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Abstract Many different dialog systems exist, which usually cover limited domains.
This paper examines the Modular Dialog System Framework to combine many con-
versational agents to create a unified, diverse dialog system. The Modular Dialog
System treats the underlying conversational agents as black boxes and works with
any dialog system without further adaption. It also works with commercial frame-
works, such as Google Dialogflow or IBM Watson Assistant, in which the inner
workings are unknown company secrets. We propose a new task, Module Selection,
choosing a conversational agent for a user utterance. Also, we propose an evalua-
tion methodology for Modular Dialog Systems. Using the three available commer-
cial frameworks, Google Dialogflow, Rasa, and IBM Watson Assistant, we create a
dataset and propose three models that serve as a strong baseline for future research
in Module Selection. Also, we examine the performance difference between a Mod-
ular Dialog System and the same dialog system implement in a single, monolithic
system. We publish our dataset and source codes as open source.

1 Introduction

There are many reasons to combine dialog systems (DS). i) They often focus on
a narrow task. Also, due to their architecture, they are often limited in what they
can do. For example, a question-answering system such as DrQA [30] can answer
questions only. A task-oriented dialog system can talk only about its task, and a
chit-chat system such as DialoGPT [31] can do chit-chat only. A combination of
multiple agents and technologies creates a more diverse DS. ii) The designers of a
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DS might want to combine several existing DS and save the effort of migrating them
into a joint system. For example, multiple departments create chatbots in a company,
and one wants to join these chatbots together into a unified system. iii) A new DS
should combine several existing DS created using different technologies and cannot
be implemented in a single joint DS. Alternatively, iv) a dialog system becomes so
big that the performance of its NLU decreases because the model is not suitable to
handle such large amounts of data. Nehring et al. [[L7] called these systems Mod-
ular Dialog Systems (MDS). These systems select the appropriate sub-DS for each
incoming user utterance to generate the answer for the user. The experiments in this
paper investigate use case ii), joining multiple existing DS.

In research, dialog systems often use machine learning for their dialog managers
(DM). In industry applications, dialog systems often build on a different architec-
ture: Popular dialog frameworks like Google Dialog Flow (GDF or IBM Watson
Assistant (IWAﬂ rely on rule-based DM. Further, they rely heavily on the concept
of intents. Since no established term exists yet in the literature to the best of our
knowledge, we will refer to these systems as Intent-Based Dialog Systems (IBDS).
IBDS usually only use machine learning for the Natural Language Understanding
component, whereas the DM is rule-based. In this work, we investigate MDS for a
combination of three IDBS.

Combining multiple IDBS into a unified architecture is a scarcely covered topic
in the scientific literature. Although it is an issue in industry applications, see, e.g.,
the Google Mega Agenﬂ or the concept of Skills in IWAE], its solution is not trivial.
To address this gap, we formally introduce the task module selection (MS), which
brings the problem of multidomain dialog systems to IBDS (Section [)). Section 4]
also proposes an evaluation methodology for this task. Further, we create a bench-
mark dataset for this task (section[3). For our experiment, we introduce and compare
several models that provide a strong baseline for MS. We evaluate the models us-
ing our proposed evaluation framework. We publish all codes and our dataset on
GitHuﬁf

The scientific contributions of this work are i) to formally introduce the novel task
MS and an evaluation framework for MS, ii) to present a dataset for the evaluation of
models for MS, iii) to present three baseline models for MS, and iv) we investigate
the performance drop between the MDS and non-modular dialog system, in which
the DS is constructed as a single, monolithic system.

Uhttps://cloud.google.com/dialogflow

2 |https://://www.ibm.com/products/watson-assistant

3 https://cloud.google.com/dialogflow/es/docs/agents-mega

4 https://cloud.ibm.com/docs/assistant ?topic=assistant-skill-add
3 hhttps://github.com/jnehring/iwsds2023-modular-dialog-systems
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2 Background

2.1 The Modular Dialog System Framework

The Modular Dialog System (MDS) framework [17] defines an architecture for
combining several DS. Figure [I] shows the architecture of MDS. In this architec-
ture, each DS is called a module. Each incoming user utterance is processed by an
MS component that decides which module is appropriate to process this utterance.
This module then produces the answer for the user. The MS task was first introduced
as part of the MDS framework [1/]]. This paper extends this work, describes the task
of MS, and proposes a dataset and an evaluation methodology.

