its value may be chosen on the basis of a higher granularity.

On the other hand, cs(x, y) may be rather low. Then, a fine-grained definition
for simA(x, y) is, generally speaking, not necessary or, at least, not very impor-
tant (regarding the CBR system’s overall performance). Furthermore, the low
value of cs(x, y) suggests that CB features little information about that case-
query combination for attribute A only. Hence, learning simA(x, y) suffers from
a high risk of overfitting, so that the restriction of simA(x, y) to a comparatively
low number of possible values seems promising.

The following definition introduces our approach to restrict the search space
via granularity levels.

Definition 3 (Granularity Values from Consultation Frequencies). Let
A be an attribute with domain DA, CB a case base of m cases and simA the
local similarity measure under consideration
– where simA(x, y) ∈ [0, 1] with x, y ∈ DA, if A is symbolic
– with sampling points sk ∈ [Amin −Amax, Amax −Amin] (k ∈ {1, . . . , s}) and

belonging similarity values simsk
=sim(x, y) with x−y=sk, if A is numeric.

Then, it holds for the granularity value g:

– if A is symbolic: g = 1 +
⌈

cs(x,y)
mγ

⌉
– if A is numeric: g = 1 +

⌈∫ sk+δ

sk−δ w(x,sk)·cn(x)dx

mγ

⌉
with δ = 2·(Amax−Amin)

s−1

and w(x, y) = 1 − |x−y|
δ

where γ is a parameter to scale the entire granularity assessment.

In the case of dealing with a symbolic attribute, the consultation frequencies
can be employed directly to determine appropriate granularity values. As A’s
domain is continuous, if it is a numeric attribute, the computation of integrals
is necessary. However, because the amount of available case data is finite, that
calculation scales back to forming according finite sums instead of integrals. In
practical tests we found that setting γ = 1 produces convincing results. While
this granularity approach may be employed for all kinds of local measures, the
following strategy works for numeric attributes only.

b) Modified Sampling Point Distribution
In [12] we have presumed that the sampling points, that are used to represent
a distance-based similarity function simA, are distributed uniformly over IA =
[Amin−Amax, Amax−Amin] of simA. As mentioned above some regions of IA may
be of less importance than other ones—namely those regions with a rather low
consultation frequency cn. Consequently, in those regions we actually need not
to interpolate simA as elaborate as in other, high-importance regions. So, less
sampling points ought to be placed in the former, while a higher sampling rate
and thus a better approximation of simA seems suitable for the latter regions.
In short, an equidistant distribution of sampling points does not correspond to
nuances in consultation frequency. In [7] we present an algorithm that distributes
the sampling points with respect to computed consultation frequencies.



3.2 Expert Knowledge

Without learning functionality, a similarity measure’s competence relies exclu-
sively on the expert modelling it. Contrary, if the knowledge engineer lacks suf-
ficient domain knowledge, the only way to obtain adequate retrieval knowledge
is via machine learning (provided that training data is available). Thus, as pro-
claimed in Section 2.2 a combination of these two converse ways to define simi-
larity measures permits several advantages:

– The knowledge acquisition effort is decreased. The expert first issues his/her
(partial) knowledge about the respective measure, and the remaining parts
of the similarity measure are learnt automatically.

– Since the expert is not urged to specify the similarity measure completely,
he/she is not forced to make educated “guesses” about elements of the mea-
sure he/she actually does not know much about.

– Due to the additional partial knowledge given by the expert, the learner
might less likely tend to overfit its learning results to the training data.

In the following we examine three strategies to incorporate a knowledge engi-
neer’s partial knowledge into the learning process.

3.2.1 Attribute and Weight Preferences
Feature weights have a crucial influence on the entire similarity calculation [9]:
A wrong choice of weights can distort the entire similarity assessment, even if a
lot of effort has been put into tuning local measures. Experts usually do not care
or cannot say, whether A1 is two or three times as important as A2. We argue
that it is much easier for an expert to formulate a number of preference relations
by which he/she can determine a partial order of weights, ordered with respect
to the relevance of the corresponding attributes. The task of assigning concrete
numerical values to the weights can then be left to a learning algorithm.

An expert may, for example, utter that he/she considers A1 to be less im-
portant than A3, A2 to be more important than A3, while having no idea about
A4’s importance. The number of allowed weight values for w1, . . . , w4—and thus
the number of corresponding individuals that may be created in the scope of an
evolutionary algorithm—is reduced when those relational constraints are taken
into consideration. Of course, the degree of restriction depends on the number
of preference relations the expert is able to provide.

