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Abstract

In Process-Oriented Case-Based Reasoning (POCBR),
experiential knowledge from previous problem-solving
situations is retrieved from a case base to be reused
for upcoming problems. The task of retrieval is ap-
proached in previous work by using Graph Neural Net-
works (GNNs) to learn workflow similarities which are,
in turn, used to find similar workflows w.r.t. a query
workflow. This paper is motivated by the fact that these
GNNs are mostly used for predicting the similarity be-
tween two workflows (query and case), while the re-
trieval in CBR is only concerned with the ranking of
the most similar workflows from the case base w.r.t. the
query. Thus, we propose a novel approach to extend the
GNN-based workflow retrieval by a Learning-to-Rank
(LTR) component where rankings instead of similarities
between cases are predicted. The main contribution of
this paper addresses the changes to the GNNs from pre-
vious work, such that their model architecture predicts
pairwise preferences between cases w.r.t. a query and
that they can be trained using labeled preference data. In
order to transform these preferences into a case ranking,
we also describe rank aggregation methods with differ-
ent levels of computational complexity. The experimen-
tal evaluation compares different models for predicting
similarities and rankings in case retrieval scenarios. The
results indicate the potential of our ranking-based ap-
proach in significantly improving retrieval quality with
only small impacts on the performance.

1 Introduction
Hybrid approaches of Case-Based Reasoning (CBR)
(Aamodt and Plaza 1994) and Deep Learning (DL) are be-
coming more and more popular across many CBR research
groups, e. g., (Amin et al. 2020; Ye, Leake, and Crandall
2022; Hoffmann and Bergmann 2022). The common goal
is to support or implement different parts of CBR appli-
cations with appropriate DL methods (Leake and Crandall
2020). Thereby, most of these efforts are focused on case
retrieval, i. e., a case base of best-practice problem-solution-
pairs is queried to find solution candidates for a given prob-
lem based on the similarity between the new problem and
past problems. Supporting this task with DL methods is
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commonly approached by automatically learning similar-
ity measures, for instance, to predict the similarity between
the query and cases of the case base (Amin et al. 2020;
Mathisen, Bach, and Aamodt 2021; Leake and Ye 2021). In
this process, the role of the similarity measure is to control
the retrieval process by declaring the most similar cases of
the case base as the most useful solution candidates to the
query. This leaves the concrete similarity values mainly as a
criterion for case ranking. Especially when using DL-based
similarity measures, predicting similarities instead of rank-
ings might lead to imprecise retrieval results, since small
similarity prediction errors can have great effects on the fi-
nal ranking of the cases. A more intuitive approach in this
scenario would be to bring the model predictions closer to
the underlying task by predicting pairwise preferences such
as “case A is more relevant to the query than case B”. This
reformulation has two advantages: First, the number of train-
ing examples increases as each pair of cases from the case
base combined with a query case is one training example.
When predicting similarities, on the other hand, a training
example consists of the query and a single case, which effec-
tively squares the number of training examples when train-
ing with pairwise preferences. Second, it redefines the learn-
ing task as a binary classification which utilizes different
metrics, loss functions, and training parameters compared
to a regression. This enables a new way of training the mod-
els, which might lead to more accurate predictions or shorter
training times.

The described technique is part of the Learning to Rank
(LTR) methodology (Liu 2011) that is also known as pref-
erence learning (Fürnkranz and Hüllermeier 2010). LTR
deals with ranking items according to a given query by
means of machine learning methods. It covers crucial as-
pects of the ranking procedure, such as suitable loss func-
tions and training procedures. The use of LTR methods
in CBR is not thoroughly investigated, but its applicabil-
ity is indicated by the shared goal of ranking cases accord-
ing to a query (Bichindaritz 2006) as well as the way ex-
perts think about cases which much more resembles pref-
erences than similarity values (Hüllermeier and Schlegel
2011). Therefore, we investigate the potential of LTR for
similarity-based retrieval in this paper. We use the context
of Process-Oriented Case-Based Reasoning (POCBR) (Mi-
nor, Montani, and Recio-Garcı́a 2014). POCBR is a subfield



of CBR that deals with procedural knowledge, such as se-
mantic graphs (Bergmann and Gil 2014). We discuss ex-
isting DL-based methods w. r. t. their contribution to LTR
and integrate new LTR principles into the Graph Neural
Networks (GNNs) from literature (Hoffmann et al. 2020;
Hoffmann and Bergmann 2022) with the goal of improv-
ing the quality and performance of these models for the
task of case retrieval in POCBR. The remainder of the pa-
per is structured as follows: Section 2 shows foundations
of the used semantic graph representation and gives an in-
troduction to LTR before presenting related work. Further,
Sect. 3 presents the concept for integrating LTR principles
into GNNs for similarity assessment in POCBR. Section
4 presents the experimental evaluation before Sect. 5 con-
cludes the paper and shows directions of future work.