User Utterance

I

Module Selection

—

‘ Module 1 ‘ Module 2 ‘ Module 3 ‘

Fig. 1 Architecture of Modu-
lar Dialog System.

The modules of an MDS do not necessarily need to be IBDS. The architecture
can handle other types of dialog systems, such as question-answering (see, e.g.,
[[18]]). However, this paper focuses on MDS consisting of multiple IBDS.

2.2 Google Dialogflow, IBM Watson Assistant and Rasa

This paper uses the off-the-shelf DS GDF, IWA, and Rasa modules to construct an
MDS. All three are commercial products. GDF and IWA are closed source, whereas
Rasa is open source. In GDF and IWA, authors of a dialog system define their chat-
bot in a browser-based user interface. In Rasa, the dialog designer works with text
files and a command-line application.

The processing pipelines for user utterances of all three systems are similar and
follow the architecture of IBDS. Rasa augments the rule-based DM by machine
learning to allow conversation paths that the dialog designer did not anticipate. The
exact implementations of the NLU of GDF and IWA are corporate secrets of the
respective owners. Rasa uses the Dual Intent and Entity Transformer as NLU [4]].
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2.3 Evaluation of Dialog Systems

There are many ways how to evaluate a DS. User studies give insights into how
efficient (duration) and effective (task success) a DS assists a user in solving a par-
ticular task; see [[16] for an extensive review. However, these evaluations are time-
consuming and expensive. Our work focuses on data-centric evaluation that does not
require user studies. Such an evaluation method can only examine parts of the DS,
such as the ID and ER components. These are text classification problems, and pre-
cision, recall, F1-scores, and accuracy are standard metrics used to evaluate models
for ID and ED. [13}114,[10].

3 Related Works

3.1 Combination of Dialog Systems

The scientific literature lists many approaches to how to combine multiple DS. They
differ a lot; Many are concrete use-case examples that do not present a general
framework [7, 119,22} 24]). Often, the approach is tightly coupled to the types of DS
that are combined. In general, it is hard to transfer the analysis results of one specific
DS combination to another because, usually, the conversational agents differ from
use case to use case.

A straightforward approach is to ask the user at the beginning of the dialog which
domain he wants to talk about and limit the dialog to the respective sub-DS only,
as in Clara [7]. Others use heuristics to rank the answers from each sub-DS [22|
24]. The DialPort framework [27, 28] connects multiple spoken dialog systems and
knowledge sources and uses a Semi-Markov Decision Process [23] framework for
selecting the suitable agent that can answer the user’s utterance.

Joined models that combine several tasks, e.g., Song et al. [22]], are popular in
research. Although they often perform better than a modular approach, they tend
to have a complex architecture. Also, it is only possible to combine existing DS by
modifying them in a joined model. Other authors [19,[7] build similar systems using
domain selection. Each DS is responsible for a domain (e.g., tourism, calendar, ...),
and a domain selection component chooses the domain for each utterance. However,
domain selection differs from MDS: The modules of the MDS can be from different
domains but do not necessarily need to be. It is also possible that, e.g., one module
is used for question answering, the other one to talk about a specific domain, and
the third module for all other messages. Cercas Curry et al. [33] combined multiple
agents with a simple priority list. The Black Box Agent Integration (BBAI) frame-
work [32] is similar to MDS. However, they focus on the user perspective instead
of other aspects, such as the combination of existing DS. Also, BBAI focuses on
scalability, whereas our work focuses on evaluating and discussing the quality of
modular and non-modular systems.
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Multidomain dialog systems are often a combination of multiple DS, one for
each domain. However, they only need to span multiple domains and can also be
implemented in a single DS [[15]]. For an overview of the state-of-the-art, see DSCTS8
[L1] and DSTCO [12].

