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Abstract—This work evaluates a method for generating visual-
like images from sonar images using Generative Adversarial
Networks (GANs), for the purpose of monitoring technical divers
working in low visibility environments. The general goal is to
enhance the interpretability of sonar images in order to assist
emergency operators that monitor the safety of the divers. To
train the models, sonar and visual data were collected over the
course of three trials from two different sites, an indoor pool and
a lake. We evaluate and compare two different generative models
namely, a modified version of pix2pix and vid2vid. Results show
that it is possible to recover visual information from sonar data
when the camera image is highly disturbed.

Index Terms—Multi-modal learning, GANs, image-to-image
translation, marine perception

I. INTRODUCTION

Professional divers still play an important role in many
underwater applications related to inspection and maintenance.
While even the regular technical or industry diving is in-
herently dangerous, safety aspects are even more important
for diving activities related to civil protection and emergency
response. Divers have to perform activities in complex and
mainly industrial or artificial environments, such as ports,
piers, industrial basins, and channels, which makes it difficult
to navigate and self-localize. Additionally, even if visibility
is good at the beginning of the dive, activities performed
by the divers cause the turbidity of the water to increase,
leading regularly to white-out situations, where the team on-
land monitoring the divers is not able anymore to detect them
visually. Sonar imaging is an alternative to visual sensing
which is not affected by bad visibility and poor lighting
conditions and can be used to mitigate this issue. However,
sonar images are often very hard to interpret even by a trained
human eye and suffer usually from low signal-to-noise ratios.

In this work, we aim to learn an end-to-end association
between sonar and optical camera images observing the same
underwater scene. The idea is to use this learned association to
generate realistic visual-like images given only sonar images
as input or a combination of a sonar image and a dark or turbid
optical image. The purpose of this algorithm is to provide
images that can be easily interpreted by a human operator,
even in bad visibility conditions, for example to monitor the
status of a diver working in turbid or dark waters.

(a) Camera image of a diver at the beginning of a dive

(b) Camera image after working for few minutes

Fig. 1: The difference between clear visibility conditions at
the beginning of a dive and strong turbidity after few minutes
of the diver performing underwater activities.

A. Related work

A sensor modality is defined as the means by which an
instrument perceives or measures the physical world, such as
sound, light, pressure, temperature, etc. A research problem
is thus considered as multi-modal when two or more sensor
modalities are used simultaneously to capture a scene. Com-
bining multi-modal sensory data can benefit to enhance the
perception of the environment as well as reduce perceptual
ambiguity in challenging conditions such as the ones faced
underwater. Three main benefits can be identified [1] i) com-
bining multiple modalities that observe the same phenomenon
produces more robust predictions by exploring supplemen-
tary and redundant information, ii) having access to multiple
modalities might allow to capture complementary information
which might not be perceived by a single modality, and iii) a



system that fuses multiple modalities can still operate when
one of the modalities is missing, and even, predict the missing
modality from the existing ones.

Given the intrinsic heterogeneity of the data, the field of
multi-modal learning, i.e., field of machine learning that uses
data from different modalities to reason or build models to
describe the physical world, brings also some unique chal-
lenges for computational researchers [2]. The main challenges
faced in this work are translation and fusion, as a clear visual-
like image must be generated using a sonar image and a
highly distorted optical image if present. In recent years, deep-
learning-based multi-modal learning methods have attracted
much attention from the research community due to their
flexibility and powerful abstraction capabilities.

One of the earliest and most popular image-to-image trans-
lation methods is known as pix2pix [3]. pix2pix makes use of
a concept known as Conditional GAN (CGAN) [4], where a
condition is imposed on both the generator and the discrimina-
tor inputs to compel the network to perform translation tasks.
To keep image consistency and better model high-frequency
structures during translation the authors use CGANs with the
combination of U-Net [5], i.e., skip connection between the
encoder and the decoder of the generator, and PatchGAN [6],
i.e., division of the output image in N × N patches that the
discriminator must classify as real or fake.

Although pix2pix is mainly applied with optical images
for cross-domain image translation tasks, it has been also
applied in the underwater domain for fish monitoring in [7],
where daytime underwater images are generated from an
optical underwater camera and an imaging sonar on night-time.
Here, the authors added a slight modification to the pix2pix
architecture in order to fuse the sonar and a darkened camera
image at the input of the generator by concatenating the inputs
from both modalities at the first layer of the encoder. Hereafter,
this algorithm is referred to as Nightvision.