2 Foundations and Related Work
The foundations include the semantic workflow representa-
tion that is used in the concept and the experiment evalua-
tion, as well as the similarity assessment between pairs of
these workflows. Additionally, the basic strategies of LTR
are introduced, and related work is examined.

Semantic Workflow Representation and Similarity
Assessment
We represent all workflows as semantically annotated di-
rected graphs referred to as NEST graphs, introduced by
Bergmann and Gil [2014]. A NEST graph is defined as a
quadruple W = (N,E, S, T ) that is composed of a set of
nodes N and a set of edges E ⊆ N × N . Each node and
each edge has a specific type from Ω that is indicated by
the function T : N ∪ E → Ω. Additionally, the function
S : N ∪ E → Σ assigns a semantic description from Σ (se-
mantic metadata language, e. g., an ontology) to nodes and
edges. Whereas nodes and edges represent the structure of
each workflow, types and semantic descriptions model addi-
tional semantic information. Figure 1 shows an exemplary
NEST graph that represents a cooking recipe of a mayo-
gouda sandwich. The sandwich is prepared by executing
the cooking steps coat and layer (represented as task
nodes) with the ingredients mayo, baguette, sandwich
dish, and gouda (represented as data nodes). All com-
ponents are connected by edges indicating relations, e. g.,
coat consumes mayo. Semantic information belonging to
the workflow components is further specified by using se-
mantic annotations for nodes and edges. For instance, the
semantic description of the task node coat provides the in-
formation that a spoon and a baguette knife are needed to
execute the task and that the estimated time is two minutes.

Since NEST graphs are used in the context of POCBR,
Bergmann and Gil [2014] also propose a semantic similarity
measure between two NEST graphs, i. e., a query workflow
QW and a case workflow CW. The similarity is determined
based on the local-global principle such that a global simi-
larity, i. e., the similarity between two graphs, is composed
of local similarities, i. e., the pairwise similarities of nodes
and edges. Nodes with the same type can be mapped onto
each other, and their similarity corresponds to the similarity
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Figure 1: Exemplary Cooking Recipe represented as NEST
Graph

of their semantic descriptions. The similarity between two
edges with identical types does not only consider the similar-
ity of the semantic descriptions of the edges, but in addition,
the similarity of the connected nodes, as well. A mapping is,
hence, admissible if all mapped nodes as well as all mapped
edges with their source and destination nodes are of the same
type. When assuming that the domain defines a similarity
model with a similarity measure simΣ : Σ × Σ → [0, 1]
for all components of the semantic description, the global
similarity of the two workflows sim(QW,CW) is calculated
by finding an injective partial mapping m that maximizes
simm(QW,CW).

sim(QW,CW) = max{simm(QW,CW) |
admissible mapping m}

The complex process of finding a mapping that maximizes
the global similarity between a query QW and a single case
CW is tackled by an A* search algorithm (see Bergmann and
Gil [2014] for more details). However, A* search is usually
time-consuming and can lead to long retrieval times (Zeyen
and Bergmann 2020; Klein, Malburg, and Bergmann 2019;
Hoffmann et al. 2022) which motivates using automatic
learning methods for the task of case retrieval.

Learning to Rank
In LTR, a ranked list of items is determined based on
the relevance of these items w. r. t. a query (Liu 2011). A
well-known application scenario is information retrieval,
where the most relevant documents regarding some query
are ranked and returned to a user. LTR approaches are com-
monly divided into three categories based on the way rank-
ings are determined, i. e., pointwise, pairwise, listwise LTR
(Liu 2011): Pointwise LTR approaches use existing metrics
to compute a relevance score for each item. For instance,
retrieving similar cases based on a query in a case retrieval
in CBR could be associated to this category. These methods
have the advantage that they can be developed and imple-
mented rather quickly due to the metrics already existing,
but the quality might not be sufficient, since the used met-
rics were probably not intended to be used in an LTR con-
text. Furthermore, pairwise LTR or label ranking (Fürnkranz
and Hüllermeier 2010) approaches determine the ranked list