3.2.2 Expert Estimations
The situation for local similarity measures, is even worse, because here a large
number of concrete parameter or similarity values has to be devised for each at-
tribute. As a consequence, many of the values that have to be determined during
a manual definition of a similarity measure are left to the expert’s intuitiveness
and thus mostly represent estimations of the correct value only. Nevertheless,
even estimated values may help to support and bias the learning process:



Bounds Approach An obvious possibility enabling an expert to directly cut
off parts of the search space is by allowing him/her to define lower and upper
bounds for specific similarity values. For instance, he/she may decide that
for a symbolic attribute’s values d1 and d2 it holds: sim(d1, d2) ∈ [0.6; 0.8].
Consequently, the learning algorithm does not have to take the whole interval
[0; 1] into consideration for sim(d1, d2), but only that subinterval.

Confidence-Based Approach In response to the increased specification ef-
fort of the bounds approach (e.g. 2n2 bound values for a similarity table)
we also introduce a more human-centred, confidence-based approach. Here,
the expert may (eventually only partially) define the similarity measure in
the usual manner, but is allowed to add an assertion about his/her level
of confidence c ∈ C = {uncertain, low, average, high, certain} regarding
his/her specification. For example, he/she may state sim(d1, d2) = 0.7 and
csim(d1,d2) = high to express that it holds sim(d1, d2) ≈ 0.7.

The specificational effort is less for the second approach as confidence levels may
be defined for an entire measure as a whole or a part of it (e.g. for a number of
rows in a table). The semantic of levels from C may be interpreted differently by
the learner, e.g. depending on the application domain or on the knowledge engi-
neer’s experience. This means, the search space restriction induced by confidence
levels is not as strict and inflexible as the one induced by bound specifications.

3.2.3 Exploitation of Structured Data Types
The knowledge engineer is fully responsible for the definition of the CBR system’s
vocabulary knowledge as well. That task comprises not only the definition of
an appropriate case representation, but also the determination of attributes and
their data types. Knowledge about the vocabulary, in particular about structured
data types, can be employed a-priori to restrict the search space. With the term
“structured data types” we here refer to symbolic data types, namely taxonomic
and ordered symbolic data types, whose values D = {d1, . . . , dn} can be arranged
in a tree structure or total order, respectively. Of course, that taxonomic/total
ordering effects the belonging local similarity measures and the way the similarity
between a query and a case value is computed [2].

Our approach to exploit that kind of vocabulary knowledge is primarily based
upon employing a more compact representation of local measures as an evolu-
tionary algorithm’s individuals (more compact compared to a similarity table
with n2 entries). For instance, for taxonomic symbolic attributes we defined
similarity tree individuals (consisting maximally of 2n−1 entries), devised ap-
propriate specialised genetic operators for those individuals and thus enabled the
EA to directly operate on tree structures. The actual search space restriction is
reached not only by that more compact representation of local measures, but
also via implicit constraints (e.g. restrictions of the similarity values to be asso-
ciated with single tree nodes) that hold for parts of taxonomic/ordered symbolic
individuals. A more detailed description of that approach can be found in [7].



4 Incorporation of Background Knowledge

As mentioned in the previous section it is one of our aims to restrict the search
space by exerting a bias on the respective learning algorithm so that it prefers
certain regions of that space to other ones or completely avoids searching some
subspaces of the entire search space.

4.1 Knowledge-Based Optimisation Filters

In order to realise the restriction of the search space we introduce the concept of
knowledge-based optimisation filters (kbOF) restricting the search space. With
that term we refer to entities that, on the one hand, hold the gathered knowledge
concerning the learning of similarity measures. On the other hand, they are
meant to play an active role to explicitly direct the search. As similarity measures
are composed of several elements (e.g. a local measure for each attribute of the
chosen case representation), we should avoid using a single filter for the entire
measure. Instead, the definition of a special kbOF for each attribute (i.e. each
local measure) as well as one additional filter for the feature weights is necessary.
Hence, for a case representation consisting of n attributes we need n + 1 filters.
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Fig. 3. Example of a Knowledge-Based Optimisation Filter for AoptDrive

In particular, each kbOF for a local similarity measure (we disregard feature
weights here) may include the following pieces of knowledge:

– set of heuristic constraints (e.g. constraint for symmetry)
– set of granularity values g
– list of non-equidistantly distributed sampling points for numeric attributes
– set of bound specifications (subintervals of [0, 1])
– set of expert-estimated similarity values with corresponding confidence levels
– characteristic information on how to exploit structured data types, only for

(taxonomic and ordered) symbolic attributes

In Figure 3 we give a visualisation of a possible kbOF for the example of attribute
AoptDrive introduced in Section 3.1.2.