Conditional GANs have enabled a variety of applications,
but the results are often limited to low-resolution and lack of
details and realistic textures, as its adversarial training might
be unstable and prone to failure for high-resolution image
generation tasks. pix2pixHD [8] is an extension of pix2pix,
which enables the generation of high-definition images, by
adding two new elements to the previous architecture: a
coarse-to-fine generator, i.e., decomposition of the generator
into a global generator network and a local enhancer network,
and multi-scale discriminators, i.e., 3 discriminators that have
an identical network structure but operate at different image
scales.

As we are dealing in our case with translation of a con-
tinuous stream of sonar and optical images, the generated
sequences of images not only must be photo-realistic indi-
vidually but also temporally consistent as a whole. vid2vid [9]
is an extension of pix2pixHD to address time dependency for a
sequence of images. This architecture merges a current source
image together with past source images as well as past gen-
erated prediction. Using this technique, temporal information
between subsequent frames can be preserved which helps to

Fig. 2: General network training methodology for CGANs

improve the performance. Additionally, the authors make use
of the inherent redundant information of consecutive images,
by combining the resulting synthesized intermediate image
with an optical-flow warped version of the last generated
image by means of a soft occlusion map for attention-based
aggregation.

To the best of our knowledge, either pix2pixHD or vid2vid
has not been applied in the underwater domain yet.

II. METHODOLOGY

In this work, we will present the evaluation of nightvi-
sion and vid2vid methods deployed to solve our task in
the underwater domain. Both method are based on CGANs
and have been accordingly modified to match the application
requirements (see fig. 2 for an general overview of the training
methodology used in CGANs).

It is worth noticing that in order to properly combine the
sonar and optical images, the sensors were mounted in a
specific position, so that the resulting points of view from both
sonar and camera were aligned as accurate as possible, and
the captures were synchronized during collection for temporal
alignment. The alignment of the two points of view is hereby
challenging due to the different mechanisms of optical and
acoustic imaging. Whereas optical camera has a sensor array
of photosites (one per pixel) which captures the light rays
bounced by the environment and projects it into a 2D image
as does the human eye, imaging sonars simultaneously emit
multiple beams by using an acoustic lens and generates a
2D image by mapping the intensity of the reflected waves
to the azimuth angle and ranges between the sensor and the
reflecting object. In other words, whereas the x and y cartesian



coordinates in the optical camera are preserved, while the z
coordinate gets projected on the image plane, the depth r and
swath φ spherical coordinates are preserved in the sonar image,
while the elevation θ gets projected on the image plane. This
inevitably results into a different perspective of the same scene
(see fig. 7 for comparison between the capture of the same
scene by an optical camera and different multibeam imaging
sonars).

A. Nightvision

In the case of Nightvision, both inputs (sonar and camera
image) are concatenated and passed through the 3 × 3 con-
volutional layer and concatenated, then through seven down-
sampling CBR (Convolution–BatchNorm–ReLu) layers in the
encoder and seven upsampling CBR layers in the decoder.
Each CBR layer consists of a 4×4 convolutional neural layer
or a 4 × 4 deconvolutional neural layer and a rectified linear
unit (ReLU) activation layer through batch normalization,
which is an adaptation of the architecture presented in [10].
The final 3× 3 convolutional layer outputs an image. We also
add dropout layers in the decoder part to make the model non-
deterministic and prevent overfitting. This network is trained
for 100 epochs with batch size 8. To train these networks we
use Adam optimizer with 2× 10−4 as a leaning rate and 0.5
as β1 and 0.999 as β1.

For a more detailed description about the architecture em-
ployed, see appendix A.

B. Modified vid2vid

In the case of vid2vid, where the network adopts a coarse-
to-fine architecture, the sequential generator uses residual
network. We specifically use flownet2 [11] for this purpose.
Furthermore, multiple discriminators are trained to mitigate the
mode collapse problem during GANs training, i.e. conditional
image discriminator and conditional video discriminator to
resemble the spatial and temporal dynamics of the original
video. This network is also modified to consider sonar images.
For this purpose sonar and camera images are passed through
convolutional layers and then concatenated.

These concatenated images undergo several residual blocks
to form intermediate high-level features (global generator).
Intermediate features are added and fed to residual layers to
output intermediate image, flow map mask.