of items by evaluating preferences between pairs of items
w. r. t. the query. A preference in this sense states whether
one or the other item of a pair is more relevant to the query.
To get a ranked list of items, rank aggregation is used and
transforms the pairwise preferences. Pairwise methods are,
compared to pointwise approaches, harder to conceptual-
ize and implement due to the two involved components, but
could probably lead to better overall results due to their fo-
cus on predicting actual rankings. Although the proposed
approach only covers pointwise and pairwise methods, list-
wise LTR, also known as object ranking (Fürnkranz and
Hüllermeier 2010), is still explained for the sake of com-
pleteness. This category of approaches is the most straight-
forward, as it returns a complete ranked list of items accord-
ing to the query. There is no need to derive the ranked list
of items from different metrics as in the other categories.
Thus, listwise LTR methods promise better results than other
methods due to their direct prediction of ranked lists but, in
turn, are also generally harder to implement and train.

Related Work
Related work in the context of CBR or POCBR dealing
with rankings or preferences explicitly is rather scarce. One
of the earliest approaches in this regard is proposed by
Avesani et al. [2003]. They describe an interactive approach
where users set preferences to help a system configure a
model to answer queries based on the user’s preferences.
Brinker and Hüllermeier [2007] discuss pairwise ranking in
the CBR context conceptually. They mainly focus on imple-
menting a case retrieval when given preferences as labels.
Hüllermeier and Schlegel [2011] extend this concept and
propose a methodological framework for problem-solving in
CBR with preferences. It describes the representation of ex-
periential knowledge in the form of pairwise preferences be-
tween cases and case retrieval in this setup. While the afore-
mentioned approaches are primarily concerned with a con-
ceptualization of rankings in the CBR methodology, there
are also approaches that use rankings in more application-
oriented scenarios. For instance, Li and Sun [2011] use
rankings and CBR to compute similarities between cases
in finance applications. Glockner and Weis [2012] deter-
mine case rankings with a combination of machine learn-
ing and CBR for question answering. Bichindaritz [2006]
combines CBR and information retrieval for scenarios from
biomedicine. Our approach is novel regarding related work
as it is a combination of the POCBR context, domain inde-
pendence, and the use of DL methods to predict preferences.

3 Similarity-Based Retrieval by Using
Learning to Rank Methods

Case retrieval with GNNs in POCBR applications returns
the most similar cases according to the similarity predic-
tions of the used neural networks. We propose an alterna-
tive approach to case retrieval that predicts preferences of
cases with GNNs to form the retrieval result. The follow-
ing sections, first, place GNN-based retrieval in the context
of pointwise LTR and, second, describe the approach of re-
trieval by predicting pairwise case preferences.

Pointwise Ranking with GNNs
For the purpose of similarity-based retrieval in POCBR,
Hoffmann et al. [2020] adapt two Siamese GNNs which
are called Graph Embedding Model (GEM) and the Graph
Matching Network (GMN) (see Fig. 2). Both models learn
embeddings of semantic graphs by processing the nodes and
the edges between those nodes, incl. their types and semantic
annotations. These embeddings are then further aggregated
to a single pairwise similarity value by using cosine vector
similarity or a Multi-Layer Perceptron (MLP). Thereby, both
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Figure 2: GEM (left branch) and GMN (right branch) (taken
from Hoffmann and Bergmann [2022])

models have the same fundamental architecture that consists
of four parts that the data passes through in succession: the
embedder, the propagation layer, the aggregator, and the
graph similarity. The embedder maps the types and seman-
tic annotations of nodes and edges to their initial representa-
tions in the vector space. The propagation layer then propa-
gates information about each node in its local neighborhood
via message passing, where the vector representation of a
single node is updated by merging it with the vector rep-
resentations of all nodes that are connected by an incoming
edge. The GEM computes the graph representations for each
graph independently, and the node-level information is prop-
agated exclusively in the respective graph. In contrast, the
GMN uses a cross-graph matching mechanism that propa-
gates information between two graphs based on node atten-
tions. After multiple propagation iterations, the aggregator
joins representations of all nodes to a single graph repre-
sentation. The graph similarity of two graphs can finally be
computed with their respective representations in the vector
space, by using a cosine vector similarity in GEM and an
MLP in GMN. The architectural differences between GEM
and GMN induce a trade-off between expressiveness and
performance, with the GMN being more expressive than the
GEM but also computationally more expensive.