3.2 Datasets

Our work builds on HWU64 [[14]], a dataset for NLU, ID, and ER. Section [3] de-
scribes this dataset in more detail. Another comparable dataset is CLINC150 [10]
which contains additional out-of-scope utterances. Both datasets include several do-
mains. By contrast, the NLU dataset Banking77 [5] contains many intents from a
single domain.

An important dataset for multidomain dialog systems is MultiWoz [3]]. However,
this dataset targets DS with stochastical DM and is therefore not applicable to the
MS task. Another related dataset is the Dialog Dodecathlon [21]], which measures
the performance of a DS in 12 different tasks, including question answering, persona
grounding, empathetic dialog, and more.

4 Module Selection: A New Task

This section formally describes the task of MS. MS is the task of assigning user
utterances to modules of an MDS. Given a modular dialog system with n modules
M . ,, the MS function MS assigns a module M; (i) to an user utterance u. After
MS decides on a module, this module can produce the answer to the given user
utterance.

Different features are possible as inputs to an MS model. One noticeable feature
is the text of the user utterance. In this case, the task resembles domain classifica-
tion. Another prominent feature is the confidence scores of the intent classification
of the modules. Other features one can think of are the dialog history or external
knowledge, such as knowledge about the user.

We propose two measures to evaluate the quality of MS. First, one can directly
evaluate the quality of the MS task, which is a classification task that can be eval-
uated using F1-scores. In the remainder of this paper, we call the Fl-score of MS
Flys.

The second measure is the quality of ID, which is also measured using F1-scores.
We call it the F1-score of ID Flp. Fljp gives a more direct insight into the quality of
the DS, while Flyg directly measures the quality of the MS step in the processing
pipeline. For additional analysis, one can measure precision and recall of ID and
MS.

Comparing the MDS to an analogous DS implemented as a single module can
give an insight into whether the MDS architecture is appropriate or if it would make
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more sense to implement a single module DS. We call the single-module implemen-
tation the non-modular scenario. Accordingly, the modular-scenario denotes the DS
distributed over several modules. It is hard to implement both systems in practical
applications to gain both numbers. However, in this paper, we calculated the F1-
scores of ID in the non-modular scenario F1ip nonmod for each of the DS Rasa, GDF,
and IWA.

Often intent datasets are imbalanced. Therefore, in the remainder of this paper,
we use micro-F1 scores to consider the class imbalance. Depending on the applica-
tion, macro F1-scores can be a valid alternative.

5 Dataset Construction

In our experiment, we distinguish between two scenarios: In the homogeneous sce-
nario, each module of the MDS uses the same DS technology. Each module uses
a different DS technology in the inhomogeneous scenario. Therefore, we created
three homogeneous datasets for each DS Rasa, GDF, and IWA. Then we created
one inhomogeneous dataset consisting of three modules of Rasa, GDF, and IWA.

As a basis for our new dataset, we chose the dataset HWUG64 [[14], a dataset for
ID and entity recognition. It contains 25,716 utterances from the home automation
domain from 68 intents in 18 scenarios. One scenario is, for example, “alarm” with
intents such as “set alarm”, “query alarm” and “remove alarm”. The creators did
not name the dataset, but to our knowledge, it was first referred to as HWU64 by
Casanueva et al., 2020 [15]].

We split the data into four equally sized parts as shown in figure [2] rrainp is the
training data for the DS’ NLU. trainyys is the training data for the MS. Finally there
are a valid and a test set. We processed all samples by the three NLUs GDF, IWA,
and Rasa and recorded the detected intents and their confidence scores.

HWUG64 Dataset

split by scenario

[
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|
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We randomly assigned the scenarios to the three dialog systems GDF, IWA, and
Rasa. In our experiments, we found out that both Flp meg and Flyis mod can vary a
lot depending on this random assignment. Therefore, we repeated our dataset cre-
ation process five times to create five splits. Due to the random assignment, the
modules have an inhomogeneous number of samples, intents, and scenarios for each
agent and each split.