For high resolution videos local generator is used in com-
bination with global generator. This local generator downsam-
ples the input and feeds it as an input to global generator.
Further the output of global generator is added to intermediate
feature layer of local generator. This summed output is then
passed through another series of residual blocks to output the
higher resolution images.

For a more detailed description about the architecture em-
ployed, see appendix B.

C. Evaluation Metrics

As evaluation metrics for comparison, we use the structural
similarity (SSIM) index, which is the most popular perceptual

Fig. 3: Sensor setup used for data gathering.

image similarity metric. SSIM values range from 0 (dissimilar)
to 1 (similar) [12]. As SSIM is calculated by comparing
statistical values for each local region, it is possible to perform
a robust similarity evaluation under the influence of noise and
distortion.

III. DATA ACQUISITION AND MANAGEMENT

A. Data acquisition setup and locations

Data of divers performing technical underwater tasks were
collected using a multi-beam imaging sonar and a stereo
camera. The field of view of both sensors was aligned to
observe the same scene simultaneously. An image showing
the sensor setup is depicted in fig. 3.

This sensor setup was used in three data acquisition sessions
between August 2021 and April 2022, at two locations in
Germany: Two sessions under laboratory conditions at the
Maritime Exploration Hall 1 at DFKI-RIC in Bremen, one
field session at the Kreidesee in Hemmoor. In all cases, a
typical underwater working environment for the divers was
simulated, including a workbench and tools. Divers performed
various tasks such as mounting pipe flanges, wrenching nuts
and bolts, or building armature.

The Maritime Exploration Hall contains a saltwater basin
measuring 23m×19m×8m. Fig. 4 shows a diver entering the
basin. The environment conditions in the Maritime Exploration
Hall are stable and independent of the outside weather, the
visibility is greater than 50m. While these are comfortable
circumstances for experiment setup and execution, additional
measures are required to fully cover the intended application
which focuses on difficult working conditions with low visi-
bility in turbid water. This was addressed in part by the post-
processing techniques discussed in section II, and in part by
the field data acquisition session in Hemmoor. Additional field
sessions are scheduled to follow.

The Kreidesee (chalk lake) is a former chalk mine with a
surface area of 33 ha and a maximum depth of 60m. Fig. 5
shows an aerial image of the entire lake. The visual range
under water is up to 25m, assuming ideal weather conditions.
Our field experiments were conducted on a submerged flat grid
platform with a 3m×3m surface area, 5m underwater, 50 cm

1https://robotik.dfki-bremen.de/en/research/
research-facilities-labs/maritime-exploration-hall/

https://robotik.dfki-bremen.de/en/research/research-facilities-labs/maritime-exploration-hall/
https://robotik.dfki-bremen.de/en/research/research-facilities-labs/maritime-exploration-hall/


Fig. 4: Diver entering the saltwater basin in the Maritime
Exploration Hall.

Fig. 5: Aerial image of the Kreidesee im Hemmoor (Google
Maps).

above the floor of the lake, near the shore. The divers were
able to perform different tasks than in the basin, including
wood cutting with a chain saw, drilling, and shoveling. This
field experiment also included a night session.

B. Metadata generation and data management

To facilitate the replication of our results, and to support
the potential re-use of our data in other applications, the data
collection was performed following the FAIR principles for
scientific data management [13]. These require payload data
to be accompanied by comprehensive metadata, in order to
help re-users evaluate whether the data matches their own use
case and integrate it into their work environment.

Since there are currently no universal metadata standards,
we created a custom design, and collaborated with the project
NFDI4Ing [14], which collects and aims to harmonize different
metadata approaches from all engineering sciences.

Different types of metadata were collected before, during,
and after the acquisition of the payload data. The workflow is
depicted in fig. 6

Fig. 6: Workflow for metadata generation and processing.

Before data acquisition, we designed a hierarchical data
model as a framework for structural metadata, which describes
the different data elements, their relationships, and their loca-
tions within the data repository. Structural metadata ensures
interoperability between data producers and consumers on
different stages of the processing pipeline. Its format was
designed early to avoid costly re-adjustments over the data
life-cycle. The main elements of our data model are

• session: a collection of datasets captured within a
certain time frame, at the same location, by the same
people, using the same type of equipment, showing the
same kind of scenes.

• dataset: a continuous, uninterrupted collection of sam-
ples, devoted to a specific experiment or research goal,
using a subset of the available equipment, processable by
a certain kind of algorithms, publishable as a unit.

