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Abstract Today, it is difficult for companies to react to unforeseen
events, e. g., global crises. Highly standardized manufacturing processes
are particularly limited in their ability to react flexibly, creating a de-
mand for more advanced workflow management techniques, e. g., ex-
tended by artificial intelligence methods. In this paper, we describe how
Case-Based Reasoning (CBR) can be combined with automated planning
to enhance flexibility in cyber-physical production workflows. We present
a compositional adaptation method complemented with generative adap-
tation to resolve unexpected situations during workflow execution. This
synergy is advantageous since CBR provides specific knowledge about
already experienced situations, whereas planning assists with general
knowledge about the domain. In an experimental evaluation, we show
that CBR offers a good basis by reusing cases and by adapting them to
better suit the current problem. The combination with automated plan-
ning further improves these results and, thus, contributes to enhance the
flexibility of cyber-physical workflows.

Keywords: Case-Based Reasoning · Automated Planning · Industry
4.0 · Adaptive Workflow Management · Cyber-Physical Workflows

1 Introduction

Recently, global crises have shown that manufacturing processes and in general
supply chains cannot easily be adapted to respond to unforeseen and dynamic
events. This is among others because manufacturing processes are often highly
standardized and therefore only provide a limited degree of flexibility [12, 16].
One of the goals of the Fourth Industrial Revolution (Industry 4.0) [12] is to en-
hance this limited flexibility by applying Artificial Intelligence (AI) methods [13]

∗ The final authenticated publication is available online at https://doi.org/10.1007/
978-3-031-26886-1_5

https://orcid.org/0000-0002-6866-0799
https://orcid.org/0000-0002-9253-9307
https://orcid.org/0000-0002-5515-7158
http://www.wi2.uni-trier.de
https://doi.org/10.1007/978-3-031-26886-1_5
https://doi.org/10.1007/978-3-031-26886-1_5


2 L. Malburg et al.

in Cyber-Physical Production Systems (CPPSs) [20]. Consequently, failure sit-
uations that occur during production should be resolved in an autonomous,
self-adaptive way, strengthening resilience of workflows against failures and un-
expected situations during their execution [15, 25]. To adapt workflows auto-
matically and, in turn, to ensure their continuing execution in problem situa-
tions, current research applies search-intensive approaches such as AI planning
(e. g., [7,17,24]) and knowledge-intensive approaches such as Case-Based Reaso-
ning (CBR) [1] (e. g., [19,21,28,29]). However, search-intensive techniques require
fully observable planning domain descriptions, which are rather rare and difficult
to obtain in real-world applications, to generate appropriate solutions [22, 30].
In addition, AI planning is sometimes not applicable for large problems due to
the high computational complexity [4, 5, 27]. To remedy these issues, the com-
bination of AI planning and CBR offers significant potential for improvement,
leading to research directions such as Case-Based Planning [4,5,27,30] in which
plans are reused in similar situations. CBR, in this regard, provides specific expe-
rience knowledge that can be utilized in similar problem situations, limiting the
knowledge acquisition and modeling effort for a comprehensive planning domain.
However, today, existing approaches are not examined for production planning
or for advanced adaptive workflow management in which currently either pure
planning techniques or pure CBR methods are applied (e. g., [17, 18, 28, 29]).
For this purpose, this paper presents application scenarios in which Case-Based
Reasoning (CBR) [1] can contribute to enhance the flexibility of cyber-physical
manufacturing workflows. Thereby, we focus on automatic workflow adaptations
in the Reuse phase to resolve unexpected failure situations that can occur dur-
ing workflow execution (see [15] for the architectural framework). Compositional
adaptation is used with AI planning to overcome the outlined disadvantages and
to apply both methods in a synergistic way. A key advantage of our approach is
that it limits the knowledge acquisition and modeling effort typically required for
creating comprehensive planning domains by incorporating experiential knowl-
edge during problem-solving. To evaluate the approach, we use a physical smart
factory model from Fischertechnik (FT), which enables us to conduct laboratory
experiments while maintaining real world environmental conditions of produc-
tion lines. In the following, Sect. 2 presents the used physical smart factory and
describes application scenarios in which CBR can contribute to enhance flexibil-
ity of production workflows. Our approach for automatic workflow adaptation
by combining compositional adaptation and AI planning is presented in Sect. 3.
To measure the effectiveness and suitability of the approach, we present an ex-
perimental evaluation in Sect. 4. Finally, Sect. 5 summarizes the paper and gives
an outlook on future research directions.