Further, to compute the quality of the non-modular scenario F1ip nonmod W€ pro-
cessed the whole dataset once with each module.

It was expensive to process the dataset with its 25,716 utterances five times in the
modular and three times in the non-modular scenario. Further, the dataset contains
many samples for some intents: 1440 samples for the intent with the most samples,
and 25% of the intents have 623 or more samples. This high number of samples
is unrealistic in practical use cases. Therefore, we subsampled the dataset: In each
split and each intent, we removed random samples, so each intent has a maximum
of 100 samples. We repeated this process separately over the different splits such
that each of the splits contained different samples. In this way, we reduced the size
of the dataset by 75.36% for each split.

Like the HWU64 dataset, our new dataset cannot create a fully functioning dialog
system because it does not contain any data for a DM or system responses. The user
utterances are not embedded in the context of the dialog. As a result, models for MS
based on this dataset cannot take the dialog history into account. Our new dataset
shares this problem with NLU datasets such as HWU64, CLINC150, or Banking77.
Further, we did not include the entities from the original dataset in our new dataset.

Table [T] shows the performance of the dialog systems in the non-modular sce-
nario. A side result of our experiments is the comparison of ID of GDF, IWA, and
Rasa (Table[I] IWA has the best-performing ID on our dataset. [14] reported similar
results, although, in their experiment, the differences between GDF, IWA, and Rasa
were less significant.

Table 1 Performance of the non-modular dataset.

Module FlID,nonmod PID,nonmod RID,nonmod
GDF 79.87% 82.92% 78.48%
IWA 86.36% 86.93% 86.49%
RAS 76.26% 79.44% 75.34%

A dataset similar to this can be constructed with relatively low effort in real-life
situations because the data already exists. If practitioners want to combine several
of their already existing IDBS, then they already have training data for the NLU of
their systems and can reuse this as training data for MS.

Figure |3 shows boxplots of the confidence values of the three DS over the five
splits. The table shows confidence values for both in and out-of-domain samples for
each DS. One can see that the average in-domain confidence values differ between
the DS. In general, Rasa produces higher confidence values than the others. Across
all dialog systems, out-of-domain samples can reach confidences as high as 1.0.



Fig. 3 Distribution of con-
fidence values for Google
Dialogflow, Rasa, and IBM
Watson Assistant for in-
domain and out-of-domain
samples.
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We define three model architectures. The models use confidence values, text or text
and confidence values as input features. Therefore we call the models confidence,
text and text + confidence. Figure[d] shows the architecture of the models.

Fig. 4 Architectures of the three models conf, text and conf+text.
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Our MDS consists of n = 3 modules. All three models use a user utterance as
input and predict which of the three modules should answer the user utterance. We
encode this prediction as one-hot encoding: The models produce a vector y € R".
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Each index in this vector represents one module. The target values that the neural
networks learn from is a vector ygrgee € R” that is 0 in all places, except for the index
of the target module, which is 1.

Each module produces a confidence value for each utterance, a real number be-
tween 0 and 1. In a real-world system, one would send each incoming user utter-
ance to the modules and collect the confidence values of the modules’ ID. In our
experiments, we can use the confidence values from our dataset. We concatenate
the confidence values to a vector x.onr € R” to create the confidence features. The
confidence model (Figure [ left) maps these confidence values directly to the out-
put, through a linear transformation y = XeonfAT 4 b. Xeont € R” is the input vector,
y € R" is the output vector, b € R" is the bias vector, and A € R"*" is a matrix. The
dimensionality of x, A, and b can vary.

Model text (FigureE], center) uses the user utterance as feature. It uses a standard
BERT for sequence classification architecture [6], which uses a linear layer on top
of a pre-trained BERT model. The trainable parameters are the parameters of the
BERT model and parameters A and b of the linear layer.

Model fext + confidence (Figure [ right) is a combination of the former two
models. In the figure, the left branch is the confidence model and the right branch is
the fext model. Both produce an output of length n, which the model concatenates
to a vector x, € R?". x, is then mapped to y using another linear transformation. The
trainable parameters are the BERT layer and the three linear layers.

