Exploiting Bac
when Learning Sim

UNWERSI%E‘% Thomas Gabe

@OSNABRU

) = Armin Stahl
IUPR

European Conference on Case-Based Reasoning
September, 2nd 2004



1. Knowledge-Intensi

2. Using Evolutionary Algo
Measures

3. Incorporation of Background Kn
Experimental Evaluation
5. Conclusions

=

UNNERS]HT Thomas Gabel Armin Stahl ’ -4

()

’ Neuroinformatics Grou Image Understanding and Pattern Recognition Grou
OSNABRUCK University of Osnabrﬂcﬁ erman Research Center forArtificigl InteIIigencg IUPR



Knowledge-

« Similarity Measures: He

« Traditional Similarity Measu
— usually based on simple geometric
— mainly estimate syntactical differences

« Knowledge-Intensive Similarity Measure
— encode specific knowledge about the application

— allow a much more accurate estimation of the cases'
— basic structure:

local similarity

()

n measures
SIm(Q,C) = E W. - SIm1{dq;, C.)
global similarity
attribute weights
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« CBR-Syste
— kiSM encode kn

« Local Similarity Mea
— difference-based similarit
— similarity tables for symbolic a

 Attribute Weights
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A lower price does not »A higher clock rate does The measure encodes knowledge
decrease the utility” not decrease the utility* about functionality of CD-Drives
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« Manual Modelling of KISM |

— procedure is very time consuming
— required low-level knowledge is not or
— domain experts are not familiar with the rep
— actual utility of cases is not considered explicitl

« Alternative Approach: Learning

— acquire high-level knowledge about the actual utility of cert
cases for given gqueries

— apply machine learning algorithms for generating accurate
similarity measure leading to the desired retrieval results
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Learning Sim
Utility
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Teacher

(User / Expert /
Evaluation-Function)

Similarity
Measure

Case Base

determines

R

[Case 3] [Case 8] [Case 5] [Case 7] [Case 2]

Retrieval Result

Goal: Finding a similarity measure that minimises E
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— encode attribute
individuals to be op

— define corresponding

Crossover and Mutation-Operators
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Representation
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similarity function
as vector of
sampling points
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» Learning from Utility Feedb
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underlying hypothesis space is hu
« given only few training data, learning te

some certain low-level knowledge is often a
« learning this knowledge is needless and counterp

similarity measures have typical properties, e.g. mono
« learning algorithms should ensure compliance with these pr

given utility feedback and case bases usually provide only
limited information about certain value combinations

* trying to learn kiSM for other value combinations is useless

Goal: Restricting the Search Space and biasing the
Learner by exploiting available Background Knowledge
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Incorpo
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« Realisation

Knowledge-
Knowledge gather Based induce Prefere_nce
> & store AlOptimisation Function

Filters

actively exerting influence
on the learning process

« Modification of Created Hypotheses

no . |Current Population BREEDING
terminate l
Knowledge
Chosen Chosen : J
——1 Filter Layer
Parents | Operators | advice A
SELECTION l filtering l * heuristics
4 | S — e - statistics
EVALUATION |——— Offspring
(new, “filtered* individuals)
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Sources of
Background Knowledge

v
Similarity Meta Knowledge Expert Knowledge
Heuristic CBR Statistical Partial Expert Vocabulary
Knowledge Knowledge Knowledge Knowledge
l 1 1 Search

Knowledge Filter Definition

Space

A 4

* relfexivity constraint

Restriction

e symmetry constraint
* montony constraint
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Mining Knowledge
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* Local Measure Definition: low importance regions

— consulted frequently /
— high impact on measure’s performance

— outmost correct definition necessary

Focus of Learning Algorithm

« Statistical Case Base Analysis:
Which combination of query and 40
case value occurs how often if each
case Is used as query once?

e Assumptions

— substantial case base

— representative for queries
occuring in practice
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« Sampling Point C
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« Granularity:
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* Motivation
— shortening the gap betwee
manual (knowledge engineel

— benefits: + reduced knowledge acqu

« exclusion of overfit-minima

« avoidance of “educated guesse

Sources of
Background Knowledge

8 ApproaCheS Similarity Meta Knowledge Expert Knowledge
— a‘[tnbute and Welght preferences Knowledge Analysis Knowledge Knowledge

— expert-estimated values with confidence levels

excluded from
search space

remaining
........... search space

0 I max ¢-q
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Experi

Learning Experiments in
Regression Domains

Comparison: Accuracies achieve
1. default similarity measures (knowledge-p
2. learnt similarity measures

3. similarity measures learnt with help of knowledge

. - Sources of
Fllter Def|n|t|0n Background Knowledge
i v v
m-Filters Similarity Meta Knowledge Expert Knowledge
— e-Filters i o Knowiedge. Knowtedge
— me-Filters | Knowledge Filter Definition |

Dependency on different Training Data Sizes
Occurrence and Reduction of Overfitting
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Overfitting Analys

— x-values: quality o on training data
— y-value: quality of lea on test data
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 Utilisation of Additional Ba
— similarity meta knowledge and ex
— search space restriction via knowledg

» Benefits
— reduction of susceptibility to overfitting

— more directed search, avoiding irrelevant parts of th
space

— hybrid similarity measure definition: partially defined manua
partially learnt

« Experimental Examinations
— clear outperforming of default similarity measures
— clear improvement via knowledge filters
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