2 Foundations and Related Work

We describe the main characteristics of cyber-physical workflows and present
the used smart factory model in Sect. 2.1. Afterwards, we discuss in Sect. 2.2 re-
lated work using AI-based methods for adaptive workflow management. Finally,
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Sect. 2.3 introduces Process-Oriented Case-Based Reasoning (POCBR) [3] as a
special kind of CBR for reusing procedural experiential knowledge. In addition,
application scenarios in which POCBR can contribute to enhance flexibility in
cyber-physical workflows are described.

2.1 Cyber-Physical Workflows and Physical Smart Factory

Cyber-Physical Workflows (CPWs) [18, 25] are a new branch of workflows in
which the presence of Internet of Things (IoT) technologies influences the ex-
ecution of workflows in the real world and vice versa. For example, actuators
such as machines are used to execute tasks in the environment and sensor data
from IoT devices can be used for guiding workflow execution or to detect fail-
ures during production. Based on these detected situations, AI techniques can
be applied to resolve problems and to continue workflow execution in the phys-
ical world [16, 17]. These advantages can be achieved for workflow management
by exploiting the bidirectional coupling between process-based systems and the
smart environment [26] and, thus, by using the variety of IoT sensor data from
it. The environment itself benefits by using well-established methods from work-
flow management research [10]. However, to profit from these advantages, sev-
eral challenges must be addressed (cf. [10]), which is why the use of advanced
AI methods in this area is still in its infancy.

Using IoT environments such as real manufacturing shop floors for research
purposes poses many difficulties [16]. Thus, small-scale physical models can be
used for executing manufacturing workflows. We use a smart factory model from
Fischertechnik (FT) to conduct process-oriented research for Industry 4.0 [14,16,
26]. The custom model1 emulates two independently working production lines
consisting of two shop floors that are linked to exchange workpieces (see Fig. 1).
Each production line consists of six identical machines. In addition, there are
individual machines on each shop floor, i. e., a Punching Machine (PM) and a
Human Workstation (HW) on the first shop floor and a Drilling Machine (DM)
on the second one. For control purposes, there are several light barriers, switches,
and capacitive sensors on each shop floor. The workpieces used for simulating
manufacturing are small cylindrical blocks. Each workpiece is equipped with an
NFC tag with information about the individual workpiece such as the current
production state and the production history with time stamps.

2.2 AI-Based Methods for Adaptive Workflow Management

To enhance workflow flexibility by automatic workflow adaptations, two types of
situations [17] that can occur during execution must be handled: expected and un-
expected situations. Whereas expected situations that are known in advance can
be handled by appropriate exception handling techniques (cf. [23]), unexpected

1 More information about the smart factory model and a video can be found at https:
//iot.uni-trier.de.

https://iot.uni-trier.de
https://iot.uni-trier.de
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Fig. 1. The Physical Fischertechnik Smart Factory Model [16].

situations require ad-hoc changes during runtime and, thus, more advanced tech-
niques. The ADEPT framework by Dadam and Reichert [6] is one of the earli-
est and most prominent approaches for increasing process flexibility via ad-hoc
changes of running processes. Thereby, monitoring for process failures and adapt-
ing a process is mainly performed manually. If an error occurs, the user selects a
suitable ad-hoc change pattern such as inserting and deleting tasks or changing
their execution order. To enable fully automatic ad-hoc changes, AI-based meth-
ods, which can be divided into search-intensive and knowledge-intensive [27], can
be applied (e. g., [7,17–19,24,28,30]): Search-intensive techniques aim at finding
a solution in the search space, which is usually implemented by using AI plan-
ning. In addition to the high search effort that is needed to generate solutions
for large problems, a full and comprehensive planning domain description is re-
quired for problem-solving. However, such comprehensive planning descriptions
are rather rare in real-world application domains. In addition, planning domain
descriptions are sometimes sparse and only incomplete domain models with par-
tial knowledge are available for planning [22, 30]. Knowledge-intensive methods
such as CBR use experiential knowledge, e. g., gained from employees working on
the shop floor, to generate solutions. This significantly reduces the effort required
to solve problems but also means that sufficient experiential knowledge must be
available. This is especially difficult in dynamic IoT environments, where many
unexpected problem situations can occur. Consequently, the resulting adapted
workflows are sometimes not executable and require additional manual adjust-
ments by users (e. g., [21, 29]). Even though the individual methods provide
good adaptation results, executability and correctness of adapted cyber-physical
workflows are important as improperly configured and adapted workflows can
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cause considerable damage. To overcome the weaknesses of the methods in this
regard, the combination of search-intensive and knowledge-intensive techniques
promises valuable advantages [4, 5, 27,30].

