# Exploiting Background Knowledge when Learning Similarity Measures



#### **Thomas Gabel**



**Armin Stahl** 

European Conference on Case-Based Reasoning September, 2nd 2004

#### Overview

- 1. Knowledge-Intensive Similarity Measures
- 2. Using Evolutionary Algorithms for Learning Similarity Measures
- 3. Incorporation of Background Knowledge
- 4. Experimental Evaluation
- 5. Conclusions





#### **Knowledge-Intensive Similarity Measures**

- Similarity Measures: Heuristics for selecting useful Cases
- Traditional Similarity Measures:
  - usually based on simple geometric distances
  - mainly estimate syntactical differences only
- Knowledge-Intensive Similarity Measures (kiSM):
  - encode specific knowledge about the application domain
  - allow a much more accurate estimation of the cases' utility
  - basic structure:



#### Examples of kiSM

- **CBR-System used for recommending PCs** 
  - kiSM encode knowledge about customer preferences
- Local Similarity Measures
  - difference-based similarity functions for numeric attributes
  - similarity tables for symbolic attributes
- Attribute Weights



**II JPR** 

## Modelling kiSM

- Manual Modelling of kiSM is coupled with Problems:
  - procedure is very time consuming
  - required low-level knowledge is not or only partially available
  - domain experts are not familiar with the representation formalisms
  - actual utility of cases is not considered explicitly
- Alternative Approach: Learning
  - acquire high-level knowledge about the actual utility of certain cases for given queries
  - apply machine learning algorithms for generating accurate similarity measure leading to the desired retrieval results





#### Learning Similarity Measures from Utility Feedback



# **Applying Evolutionary Algorithms**

• Idea:

- encode attribute weights and local similarity measures as individuals to be optimised be a GA
- define corresponding mutation/crossover operators







#### Problems

- Learning from Utility Feedback only may be critical:
  - underlying hypothesis space is huge
    - given only few training data, learning tends to overfitting
  - some certain low-level knowledge is often available
    - learning this knowledge is needless and counterproductive
  - similarity measures have typical properties, e.g. monotony
    - learning algorithms should ensure compliance with these properties
  - given utility feedback and case bases usually provide only limited information about certain value combinations
    - trying to learn kiSM for other value combinations is useless

⇒

**Goal**: Restricting the Search Space and biasing the Learner by exploiting available Background Knowledge







## Incorporating Background Knowledge



Modification of Created Hypotheses





Armin Stahl Image Understanding and Pattern Recognition Group German Research Center for Artificial Intelligence



#### Sources of Knowledge





Image Understanding and Pattern Recognition Group German Research Center for Artificial Intelligence



#### Mining Knowledge from the Case Base

- Local Measure Definition: high vs. low importance regions
  - consulted frequently
  - high impact on measure's performance
  - outmost correct definition necessary

Focus of Learning Algorithm

- Statistical Case Base Analysis: Which combination of query and case value occurs how often if each case is used as query once?
- Assumptions
  - substantial case base

**Thomas Gabel** 

 representative for queries occuring in practice

> Neuroinformatics Group University of Osnabrück





Image Understanding and Pattern Recognition Group German Research Center for Artificial Intelligence

Armin Stahl

#### Employment of the Mined Knowledge

Sampling Point Distribution: non-equidistant



Granularity: introducing a grid (for all types of local measures)





#### Partial Expert Knowledge

- Motivation
  - shortening the gap between fully automatic (learning) and fully manual (knowledge engineer) definition of similarity measures
  - benefits: reduced knowledge acquisition effort
    - exclusion of overfit-minima
    - avoidance of ``educated guesses''
- Approaches
  - attribute and weight preferences
  - expert-estimated values with confidence levels
  - specific search strategies





Armin Stahl Image Understanding and Pattern Recognition Group German Research Center for Artificial Intelligence

Similarity Meta Knowledge

Case Base

Analysis

Heuristic CBR

Knowledge

Sources of

**Background Knowledge** 



Expert Knowledge

Vocabularv

Knowledge

Partial Expert

Knowledge

## Experimental Evaluation (I)

- Learning Experiments in various Classification and Regression Domains
- Comparison: Accuracies achieved with
  - 1. default similarity measures (knowledge-poor)
  - 2. learnt similarity measures
  - 3. similarity measures learnt with help of knowledge filters
- Filter Definition
  - m-Filters
  - e-Filters
  - me-Filters

**Thomas Gabel** 

Neuroinformatics Group University of Osnabrück



Image Understanding and Pattern Recognition Group German Research Center for Artificial Intelligence

- Dependency on different Training Data Sizes
- Occurrence and Reduction of Overfitting

#### **Experimental Evaluation (II)**



## **Experimental Evaluation (III)**

- Overfitting Analysis
  - x-values: quality of learnt vs. default measure on training data
  - y-value: quality of learnt vs. default measure on test data



#### Conclusions

- Utilisation of Additional Background Knowledge
  - similarity meta knowledge and expert knowledge
  - search space restriction via knowledge-based optimisation filters
- Benefits
  - reduction of susceptibility to overfitting
  - more directed search, avoiding irrelevant parts of the search space
  - hybrid similarity measure definition: partially defined manually, partially learnt
- Experimental Examinations
  - clear outperforming of default similarity measures
  - clear improvement via knowledge filters