• sample: a collection of data files within the same dataset
that are captured at approximately the same instant in
time, may have different modalities (e.g. camera, sonar),
and may be associated with labels (e.g. class name, object
names) for different machine learning tasks.

• modality: a type of sensor associated with a certain
data file format and encoding, and possibly a set of
calibration and configuration parameters.

• data file: the foundational element of samples and
datasets.

For the collection of metadata during data acquisition, we
created an entry tool containing fields for structural metadata
items (e.g. names and descriptions of sessions and datasets),
as well as contextual metadata. The latter describes the en-
vironment conditions during data acquisition, e.g. visibility,
used equipment, potential malfunctions, or other unforeseen
events. This type of metadata was created collaboratively by
machine learning experts, divers, and data managers to ensure
its relevance and consistency. The entry tool was based on
multiple online spreadsheets, to support collaboration over the
internet, and to facilitate later post-processing and relational
database import. The tool was especially helpful under field
conditions, where capturing context metadata is very impor-
tant, because the environment cannot be fully controlled and
must therefore be documented, but where scientists tend to



prioritize safe operation and reliable recording of the payload
data, so there are fewer resources to deal with additional tasks.

In addition to the metadata items collected manually with
the entry tool, parts of both structural and contextual metadata
were captured automatically within the payload data. This
included e.g. sensor configuration parameters, sampling rate
per modality, or file size. These were extracted after the data
acquisition, and integrated with the other metadata. The entire
metadata set was cleaned, normalized, and complemented
where necessary. The internal consistency between all meta-
data items was re-checked. Parts of free-text descriptions that
should be machine-readable were extracted and encoded.

Another structural metadata task performed after data acqui-
sition was the temporal alignment of the samples of different
modalities. The inputs to the translation training must be
pairs of sonar and camera images that were captured at
approximately the same time. For practical reasons, these were
not already matched during data acquisition. The matching
done afterwards had to account for different sampling rates of
sonar and camera, and occasional dropouts in either modality.

IV. RESULTS

In this section we present results results obtained using
aforementioned Nightvision and modified-vid2vid algorithms.
These models were trained on dataset collected at DFKI’s
Maritime Exploration Hall at Bremen and on field session at
the Kreidesee in Hemmoor.

These images were collected using Zed stereo camera pro-
cessed (added noise) to look dark and blurry with 0.2 to 1 as
darkness factors. Corresponding sonar images were captured
using either Gemini 720i or Oculus M1200d Sonar. fig. 7
shows representative images from collected and processed
dataset.

A. Nightvision

We train both sonar and without sonar versions of Nightvi-
sion in two manners i) training various darkness levels in-
dividually, and ii) combining camera and sonar images of
all darkness levels, thereby expecting network to be less
sensitive to introduced noise. For data collected in Hemmoor,
the network is trained only in combination of sonar and camera
image with mixing various darkness levels.

Dataset Description:
1) Gemini 720i in maritime exploration hall (cf. 7a):

- image size: 1024 px× 512 px
- training samples: 1000 × 7 darkness levels
- testing samples: 427 × 7 darkness levels
- train and test samples from same dataset

2) Oculus M1200d in maritime exploration hall (cf. 7b):
- image size: 512 px× 512 px
- training samples: 3078 × 7 darkness levels
- testing samples: 770 × 7 darkness levels
- train and test samples from same dataset

3) Oculus M1200d at Hemmoor (cf. 7c):
- image size: 1024 px× 512 px

(a)

(b)

(c)

Fig. 7: Representative image of images in the datasets. (a) Us-
ing Gemini 720i, (b) Using Oculus M1200d sonar in Maritime
Exploration Hall, (c) Using Oculus M1200d at Kreidesee. (left)
Original Camera Image, (middle) processed camera image at
0.75 darkness level, (right) polar sonar image

- training samples: 3328 × 7 darkness levels
- testing samples: 3232 × 7 darkness levels
- train and test samples from different datasets

The fig. ?? to fig, 14 show two of samples predictions,
whereas fig. 8 shows comparison between both training
methodologies.

B. Modified-vid2vid

This network is trained on data collected at maritime
exploration hall with Gemini 720i sonar (cf. 7a). To train
this network, we divide sequentially captured in sequence of
30. The fig. 9a and fig. 9c shows first and fifth frame of the
predicted sequence at darkness level of 0.5.