2.3 Process-Oriented Case-Based Reasoning for Cyber-Physical
Workflows

In our research, we apply Process-Oriented Case-Based Reasoning (POCBR) [3]
as a knowledge-intensive method for advanced workflow management. POCBR
integrates Case-Based Reasoning (CBR) [1] with process-aware information sys-
tems [23] such as workflow management systems or enterprise resource planning
systems. A case in POCBR expresses procedural experiential knowledge gained
in previous problem-solving situations, and the case base consists of best-practice
workflows for reuse. To represent procedural experiential knowledge, we use a
semantic workflow graph representation called NEST graph introduced in [3]:
A NEST graph is a quadruple G = (N, E, S, T ) where N is a set of nodes and
E ⊆ N × N represents the edges between nodes. Semantic descriptions S can be
used for semantic annotations of individual nodes or edges. T specifies the type
of the node or edge.

An exemplary cyber-physical manufacturing workflow represented in the
NEST graph format is depicted in Fig. 2. It represents a sheet metal produc-
tion process that can be physically executed in the smart factory model2 (see
Sect. 2.1). We use these kinds of manufacturing workflows because they are well
suited for the factory layout used, and they are highly customized for a client,
which also implies increased flexibility during execution. However, the used sheet
metal workflows are placeholders for other arbitrary industrial processes. In the
shown workflow, an unprocessed steel slab is unloaded from the high-bay ware-
house and transported to the oven. In the oven, the steel slab is burned and
rolled into a thick, middle-sized sheet metal. Afterwards, the processed sheet
metal is transported to and stored in the high-bay warehouse.

In cyber-physical workflows, task nodes (TN ⊆ N) denote the production
steps that are executed by actuators in the physical IoT environment. The se-
mantic descriptions of task nodes can be used to further describe the properties
of each activity, e. g., the concrete machine parameters. In the illustrated work-
flow, the Burn task is configured by the size and thickness parameters to produce
the required sheet metal. In addition to this, the state of the task is captured in
the semantic description (COMPLETED, ACTIVE, EXECUTABLE, FAILED,
or BLOCKED). A task is blocked or fails during execution if the IoT resource
needed to perform the activity is not functional, e. g., due to a defect. Data
nodes (DN ⊆ N) can be consumed or produced by task nodes. Data-flow edges
(DE ⊆ E) represent a consumption of a data node with an ingoing edge to the
task node and a production of a data node by an outgoing one. A data node
represents the state of the workpiece during this point in the manufacturing

2 More information about the execution of workflows in the Fischertechnik smart fac-
tory model can be found in [14,16,26].
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Fig. 2. Graph Representation of a Cyber-Physical Workflow.

workflow. The semantic description of a data node features the properties of
the workpiece, e. g., the position of the workpiece and the production properties
such as size and thickness. Consequently, state changes of a single workpiece are
represented by data nodes in the context of the overall workflow (similar to the
usage of data nodes in [29]). Thus, a task node can only be executed after a
previous task has produced the required properties. In this context, the control-
flow can be derived from the data-flow by using control-flow edges (CE ⊆ E)
that are specified between task nodes. One important aspect of cyber-physical
workflows is the point of execution: As they are workflows executed by actuators
in a physical IoT environment, the workflows need to be safely executable. For
the smart factory used, it means that the machines need to be active and the
activities represented by task nodes need to be configured correctly. Addition-
ally, the state of the workpiece must be a valid input for the executing task. For
example, the drilling machine can only drill holes into the workpiece if it is a
sheet metal and not an unprocessed steel slab. In addition, the workpiece must
be located at the drilling machine.
Application Scenarios for Cyber-Physical Workflows One application
scenario of POCBR for cyber-physical workflows is the retrieval of suitable work-
flows for execution based on a product specification and the currently available
production capacities. For example, a client can specify the properties of the
desired product in an order. These requirements are then used as a query to
retrieve a suitable production workflow that can satisfy it. Afterwards, the work-
flow can be executed by a workflow management system. A further application
scenario for using POCBR for cyber-physical workflows is the topic of workflow
adaptation in the Reuse phase (see [15] for a generic architectural framework).
Much of the current work in POCBR deals with retrieving similar workflow
cases (e. g., [3, 9, 11]) and only few approaches (e. g., [19, 21, 28, 29]) investigate
the complex topic of automatic adaptation of retrieved workflows. Assume that
the exemplary manufacturing workflow depicted in Fig. 2 is currently executed
in the smart factory (see Sect. 2.1). During the execution, a failure due to a
defect of the required oven occurs which leads to the task being blocked and not
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executable, i. e., the production cannot be continued. The goal of using POCBR
in this scenario is to retrieve a case where a similar situation occurred pre-
viously, involving similar states of the machines and a similar not executable
workflow. This retrieved case builds the basis for solving the current problem.
The stored solution in the case is a Change Plan [17] that, when applied to the
non-executable workflow, recovers the workflow to be further executed and, thus,
to produce the final product. However, it is rather unlikely that a retrieved case
solution solves the problem completely (see Sect. 2.2). For example, a similar
case for the given problem is retrieved in which the oven in the second pro-
duction line (OV_2 ) is used as alternative. However, the transports from the
current position to the second oven and back are not contained. In these cases,
the change plan should be adapted to better suit the current problem situation.