All models are trained on the trainys section of the dataset using Cross-Entropy
Loss [1]]. Training examples are encoded in one-hot encoding, meaning that they
are n dimensional vectors with O on every position except for the position of the
label, which is 1. We perform a grid search using the valid dataset to find optimal
values for batch size (32) and learning rate (Se~>). Metrics Fljp and Flys, along
with respective precision and recall values, are calculated on test part of the dataset.
We trained and evaluated the models for each split and averaged the metrics.

6.2 Results

6.2.1 Homogeneous dataset

Table 2] shows the performance of our models on the homogeneous datasets. Over
both tasks MS and ID, the performance of models fext and text-confidence are on-
par with each other, while the performance of the confidence model is much lower
across both tasks.

For the MS task, the performance of the confidence model differs, while the
other models show very similar values. This is no surprise because the confidence
values are different between the different DS, but the textual inputs are the same. We
assume that the rext+confidence learns to rely much more on the textual features and
mostly ignores the confidence features, which explains why the values are so similar.
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Table 2 Fl-scores dialog systems in the homogeneous dataset for models confidence, text, and
text + confidence. The scores are averaged over the five splits; the numbers in brackets denote the
standard deviation.

Task Dialog Model F1 Precision Recall
System
confidence 24.46% (9.58)  24.50% (11.27) 31.22% (9.99)
MS GDF text 92.71 % (0.62) 92.87% (0.72)  92.71% (0.62)
text + confidence ~ 92.47% (0.41)  92.60% (0.43)  92.48% (0.41)
confidence 24.02% (6.35)  19.97% (6.60)  36.25% (9.60)
MS RAS text 92.36% (1.22) 92.51% (1.08) 92.36% (1.22)
text + confidence ~ 91.90% (1.16)  92.11% (1.06)  91.91% (1.17)
confidence 19.33% (8.17)  19.70% (10.46) 32.32% (10.74)
MS IWA text 91.97% (1.38)  92.23% (1.19) 91.95% (1.41)
text + confidence ~ 92.15% (0.94) 92.21% (0.93)  92.16% (0.93)
confidence 22.13% (8.19)  27.64% (12.18) 23.23% (8.25)
ID GDF text 73.08% (1.30) 78.44% (1.20)  70.51% (1.21)
text + confidence ~ 72.83% (1.09)  78.41% (1.04)  70.18% (1.09)
confidence 2044% (5.23)  19.89% (6.51)  26.98% (7.06)
1D RAS text 73.28% (0.57)  76.09% (0.58) 72.59% (0.77)
text + confidence 73.17% (0.68)  76.03% (0.44)  72.46% (0.90)
confidence 19.28% (8.08)  16.99% (6.98)  27.66% (9.79)
ID IWA text 66.02% (13.93) 65.52% (15.46) 69.27% (11.10)

text + confidence 65.93% (13.51)  65.66% (14.87) 69.23% (10.57)

The results of the confidence models are low and show a large standard deviation
across the different splits. We conclude that the confidence models are susceptible
to the respective dataset split and, because of their unreliable performance, are even
less helpful than their low average performance already suggests.

The other models (fext and text + confidence show consistent results (low stan-
dard deviation) for all splits. The exception from the rule is the ID task using the
IWA DS: Its standard deviation is significantly higher (10.57-15.46) than for the
other DS (0.44 - 1.3). This result cannot stem from the MS because the quality of
MS for IWA is consistent / has a low standard deviation. We further analyzed the
results of IWA and found out that, although IWA has high F1-scores in ID, on three
subsets, the f1 scores drop below 20%: This is the case for agent 2 in split 3 and 4
(f1 scores of 8% and 13%) and agent O in split 2 (20%). IWA is a black box; there-
fore, we cannot explain why the performance drops on these subsets. This result
is counter-intuitive since IWA had the strongest performing ID in the non-modular
scenario (see table[T).