C. Discussion

From SSIM plots it is evident that augmenting camera
image with sonar image for Nightvision algorithm yield better
results. It is important to note that this improvement is predom-
inantly visible at higher darkness levels. This can be explained
by limited information content present in camera images at
higher darkness levels. By combining multiple darkness levels
in the training datasets, we try to enforce less variance towards
darkness in the camera image. This can be observed in the
improved performance of the model when trained with a
combination of darkness level over the models trained with
a single darkness at a time. In case of datasets captured
using Gemini 720i sonar, it can also be seen that prediction
drastically shifts towards an average image, this is due to lower
resolution of the sonar. Additionally, this dataset is relatively
smaller when compared to the other datasets and lacks the
variety in the captured scenery. In this case, the high SSIM



(a)

(b)

(c)

Fig. 8: Structural Similarity Index showing comparison be-
tween results when camera image is augmented with sonar
data.

index even at high darkness values could be explained by the
small size of the subject in the image compared to the plain
background which occupies a big portion of the scene.

For vid2vid, it can be observed from fig. 9 that predictions,
specifically high level features, look spatially and temporally
consistent. In fig. 9b, an overlay between two frames is visible.
This issue is attributed to some temporal dropouts while
capturing images. Another factor which causes this behavior
is shift (e.g., diver movements etc.) between two consecutive
frames is bigger due to low frequency of image capturing.
This drift is increased over time causing a loss of both low
and high level features in the predicted images.

V. CONCLUSION

In this work, we compared two generative methods, namely
a modified pix2pix and vid2vid, for reconstructing underwater

(a)

(b)

(c)

(d)

(e)

Fig. 9: Results of modified-vid2vid network with 0.5 darkness
level. Image shows first five odd frames.

images of the divers by taking a sonar imaging and a disturbed
camera image as input. Three datasets were used in this study
that collected from two different sites, one indoor and one
outdoor. Regarding the pix2pix algorithm, our results show
consistently that adding a sonar image and mixing the different
darkness levels of camera images on training helps improves
the quality of the reconstructed image. Two essential findings
can be noticed here. Firstly, the higher sonar resolution re-
sulted in better quality predictions when compared to the lower
resolution counterpart. Secondly, a noticeable improvement in
the results was observed when combining different darkness
factors into the training datasets.

Due to the limited available computational resources,
vid2vid was only evaluated on the first dataset by the time of
submitting this paper. Results show the the predicted images
resemble closely the ground truth in the beginning of the
sequence, however the quality of the prediction degrades with
time. This result could be attributed to the low resolution of the
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Fig. 10: Consolidated view of results of nightvision experiments; Top rows of each block show results with sonar, while bottom
rows show results without sonar. Darkness level varies along column. Rightmost column documents ground truth images.

Gemini sonar that was used in this experiment, where the net-
work was only able to benefit from little information present
in this dataset. Another factor the might have contributed to
that would be low frame rate of the captured images which
caused a noticeable difference between the consecutive frame.

As future work, we plan to cross-validate the different
models on the datasets that were not used during the training
phase. This will aim to validate the transferability of models.
Additionally, the vid2vid method will be further investigated
to improve the quality and computational efficiency of the
model.
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APPENDIX

A. Nightvision Network Architecture

The Nightvision network architecture is inspired by U-Net
based Pix2Pix architecture. The generator and discriminator
network architectures are shown in fig. 15.

Initially, sonar and camera image is passed through 3 × 3
convolutional layer and then 7 up- and downsampling layers
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Fig. 11: Consolidated view of results of nightvision experiments on Oculus M1200d in maritime exploration hall
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Fig. 12: Consolidated view of results of nightvision experiments on Oculus M1200d at Hemmoor (Combined darkness levels
only)

each. Further output of this layer is passed through 3 × 3
convolutional layer.

Each downlampling layer consists of a 4× 4 convolutional
layer followed by batch normalization and ReLU. Whereas,
each upsampling layer consists of 4×4 transpose convolutional
layer followed by batch normalization and ReLU. Dropouts are
also implemented.

The discriminator forms PatchGAN model which outputs
average of probabilities over all the patches.

B. Modified Vid2Vid Network Architecture

This network adopts coarse-to-fine architecture as described
in [9]. Initially, camera and sonar images are passed through
convolutional layer and concatenated. Further, this concate-
nated vector is passes through series of residual blocks. Same
process is applied to the previously generated image.

Each residual block is a sequence of padding-
convolution-normalization-relu-padding-
convolution. To estimate optical flow flownet2 [11] is
used in its vanilla form.
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