3 Adaptive Management of Cyber-Physical Workflows by
CBR and Automated Planning

Based on the presented application scenarios of POCBR for cyber-physical work-
flows, we present our approach for combining experience-based adaptation by
POCBR with automated planning for adaptive management of cyber-physical
workflows in this section. The approach can be applied in the Reuse phase in
the generic architectural framework presented in [15]. First, we examine how
the compositional adaptation with workflow streams [21] can be used for cyber-
physical workflows (see Sect. 3.1). Afterwards, we describe how experience-based
adaptation can be enhanced by using AI planning (see Sect. 3.2).

3.1 Compositional Adaptation with Workflow Streams for
Cyber-Physical Workflows

Compositional adaptation by using Workflow Streams [21] decomposes a work-
flow into smaller suitable sub-workflows, each of which produces a partial work-
flow output that is essential for achieving the overall workflow goal. More pre-
cisely, partial workflow outputs are intermediate steps in the workflow that are
combined for achieving the final workflow goal such as the end product. Manu-
facturing workflows often consist of such intermediate produced subcomponents
that are finally combined into an end product. Each partial output and, thus,
each workflow stream represents a self-contained part of the workflow that can
be replaced by another stream, e. g., with a different task sequence or parame-
terization, but producing the same output during adaptation. Learned streams
from several previously experienced cases can be used for: 1) replacing streams
in the case solution, 2) adding new streams to the case solution, or 3) deleting
not needed streams in the case solution. The goal of adaptation is to modify the
change plan, i. e., the solution in the retrieved case, in such a way that, on the
one hand, the workflow goal of the current problem workflow is still reached and,
on the other hand, only currently functional machines are used (see Sect. 2.3).
In the following, we describe how the compositional adaptation method works
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in detail for cyber-physical workflows. Thereby, we distinguish between the au-
tomatic learning of workflow streams and applying them during adaptation in
the Reuse phase.
Learning Workflow Streams Each workflow stream produces a partial output
of the workflow, i. e., a data node called creator data node. The task node that
produces this special data node is called creator task and also marks the end
of each workflow stream. In contrast to the native approach by Müller and
Bergmann [21] in which creator tasks are defined by using the data-flow edges
in the graph, this definition cannot be used for cyber-physical workflows. This is
because data nodes in cyber-physical workflows are used to represent the state
changes of the workpieces (see Sect. 2.3). Definition 1 specifies the modified
definition for creating appropriate creator tasks in cyber-physical workflows:

Definition 1 A task node t is a creator task ct, iff it adds at least one new
property to the manufactured product. In the graph representation used, a new
property can be determined by a larger number of attributes in the semantic
description of the produced data node, i. e., the creator data node, compared to
the consumed data node. The set of creator tasks CT is defined as follows:

CT = {t ∈ TN | ∃d1, d2 ∈ DN : ((d1, t) ∈ DE ∧ (t, d2) ∈ DE) ∧ |S(d1)| < |S(d2)|}

Figure 3 depicts a manufacturing workflow with its marked creator tasks (⊙)
and corresponding workflow streams. The tasks Burn, Deburr, and Drill are
creator task nodes since they add a relevant property to the produced workpiece.
Following Def. 1, the data nodes produced by the creator tasks have a larger
number of attributes in their semantic descriptions than the previously consumed
data nodes. For example, the Burn activity adds a concrete size and thickness of
the produced sheet metal to the state of the workpiece. After specifying the tasks
in the workflow that are creator tasks, the workflow can be partitioned into a set
of workflow streams with the restriction that each task node t ∈ TN is exclusively
assigned to one workflow stream. The streams are constructed by applying the
following rules [21, 29]: A task node t ∈ TN \ CT is assigned to a stream WS,
1) iff t is executed before the creator task ct ∈ CT in the workflow, 2) iff t is
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Fig. 3. Problem Manufacturing Workflow As Part of the Query.
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not already contained in another stream, and 3) iff t is directly or transitively
data-flow connected (cf. [21]) to the creator task ct ∈ CT . For example, the
Transport from Oven to Milling Machine task is executed before the creator
task Deburr, it is not already assigned to a stream, and there exists a data node
that connects the Transport from Oven to Milling Machine task directly with
the Deburr creator task (see Fig. 3). However, it could also be the case that
several normal tasks are between this task node and the next creator task. In
this case, the data-flow connectedness is transitively given.
Applying Workflow Streams After the partitioning of the workflows in the
case base and the construction of workflow streams, the learned streams stored
in a stream repository can be applied in the Reuse phase. During adaptation,
streams in the retrieved case solution are replaced or deleted, or new streams
are added. The goal of the adaptation is to modify the case solution in such
a way that it resolves the current problem by continuing workflow execution.
More precisely, the adapted change plan leads to the fact that the currently
not executable workflow can be continued while retaining the workflow goal (see
Sect. 2.3). As an example, assume that the illustrated manufacturing workflow
in Fig. 3 is currently executed in the smart factory. During production, a failure
occurs at the Transport from Oven to Milling Machine task since the workstation
transport machine in the second shop floor is not functional. After detecting this
problem situation, the statuses of all tasks are updated. During this process, it
is determined that the following tasks are blocked since the milling machine, the
sorting machine, and the drilling machine in the second shop floor also cannot
be used. A query consisting of the problem workflow graph and the described
factory states is generated and a retrieval for a similar problem situation is
performed.

Sheet Metal
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Transport from
Oven to Human

Workstation

status: EXECUTABLE 
parameters: {start:ov_1,
end:hw_1,res.:vgr_1}

Sheet Metal

position: hw_1

Human Deburr
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Sheet Metal

position: hw_1
deburred: true

∞

⊙

∞

(a) Change Plan As Case Solution From
the Retrieved Case.

position: hw_1 
holes: 8 x 35mmposition: hw_1

Sheet Metal
∞

Human Drill

status: EXECUTABLE 
parameters:{quantity:8,

size:35,res.:hw_1}

Sheet Metal

⊙

∞

(b) Learned Workflow Stream.

Fig. 4. Compositional Adaptation of Cyber-Physical Workflows.

Figure 4a illustrates the change plan as case solution from the most simi-
lar retrieved case. Instead of using the currently defective milling machine, the
change plan uses the human workstation, which is currently ready to deburr
the workpiece. Although no defective machines are used anymore, inserting this
change plan into the currently non-executable workflow and, thus, replacing
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streams 2 and 3 would not lead to the desired workflow goal marked with ⋆
in the problem workflow. For this reason, the stream repository is searched for
further streams that are executable based on the current machine states and
that generate the goal data node of the problem workflow. Figure 4b depicts
a workflow stream learned from another case from the case base. Adding this
stream to the retrieved change plan fully satisfies the adaptation goal. For this
reason, it is added to the change plan and the modified change plan replaces the
currently non-executable parts, i. e., streams 2 and 3, in the problem workflow.
Adding a stream to the change plan requires maintaining the connection to the
other nodes in the change plan. The creator data node is the final partial output
of a stream. In addition to this output data node, the data node consumed by the
first task in each stream is also marked with ∞ since it is required that this input
must match with the output of the previous stream during insertion. These data
nodes are called anchor data nodes. This means that the output of the change
plan must be a valid input for the inserted stream. In the example, it is the case
since the only condition for processing the workpiece during human drill is that
the workpiece must be a sheet metal. Please note that for the validity check,
only the workpiece attributes and not the position that represents the current
physical location of the workpiece are considered. This is because otherwise it
would prevent using suitable streams achieving the workflow goal. For example,
if the learned stream from the repository (see Fig. 4b) uses the milling machine
in the first shop floor for drilling holes, it could never be added to the change
plan since the positions did not match. However, it would also achieve the goal
data node that is required in the problem workflow.