According to the categorization in Sect. 2, this approach
is a pointwise ranking measure. The most relevant cases of
the case base w. r. t. a query are retrieved by predicting pair-
wise similarities with GEM or GMN and sorting the cases
according to their similarity. Thus, the GNN-based similar-
ity measure can be used interchangeably with other similar-
ity measures in POCBR applications. However, it might be



too strict in retrieval-only applications, where only the case
ranks are of interest and not the concrete similarity values.

Predicting Preferences with GNNs
In order to realize a case retrieval, we propose to adjust the
similarity-predicting GNNs to predict pairwise preferences
of case pairs. Let Gq, G1, G2 ∈ G be a query and two se-
mantic case graphs from a graph space G, we want to define
a function p : ((G,G), (G,G)) −→ [0, 1] that determines
a probabilistic preference between the pairs (Gq, G1) and
(Gq, G2). A result of p((Gq, G1), (Gq, G2)) ≥ 0.5 means
thatG1 is more relevant to the query thanG2, and vice versa.
The architectural changes to use GEM and GMN in this con-
text address the part about the graph similarity that is re-
placed with a preference function. The embedder, the prop-
agation layer, and the aggregator can be reused to embed the
graphs into a latent space vector representation. Let GNN :
(G,G) −→ (Rn,Rn) be a function that uses either GEM
or GMN to embed two graphs to their n-dimensional vector
representations, (vq, v1) = GNN(Gq, G1), and (vq, v2) =
GNN(Gq, G2), then p((Gq, G1), (Gq, G2)) is defined as
follows:

p((Gq, G1), (Gq, G2)) = σ(MLPp([vq − v1, vq − v2]))

The pairwise preference between these two graph pairs is
computed by element-wise subtracting the vectors v1 and v2

from vq , concatenating the results, processing the results by
MLPp, and activating the final value with a sigmoid activa-
tion. MLPp can be an arbitrary MLP with the constraint that
it has to have a single output neuron in the last layer in order
to have a single preference value. Training GEM and GMN
in this setup also differs from the original goal of predicting
similarities. Instead of training on batches of graph pairs,
the models are trained on batches of pairs of graph pairs,
as function p also suggests. Instead of computing a Mean
Squared Error (MSE) loss between predicted and label sim-
ilarity, the predicted preferences are evaluated by comput-
ing a binary cross-entropy loss between the predictions and
the labels. Please note that the proposed pairwise ranking
approach can also be directly trained on label preferences
between cases, for instance determined by direct user feed-
back. This is not possible with the pointwise models, but
useful in the real world, since it is more natural for human
experts to determine a preference between two alternatives
than a similarity value (Hüllermeier and Schlegel 2011).

In order to transform the predicted pairwise preferences
to actual ranks which can, in turn, be used as the retrieval
result, it is necessary to perform rank aggregation (as in-
troduced in Sect. 2). There are overviews of rank aggrega-
tors available in the literature (Allwein, Schapire, and Singer
2001; Hüllermeier and Fürnkranz 2004), where most of the
methods can be used in this approach. For our use case, we
want to present a slightly modified variant of the approach
by Cohen et al. [1999] (see Alg. 1) and another algorithm
that is simpler and faster to compute (see Alg. 2).

Algorithm 1 is provided with the case base CB, the query
QW, and the preference function p(·, ·) introduced before.
The rank aggregation starts by creating a temporary set of
cases V , where each case is initialized with its potential

Algorithm 1: Greedy Rank Aggregation
Data: case base CB; query workflow QW;

GNN-based preference function p(·, ·)
Result: ranked list of cases

1 V ←− CB; result←− empty list
2 foreach v ∈ V do
3 s1(v)←−∑

u∈V p(v, u)−
∑

u∈V p((QW, v), (QW, u))
4 end
5 while |V | > 0 do
6 vpot ←− argmaxu∈V s1(u)
7 add vpot to the end of result
8 V = V \ {vpot}
9 foreach v ∈ V do

10 s1(v)←−
s1(v) + p((QW, vpot), (QW, v))− p(v, vpot)

11 end
12 end
13 return result

ranking score, denoted by the function s1(·) (see lines 2 –
4). The value of this function for any case v is initialized as
the number of comparisons where v is preferred over some
other case u, minus the number of opposed comparisons.
The result of the algorithm is a ranked result list of the cases
in descending order of relevance (see lines 5 – 12). The re-
sult list is put together in a loop, where the case vpot with
the highest value of s1(v) is extracted from V and added
to the end of the list. Afterward, the values of function s1

are updated for each case in V according to the compar-
isons with the extracted case vpot. The algorithm resembles
a greedy search through the graph of pairwise preferences.
It has a quadratic computational complexity and is there-
fore faster than optimal search algorithms such as A*. Co-
hen et al. [1999] also prove that the algorithm’s agreement
is at least half the agreement of the optimal ranking order.