Table Bl shows the f1-scores of ID between of the non-modular and the modular
scenario for model text. The performance metrics are copied directly from tables|I]
and [2] The table also shows the difference between the two f1-scores. The perfor-
mance is generally lower in the modular scenario. This is obvious because the MS
introduces an additional source of error. At the same time, we expect the f1-scores of
ID of the individual modules get higher than Flip nonmod because the models need to
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differentiate between fewer intents, which is generally easier. However, this is just

an assumption; we do not present data to support this hypothesis.

Table 3 Fl-score of ID in the non-modular and the modular scenario on the homogeneous dataset
with MS model zext.

Module F11D nonmod F1p mod Difference
GDF 79.87% 73.08% 6.79%
IWA 86.36% 66.02% 17.34%
RAS 76.26% 73.28% 2.98%

6.2.2 Inhomogeneous dataset

Table[]shows the performance of the dialog systems on the inhomogeneous dataset.
The results are similar to the homogeneous dataset: The performance of fext and
text+confidence model are high across both tasks, while the performance of the
confidence model is low. Not surprising, for the models text and text-confidence,
the performance of the MS task is very similar for the homogeneous and the inho-
mogeneous dataset because the textual features are the same between both datasets.
Surprisingly, the performance in the ID task achieves higher results in the inhomoge-
neous datasets than in all three homogeneous datasets. Also, the standard deviations
are low for the fext and text-confidence models, we cannot see the high standard
deviation of IWA from the homogeneous dataset in our experiment, although IWA
is processing one third of the inhomogeneous dataset.

Table 4 Fl-scores dialog systems in the inhomogeneous dataset for models conf, test and joined.

Task Model Fl1 Precision Recall

MS confidence 26.08% (6.82) 22.37% (7.47) 38.19% (4.80)
MS text 92.21% (1.07)  92.40% (0.96) 92.23% (1.05)
MS text + confidence  92.32% (0.86) 92.38% (0.83) 92.32% (0.87)
ID confidence 25.29% (4.46) 24.21% (6.63) 31.03% (3.95)
ID text 76.82% (0.59)  79.65% (0.71) 76.04% (0.57)
ID text + confidence  76.89% (0.26) 79.79% (0.54) 75.98% (0.21)

6.3 Discussion of the experiments

As expected, the modular scenario introduces an error compared to the non-modular
scenario (see table[3). The drop in Flip ranges from 2.98% - 17.34%, depending on
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the models used for ID and MS and is therefore highly dependent on the models. So
unfortunately, we cannot quantify the performance drop from the non-modular to
the modular scenario. Our analysis indicates that IWA usually has high f1 scores in
ID, but underperforms dramatically on a few subsets. These low-performing subsets
happen to be in the modular scenarios. We argue that the cause of the low perfor-
mance is not the MDS, but the specific module IWA. We argue that including a
non-functioning module in an MDS results in a non-functioning MDS. As long as
the single modules show strong performance, as do GDF and RAS, the performance
drop is between 2.98% and 6.79%.

We showed that the models fext and text + confidence perform best for MS. We
can show that the user utterances text is a good feature for the MS task and provides
a strong baseline. The confidence model shows poor performance in MS. Our data
does not show if the problem of the confidence model is the much more simple
model or the input features. The distribution of confidence values (see figure [3)
indicates that the confidence values are not very reliable features.

7 Conclusion

We have presented module selection as a novel task. Further, we have presented a
dataset to evaluate module selection models and an evaluation framework. We have
presented three models and evaluated them using the dataset and the methodology.
We could show that in 2/3 experiments, the MDS showed only slightly weaker per-
formance compared to the non-modular scenario. In the third case, we argue that the
problem lies in the modules and not the MDS framework.

We have shown that text is, at least in our dataset, a more reliable feature for
module selection than confidence scores. The models serve as a strong baseline for
future work in module selection.

Our presented evaluation framework does not directly evaluate the quality of
the DS. Instead, it measures the quality of ID in the modular scenario. Like NLU
datasets like HWU64, CLINC150 or Banking77, it does not take dialog history into
account. Dialogs often span more than one turn, and neglecting the dialog context
is a critical limitation. Nevertheless, this evaluation framework is a practical way of
evaluating the quality of module selection in modular dialog systems.
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