To ensure that only streams are replaced or added in which no defective
machines are used and by considering the goal data node of the problem work-
flow, a semantic similarity measure based on the measure presented in [3] is used.
This similarity measure assesses the similarity between the goal data node of the
problem workflow and the partial workflow output of the stream. In addition,
the similarity between the current machine states and the machines needed to
execute the stream is determined. If the similarity increases after a replacement
or an addition of a stream, the modification is suitable for solving the current
problem. At the end, we check if unnecessary streams can be deleted from the
change plan while still achieving the workflow goal.

3.2 Integrating Automated Planning for Resolving Inconsistencies

Cyber-physical workflows are executed in physical IoT environments by actua-
tors (see Sect. 2.1). For this reason, adapted workflows must be valid for execu-
tion since misconfigured workflows could lead to damage to machines or products
or could lead to dangerous situations for humans. However, the compositional
adaptation method cannot guarantee that adapted workflows are finally seman-
tically correct and, thus, executable [21,29]. In addition, appropriate adaptation
knowledge for solving the problem situation may not be available. One possibility
to overcome these issues is to present the adapted workflows before execution to
users. In this process, users can fix inconsistent parts (similar to [28]). Although
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this is a viable possibility, it requires a domain expert to perform these adjust-
ments manually (cf. [6]), which can be complex and time-consuming. Another
possibility is to use a further adaptation technique to fix inconsistencies in the
adapted workflow that cannot be solved by compositional adaptation. To over-
come these problems, we propose to combine POCBR as a knowledge-intensive
technique and automated planning as a search-intensive method. The main ad-
vantage of this combined approach is that the complete adaptation problem is
divided into smaller and, thus, easier to solve sub-problems (Divide and Con-
quer), some of which are solved by the POCBR system and the compositional
adaptation and some by AI planning. This combined approach also compensates
incomplete planning domain models that are often common in real-world appli-
cations [22, 30]. In the following, we present how this combination can be used
for automatic workflow adaptations.

In the example in Sect. 3.1, a learned stream from the stream repository
(see Fig. 4b) is added to the retrieved change plan (see Fig. 4a) to achieve the
adaptation goal. However, the modified change plan requires that the workpiece
is located at the oven in the first shop floor and not at the oven in the second
shop floor. Thus, the adapted workflow is syntactically correct but not semanti-
cally and, therefore, not executable in the smart factory. Since the change plan
does not include a transport, it must be added to the adapted workflow to ensure
executability. In this context, we check after replacing the failed part of the prob-
lem workflow with the change plan whether the semantic correctness is given or
whether inconsistencies exist. An inconsistency exists, for example, if the work-
piece is not located at the correct position or if the workflow goal is not achieved
with the change plan used. In these cases, we automatically determine the incon-
sistencies and generate a corresponding planning problem that consists of the
current environmental conditions, i. e., the machine states, the initial state, and
the goal state that should be reached by planning. Figure 5 depicts the adapted
workflow with marked inconsistencies. To generate the planning problem, we use
the output anchor data node of the first stream as the initial state and the input
anchor data node of the second stream as the desired goal state of the planning
problem. To maintain executability, the current state of the IoT environment,
i. e., the machine states, are also defined in the planning problem so that only
executable tasks can be used by the planner. Giving the generated planning
problem to a state-of-the-art planner, it can easily solve the problem by adding
actions/tasks that transport the workpiece from the oven in the first shop floor
to the oven in the second shop floor. By adding these tasks, the adapted workflow
is finally semantically correct and, thus, executable. The generative adaptation
in our approach mainly needs knowledge about possible transportation routes
since the knowledge about production steps such as Burn, Drill, or Deburr is
already considered by the creator tasks in the workflow streams. In this way, the
laborious and error-prone task of creating a complete planning domain as needed
to generate appropriate solutions from scratch can be limited [4,17,22,24,27,30].
However, it could be possible that some situations cannot be solved since the
required knowledge is not available in the POCBR system and in the (incom-
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plete) planning domain. In these cases, the approach can support users with a
pre-adapted workflow that builds the basis for performing final modifications to
ensure executability manually (cf. [6, 28]).