Algorithm 2 is derived from Alg. 1 and simplifies two as-
pects to reduce computation time. First, the computation of
the potential ranking score function s2(v) only includes the

Algorithm 2: Positive Rank Aggregation
Data: case base CB; query workflow QW;

GNN-based preference function p(·, ·)
Result: ranked list of cases

1 V ←− CB; result←− empty list
2 foreach v ∈ V do
3 s2(v)←−

∑
u∈V p((QW, v), (QW, u))

4 end
5 while |V | > 0 do
6 vpot ←− argmaxu∈V s2(u)
7 add vpot to the end of result
8 V = V \ {vpot}
9 end

10 return result



preferences where v is preferred over another case u. The
opposed preference relations where u is preferred over an-
other case v are not counted, hence the naming as positive
rank aggregation. Second, the creation of the result list is
also done in a loop, but the values of s2 are not contin-
uously updated. This means that the preferences of cases
extracted from V are not removed from the scores of the
cases still in V . This rank aggregation algorithm also has a
quadratic computational complexity, but requires less com-
putation steps than the greedy one. The performance of both
methods is evaluated in the experimental evaluation.

4 Experimental Evaluation
We conduct retrievals to compare pairwise ranking and
pointwise ranking with GEM and GMN (see Sect. 3). All
different GNN variants also include a version with sequence
embedding and one with tree embedding to examine the ef-
fects of these semantic annotation embedding techniques,
introduced by Hoffmann and Bergmann [2022]. The models
based on pairwise ranking also compare the results of the
different rank aggregators, i. e., the greedy and the positive
approach. This gives a total of twelve evaluated retrievers
(see Tab. 1 for the entire enumeration). We measure the qual-
ity of several retrieval runs by comparing the order of the
results, as predicted by the pointwise and pairwise ranking
models, with the ground-truth ordering. In addition, we look
at a comparison between the different retrievers regarding
retrieval time. The following hypotheses are investigated:

H1 The retrievers based on pairwise ranking generally
outperform the retrievers based on pointwise ranking
w. r. t. the retrieval quality.

H2 The retrievers based on pairwise ranking generally
show reduced retrieval times compared to the retriev-
ers based on pointwise ranking.

Experimental Setup
The experiments are performed with three case bases from
different domains, that is of a recipe domain CB-I (Hoff-
mann et al. 2020), a data mining domain CB-II (Zeyen, Mal-
burg, and Bergmann 2019), and a manufacturing domain
CB-III (Malburg, Hoffmann, and Bergmann 2023). CB-I
consists of 40 manually modeled cooking recipes that are ex-
tended to 800 workflows by adaptation techniques described
in Müller [2018], resulting in 660 training cases, 60 valida-
tion cases, and 80 test cases. The workflows of the data min-
ing domain CB-II are built from processes stemming from
RapidMiner (see Zeyen et al. [2019] for more details), re-
sulting in 509 training cases, 40 validation cases, and 60 test
cases. CB-III contains workflows that represent production
processes which are used in a smart manufacturing environ-
ment. The case base is composed of 75 training cases, nine
validation cases, and nine test cases.

When training the neural networks with the data of these
three case bases, all semantic graphs are encoded in a nu-
meric vector format (see Hoffmann and Bergmann [2022]
for more information). The pointwise ranking models, i. e.,
the base models, are trained to predict pairwise graph simi-
larities. The number of pairwise graph similarities for train-

ing, testing, and validation is precisely the square of the
numbers given before, as there is a ground-truth similarity
value calculated for each possible case pair. The pairwise
ranking models, i. e., the proposed approach, are trained on
preferences between graph pairs, computed based on the
ground-truth graph similarities. A single training iteration
uses a batch of pairs of graph pairs, and the preferences are
predicted between each possible pair of graph pairs. This
way, the number of different preferences to train the pairwise
ranking models is much higher than the number of pairwise
graph similarities to train the pointwise ranking models.