4.2 Intervening the Learning Process

An important question is how a kbOF interferes with the search process in
order to exert a bias toward certain types of similarity measures. Our approach



considers the filter’s background knowledge already during the creation of new
hypotheses, i.e. during the creation of new candidate similarity measures. Here,
the kbOFs’ task is to supervise and control the generation of new candidates in
such a way that no (or as few as possible) contradictions to its prior knowledge
occur, i.e. hard constraints must always and soft ones should mostly be met.
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III. SELECTION

I. BREEDING
stop
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Fig. 4. Intervention of Knowledge-Based Optimisation Filters

In the context of an EA this bias is supposed to be done during the gen-
eration of new individuals in the breeding stage of the evolutionary loop. At
this, the kbOFs exert their influence at the level of chromosomes: Based on
the information they carry, these filters may make some values for the genes
of a new individual more probable or forbid other values, for instance. They
are also allowed to adapt the behaviour of mutation and crossover operators by
giving advice to them in form of particular parameter values. In Figure 4 we
outline the simplified control algorithm with its three main phases and show
how knowledge filters can intervene the creation of offspring in general. The re-
fined breeding phase of the EA is extended by the layer of kbOFs, in which the
actual intentions (concerning offspring creation) of the evolutionary algorithm
are “filtered” so that they are in accordance to the filter’s knowledge. Hence,
a kbOF uses its heuristic, expert and statistical knowledge to manipulate the
creation of descendants.

5 Evaluation

The main focus of our experiments is laid upon a comparison of filterless and
kbOF-enhanced learning of similarity measures. We have chosen a set of clas-
sification and solution prediction2 application domains from the UCI Machine
Learning Repository3 and used our learning framework to learn the similarity
measures in such a way that the CBR system’s prediction accuracy is maximised.
The CBR system’s classification decision and solution prediction are based on a
specialised k-nearest neighbour approach [7].

5.1 Experimental Settings

The number of presented techniques to improve the learning of similarity mea-
sures is numerous and, accordingly, the number of definable kbOF is extremely
2 Here, the accurate numeric value of a so-called solution attribute has to be predicted.
3 http://www.ics.uci.edu/∼mlearn/MLRepository.html



high as well. Hence, to structure out experiments we have identified a number
of classes of kbOF we compare against one another:

m-Filters contain similarity meta knowledge only (cf. Section 3.1). This means,
they may make use of the reflexivity, symmetry or monotony constraint, for
example, or of an arbitrary combination of them. Moreover, they are allowed
to employ the knowledge mined from the case base, e.g. by introducing a grid
all similarity values have to fit in. It is important to emphasise, that m-Filters
are of special interest since the knowledge acquisition effort to define them
is only marginal.

e-Filters are enhanced via specific expert knowledge. Hence, those knowledge-
based optimisation filters can include bound specifications, expert estima-
tions, confidence levels etc. Although e-Filters are also permitted to exploit
the advantages of structured (taxonomic and ordered symbolic) attributes,
none of our experiments covers these opportunities.

me-Filters represent the combination of the former ones, incorporating both
kinds of additional knowledge to guide the optimisation process.

Apart from comparing the effect of utilising several filter types we also distin-
guished between different amounts of training examples used for learning. In
each experiment (consisting of 10 repetitions for each domain) we have split
the set of available cases into a training and test data set, CBtrain and CBtest.
Then, we started the learning of similarity measures for incrementally increasing
subsets (15, 25, 50, . . . cases) of CBtrain and calculated average classification
and solution prediction (i.e. numeric difference between correct and predicted
value of the solution attribute) accuracies, respectively, on CBtest.

5.2 Results

All in all, the employment of knowledge-based optimisation filters led to im-
proved learning results. The magnitudes of achieved improvements, however,
differed enormously over the various application domains. In most cases, the
me-Filter produced the highest learning improvements, which is plausible as
those kbOFs had been enriched by the maximal amount of available background
knowledge. Furthermore, it became obvious that the incorporation of expert
knowledge in general generates higher gains than the usage of similarity meta
knowledge only. This is not too surprising insofar as expert knowledge can be
described as more exhaustive and substantial than similarity meta knowledge.
That kind of outperforming, however, must be paid with the higher knowledge
acquisition effort that has to be invested when employing expert knowledge.

In Figure 5 we summarise the achieved error reductions (exemplarily for two
of the application domains we have chosen) for increasing training data sizes (x-
axis). The baseline similarity measure represents, on the one hand, a knowledge-
poor (default) similarity measure, into whose construction no further knowledge
engineering effort has been put, i.e. the similarity assessment is here based on an
uninformed syntactic match. On the other hand, we illustrate the accuracies that
resulted from a similarity measure that was obtained from filterless learning.
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In this paper we have presented further improvements of our learning frame-
work [9–12] which particularly addresses two novel issues: learning of local sim-
ilarity measures and a broad applicability beyond classification tasks. The core
idea of these improvements is a restriction of the search space to be consid-
ered during learning by exploiting different sources of background knowledge.
While we could show the power of our learning techniques in several test do-
mains, an application in commercial practice is still outstanding. Moreover, an
interesting issue for further research may be an extension of our framework on
more sophisticated similarity measures, e.g. like required for object-oriented case
representations [4].
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