4 Experimental Evaluation

In this section, we present the experimental evaluation of the proposed approach
conducted in our physical smart factory (see Sect. 2.1). For this purpose, we im-
plemented the approach in the open-source POCBR framework ProCAKE3 [2].
We use Fast Downward [8] with an A* search using the landmark-cut heuristic
(lmcut) as a planner. Moreover, we create a full planning domain description
since it is manageable for our rather small smart factory use case, and it allows
us to use AI planning as gold standard in the experiment. The domain is written
in PDDL 2.1 by using non-durative actions with action costs and negative pre-
conditions. In total, 256 planning actions with several parameters, 27 relational
predicates, and one functional numeric fluent, i. e., the total-cost function for
the action costs, are contained in the domain4. To evaluate the approach, we
measure the fulfillment of the performed adaptations by measuring the semantic
similarity and the costs for executing the change plan in the factory. In addi-
tion, we check whether the adapted workflows are semantically correct and, thus,
executable or not. In the experiment, we investigate the following hypotheses:

H1 The compositional adaptation (CA) results in equal or better adapted
workflows w. r. t. the described criteria than only using the retrieved case
without adaptation (w/o).

H2 Using the combined approach consisting of compositional and generative
adaptation (CGA) leads to better results in terms of executability and
semantic correctness than the pure compositional adaptation (CA).

Transport from
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parameters: {start:hbw_2,

end:ov_2,res.:vgr_2}

Unprocessed
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Unprocessed
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Fig. 5. Manufacturing Workflow As Result of Compositional Adaptation.

3 http://procake.uni-trier.de
4 The PDDL 2.1 domain and all planning problems are available at https://gitlab.rlp.

net/iot-lab-uni-trier/edoc-2022-idams-workshop.

http://procake.uni-trier.de
https://gitlab.rlp.net/iot-lab-uni-trier/edoc-2022-idams-workshop
https://gitlab.rlp.net/iot-lab-uni-trier/edoc-2022-idams-workshop
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H3 The results generated by the combined approach (CGA) have similar
total costs than solving the adaptation problem from scratch by using AI
planning (GA).

4.1 Experimental Setup

The Fischertechnik smart factory (see Sect. 2.1) represents two independent pro-
duction lines and is used for the experiment. The goal of the experiment is to
check whether it is possible to modify currently executed workflows after a fail-
ure so that they can still be executed, e. g., by using machines from the other
production line that can perform the required activities (see application scenario
in Sect. 2.3). To obtain real-world problems, a failure during the production is in-
jected in a manufacturing resource of the smart factory. For this purpose, we use
a failure generation engine that randomly selects machines and switches them
to defective. We parameterized the engine to have at most two failures simulta-
neously, where each individual failure lasts at least 25 and at most 45 seconds.
During the entire runtime of the workflows (approx. 6 to 9 minutes for each run),
several machine resource failures are generated. If a failure occurs in the smart
factory, the affected workflow is stopped and its current state is captured to use
it for AI planning (GA) and as a query for the POCBR system (w/o, CA, and
CGA) [15]. We utilize four different production workflows throughout the experi-
ment that are executed in pairs of two. The used workflows deal with sheet metal
production, as already introduced before (see Fig. 2 for an example). Thereby,
each shop floor executes a single production workflow at a time: W 1.1 and W 1.2
are executed on the first shop floor and use 6 out of 7 different machines; both
containing 12 tasks. W 2.1 and W 2.2 are executed on the second shop floor, use
all 7 different machines, and contain 16 and 19 tasks. We apply a Train and
Test scenario in which we first generate 20 random problems (10 for each pair
of workflows) that are solved by using AI planning (GA) if failures occur during
execution. Four generated problem situations could not be solved, since no other
machines are available as alternative. However, these four problems and the 16
adapted workflows are stored in the case base as best-practice solutions. Based
on these 16 correctly adapted workflows, we partitioned each workflow into its
workflow streams and store them as adaptation knowledge (Train phase) in a
stream repository. Finally, we generate 10 (5 for each pair of workflows) further
problems that are used for evaluation (Test phase).