The training cases are used as training input for the neu-
ral networks, while the validation cases are used to monitor
the training process. The proposed models using pairwise
ranking use the same hyperparameter settings as the respec-
tive base models using pointwise ranking. The training of all
models using the GEM architecture runs for 20 epochs, and
the training of all models using the GMN architecture runs
for 40 epochs. These settings were identified as the approx-
imate points of convergence in pretests. A snapshot of the
model is exported after each training epoch and the models
with the lowest validation error within these 20 or 40 ex-
ported models, respectively, are used in the experiments. The
examined metrics cover retrieval quality and performance:
Quality is measured in terms of correctness (see Cheng and
Rademaker [2010] for more details), retrieval hits, and k-
NN quality (see Müller and Bergmann [2014] for more de-
tails). The correctness (ranged between -1 and 1) describes
the conformity of the ranking positions in the predicted rank-
ing to the ground-truth ranking. Given two arbitrary work-
flow pairs WP1 = (QW,CW1) and WP2 = (QW,CW2), the
correctness is decreased if WP1 is ranked before WP2 in the
predicted ranking although WP2 is ranked before WP1 in the
ground-truth ranking or vice versa. The retrieval hits mea-
sure the number of cases that are within the top-25 retrieved
results in the predicted rankings and the ground-truth rank-
ings. The k-NN quality (ranged between 0 and 1) extends
the retrieval hits by considering what the similarity of the
cases within the top-25 retrieval results is. Therefore, the
25 most similar cases from the ground-truth rankings are
compared with the predicted rankings. Each case from the
most similar cases that is missing in the predicted rankings
decreases the quality, with highly relevant cases affecting
the quality more than less relevant cases. In addition, the
retrieval time in milliseconds is determined to compare the
performance of the individual models. All experiments are
computed on a machine, running Ubuntu 22.04, an AMD
Ryzen 5700x, an NVIDIA RTX 3070 with 8 GB graphics
RAM and 64 GB system RAM. Please note that a compari-
son between retrievers using A* search and retrievers using
GNNs is presented by Hoffmann and Bergmann [2022] and,
thus, not included in these experiments.

Experimental Results
Table 1 shows the results of the experimental evaluation
for all models on all domains regarding the metrics intro-
duced before. The evaluated models are grouped regarding
the used embedder, i. e., a tree embedder or a sequence em-
bedder. The values highlighted in bold font mark the best



Table 1: Evaluation Results.

Time (ms) Corr. Hits Quality Time (ms) Corr. Hits Quality Time (ms) Corr. Hits Quality
GEM Pointwise 0.63 0.035 0.225 0.476 0.53 0.330 2.867 0.439 0.13 0.197 10.333 0.543
GMN Pointwise 462.11 0.444 0.963 0.490 811.77 0.571 7.033 0.539 171.95 0.584 16.556 0.731

GEM Pairwise (Positive) 695.63 0.490 3.688 0.546 394.78 0.507 3.567 0.449 20.50 0.470 15.222 0.682
GEM Pairwise (Greedy) 799.49 0.478 4.050 0.555 431.98 0.506 3.650 0.451 20.27 0.478 15.333 0.687
GMN Pairwise (Positive) 1473.28 0.550 2.150 0.519 1348.08 0.616 6.550 0.524 161.04 0.628 17.333 0.760
GMN Pairwise (Greedy) 1570.79 0.551 2.150 0.519 1391.45 0.615 6.283 0.515 165.19 0.629 17.333 0.759

GEM Pointwise 0.48 0.055 0.013 0.471 0.44 0.357 6.150 0.522 0.08 0.389 11.778 0.600
GMN Pointwise 741.83 0.340 0.225 0.476 1110.58 0.615 6.933 0.532 297.90 0.600 15.889 0.710