4.2 Experimental Results

The experiment focuses on the executability of adapted cyber-physical workflows
for resolving failure situations during runtime. Table 1 depicts the experimental
results of 10 random-generated failure situations conducted in the smart factory.
We measure the semantic similarity between the solution and the goal to achieve
(first row for each method) and the total-costs for executing the change plan
(second row for each method). The total-costs reflect the execution time of the
adapted workflow in seconds, i. e., the time required in the smart factory to
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Tab. 1. Results of Adapting Cyber-Physical Workflows

execute the adapted part of the production process. A space in the table indicates
that the measured values are equal to the method above it. In addition, we
indicate whether the adapted workflows are semantically correct (✓) and, thus,
executable or not (✗). As a gold standard, we use generative adaptation (GA) to
compare the POCBR approach against it. For queries Q1, Q3, and Q8, the failure
situation can be solved immediately, since similar problems already occurred
during training. In this context, complete solutions are contained in the case
base and, thus, no further adaptations are required. For the generated failure
situations Q2, Q7, and Q10, the retrieved cases are part of the 4 problems
that could not be solved by AI planning in the Train phase before. For this
reason, the POCBR system can only provide limited support to the user, since
no more similar cases exist that can be used to solve the problem. However, the
system could provide a complete solution for Q10 if it had previously included
Q7 as a new experienced case, which shows the potential of the proposed self-
learning approach. The workflows adapted in Q5, Q6, and Q9 are executable
but only after they were modified by the combined approach. The sole use of
CA only leads to an increase in similarity for Q4 and Q6. Q4 is a special case
since a rather similar case is retrieved and adapted, but no solution could be
generated as all required machines for recovery are not functional, i. e., workflow
executability cannot be achieved. All in all, the experiment shows high potential
for using POCBR for adaptive cyber-physical workflows. Some problems can be
solved even without adaptation since the solution has already been experienced
during training. Whenever an adaptation has been performed, it always results
in the same or a slightly higher similarity in contrast to pure retrieval (see
Avg. column). Thus, we accept H1. In addition, the combined approach CGA
leads to a higher number of executable workflows compared to CA (see Q5, Q6,
and Q9 ). However, during CGA adaptation, the total costs sometimes increase
strongly and are significantly higher than the costs for generating the solution
from scratch. For this reason, we accept H2 but reject H3. To conclude, the use
of the combined adaptation approach leads to adapted workflows that can be
further executed by achieving their goals in 6 out of 10 cases in the experiment.
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5 Conclusion and Future Work

We present an approach for using Case-Based Reasoning (CBR) to enhance
the flexibility of cyber-physical workflows. In this context, we focus on combin-
ing compositional adaptation with generative AI planning for resolving failures
during manufacturing. The proposed approach utilizes procedural experiential
knowledge and, thus, limits the typically high knowledge acquisition and mod-
eling effort to create comprehensive planning domains. In this context, com-
plete planning domains are required for planning from scratch but often only
incomplete domain models are available for planning in real application do-
mains [22, 30]. In contrast, planning in the proposed approach is used to solve
smaller sub-problems, requiring general knowledge about transportation routes
rather than specific knowledge as stored in cases. However, AI planning is needed
in the approach to satisfy the challenging requirement of executability of auto-
matic adapted cyber-physical workflows (see Sect. 2.1 and 2.2). Otherwise, im-
properly configured and adapted workflows can lead to considerable damage. In
an experimental evaluation conducted in a physical smart factory, we showed
that the approach can solve most problem situations and can adapt workflows
suitably. This is performed either by reusing the case without modifications or
by subsequent adaptation with the combined approach. Although the proposed
approach has been implemented and validated in the domain of cyber-physical
workflows, it can also be applied to other workflow domains (e. g., [21,29]). This
is because compared to other domains, cyber-physical workflows have more spe-
cific requirements w. r. t. executability and correctness of the adapted workflows.

In the future, more than one case should be used for adaptation and the best
adaptation result should be returned. Moreover, using conversational techniques
(e. g., [28, 29]) may promise better adaptation results while integrating domain
experts. Transferring the proposed approach to real production lines with larger
production workflows and more possible actions is also an interesting aspect
for future work but also requires faster workflow retrieval methods (cf. [9]). In
this context, it should be investigated how scalable the approaches are w. r. t.
the workflow size and the domain complexity. We expect an improved solution
quality since the case base contains more and larger workflows of already solved
problems and a significantly better computation time than applying a solely
generative approach (cf. [4, 5, 27]). Finally, it should be examined how much
formalized knowledge is inevitably required in the planning domain, i. e., how
incomplete the planning domain can be, for the approaches.
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