GEM Pairwise (Positive) 698.21 0.398 2.125 0.515 398.52 0.524 4.300 0.468 18.32 0.488 15.111 0.678
GEM Pairwise (Greedy) 797.86 0.385 2.175 0.516 437.91 0.522 4.100 0.463 19.08 0.495 15.111 0.679
GMN Pairwise (Positive) 1747.54 0.493 2.825 0.535 1674.35 0.737 9.600 0.601 284.88 0.555 14.444 0.674
GMN Pairwise (Greedy) 1841.79 0.491 2.738 0.533 1712.71 0.736 9.650 0.602 285.98 0.563 14.556 0.677Se
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metric values among all models for each domain. The results
w. r. t. training time show a clear dominance of the point-
wise GEM models, since they can cache embedding vectors
due to their parallel model architecture (see Hoffmann and
Bergmann [2022] for more details). There is a general time
advantage of GEM as opposed to GMN, which can be seen
for pointwise as well as pairwise variants. When directly
comparing the pointwise variants with the pairwise variants,
it is apparent that the pairwise variants in most cases have
longer execution times with an advance between 154 and
1600 times for the GEM variants and 0.92 and 3.36 times for
the GMN variants. The GMNs of CB-III do not follow this
trend, since they are consistently faster than their respective
base models. Additionally, the results also show that most of
the pairwise GEMs retrieve faster than the pointwise GMNs,
which indicates that the comparison of retrieval time should
be done with similarly performing models in terms of qual-
ity. Comparing the two rank aggregators, it can be seen that
positive rank aggregation is almost always faster than greedy
rank aggregation, which is to be expected given the different
levels of computational complexity.

The results regarding the quality metrics show that there is
a general trend of pairwise models having a higher correct-
ness and k-NN quality and a higher number of hits compared
to pointwise models. Except for CB-I, the data also shows a
superior quality of the GMN-based models over the GEM-
based models. For instance, the differences in correctness
between the pairwise models and the respective pointwise
model are between 1.2 and 13.9 times for CB-I, 1.07 and
1.53 times for CB-II, and 0.92 and 2.41 times for CB-III. As
with training time, some pairwise GMNs do not follow this
trend and achieve worse quality values than the respective
pointwise models. A comparison among the quality metrics
for individual models shows an agreement on average with
variations in some cases, e. g., a comparison of the pairwise
GEM and GMN with greedy aggregation and tree embed-
ding in CB-I shows a lower correctness of the GEM but, in
turn, a higher k-NN quality. When comparing the average re-
sults of the two rank aggregators, it can be seen that greedy
rank aggregation is usually on-par with positive rank aggre-
gation, with small differences in favor of one or the other
approach in some comparisons.

Overall, the results show consistent improvements in
quality when using pairwise compared to pointwise rank-
ing approaches. However, these improvements mostly come
at the cost of higher retrieval times of pairwise ranking ap-
proaches. It leads to a trade-off between these two aspects
that should be considered regarding the use case. There are
still noteworthy examples where a pairwise GEM model out-
performs a pointwise GMN model in terms of quality and
performance, leading to a great potential for future use. The
performance and the quality results are statistically signifi-
cant according to a paired two-sample t-test (p < 0.01) and
we accept hypothesis H1 and reject hypothesis H2.

5 Conclusion and Future Work
The proposed approach deals with case retrieval by using
GNN-based predictions of case rankings in POCBR. Pre-
vious work on similarity-based case retrieval with GNNs
is extended to use the neural networks for predicting pair-
wise preferences between cases and the query. To transform
multiple preferences to a case ranking, two rank aggrega-
tion methods are discussed. The experimental evaluation in-
dicates that the ranking-based models significantly increase
the quality of the predicted rankings with a small increase in
retrieval time compared to similarity-based models.

Future research for the proposed approach should exam-
ine concepts of listwise ranking methods (Cao et al. 2007)
for similarity-based retrieval in POCBR, since it is, in gen-
eral, more powerful than pointwise and pairwise ranking
(Liu 2011). Furthermore, the proposed approach could be
used with a wider variety of rank aggregators, which could
include more complex or even simpler rank aggregators for
different domains or retrieval scenarios (Allwein, Schapire,
and Singer 2001; Hüllermeier and Fürnkranz 2004). Addi-
tionally, the approach could be extended to factor in uncer-
tainty, e. g., by not only predicting a pairwise preference, but
also the degree of uncertainty for this prediction. Existing
methods such as Guiver and Snelson [2008] could then be
used to do rank aggregation and determine the final ranking.
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Hüllermeier, E., and Fürnkranz, J. 2004. Comparison
of ranking procedures in pairwise preference learning. In
Bouchon-Meunier, B.; Coletti, G.; and Yager, R., eds.,
Proceedings of the 10th International Conference on In-
formation Processing and Management of Uncertainty in
Knowledge-Based Systems (IPMU-04), Perugia, Italy, vol-
ume 21.
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