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Abstract

New research challenges in robotics, which arise from attempts to get robots out
of isolated environments into human spaces with a close human-robot interaction,
demand new methods to acquire a deeper understanding of the human behavior
and intentions. Especially in Learning from Demonstration (LfD), which provides an
intuitive way to teach robotic systems new behavior from human movement examples,
approaches are needed to recognize relevant movement segments in human motion
data. In this way, building blocks of robotic motions can be learned which can be
combined to generate a wide range of behaviors.

This thesis introduces algorithms to detect and annotate human building block
movements in recordings of manipulation movements as well as an approach to
determine hierarchical structures in these movements. The velocity-based Multiple
Change-point Inference (vMCI) algorithm is presented, which identifies building
blocks with a bell-shaped velocity profile using Bayesian Inference. The algorithm
can be applied in an online and automatic fashion, without the need for expert knowl-
edge, time-consuming training data generation or parameter tuning. To annotate
the detected building blocks, several standard movement recognition approaches are
compared with respect to their performance in the presence of only a small amount
of labeled movement examples for training. It is shown that using 1-Nearest Neigh-
bor (1-NN)-based movement classification, annotations can be found fast and reliably
under these conditions. To detect basic movements as well as their concatenations
into more complex, labeled actions, the velocity-based Hierarchical Movement Seg-
mentation (vHMS) algorithm which hierarchically analyses human movements is
presented.

Each of the developed methods is evaluated on different movement recordings
acquired from several subjects, ranging from simple point-to-point movements to
more complex dual arm object manipulation tasks. Furthermore, the application of
the proposed algorithms in a framework to learn new robotic behavior from human
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demonstration is shown. Different throwing motions are transferred to several robotic
systems in a nearly automated way and in a reasonable amount of time. Additionally,
the application of the segmentation approaches on teleoperated movements recorded
with an exoskeleton is presented.

With the presented algorithms, the imitation of human behavior for robotic systems
can be made more intuitive, automated, and more generally applicable. Furthermore,
the hierarchical movement segmentation approach opens the door to construct hi-
erarchical learning approaches which are based on human demonstration to learn
complex robotic behavior more effectively.
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Zusammenfassung

Neue Forschungsbereiche in der Robotik haben zum Ziel, Roboter raus aus isolierten
Räumen in menschliche Umgebungen zu bringen, in denen sie eng mit dem Menschen
interagieren. Dazu werden neuen Methoden gebraucht, um ein tieferes Verständnis
über das Verhalten und die Intentionen des Menschen zu erlangen. Insbesondere in
dem Bereich des robotischen Lernens aus Demonstrationen, bei dem Robotersysteme
neue Verhaltensweisen anhand menschlicher Bewegungsbeispiele erlernen, werden
Methoden benötigt, um grundlegende Bewegungsabschnitte in menschlichen Bewe-
gungsdaten zu erkennen. So können Bausteine von robotischen Verhalten erlernt
werden, welche zu einer Vielzahl von verschiedenen Bewegungen kombiniert werden
können.

In dieser Arbeit werden Algorithmen zur Erkennung und Annotation menschlicher
Bewegungsbausteine in Manipulationsbewegungen, sowie ein Ansatz zur Bestim-
mung hierarchischer Strukturen in diesen Bewegungen vorgestellt. Es wird der Algo-
rithmus velocity-based Multiple Change-point Inference (vMCI) eingeführt, welcher
Bewegungsbausteine mit einem glockenförmigen Geschwindigkeitsprofil mittels
Bayes’scher Inferenz identifiziert. Der Algorithmus kann online und automatisiert
angewendet werden, ohne dass Expertenwissen, zeitaufwändige Trainingsdaten-
generierung oder Parameteroptimierung nötig ist. Zur Annotation der erkannten
Bausteine werden verschiedene Standardbewegungserkennungsmethoden im Hin-
blick auf ihre Performanz unter Nutzung einer kleinen Menge an gelabelten Bewe-
gungsbeispielen für das Training verglichen. Es wird gezeigt, dass mit 1-Nearest
Neighbor (1-NN)-basierter Bewegungsklassifikation Annotationen unter diesen Vo-
raussetzungen schnell und zuverlässig gefunden werden können. Um grundlegende
Bewegungen, sowie deren Aneinanderreihung zu komplexeren, annotierten Bewe-
gungen zu identifizieren, wird der velocity-based Hierarchical Movement Segmenta-
tion (vHMS)-Algorithmus vorgestellt, mit dem menschliche Bewegungen hierarchisch
analysiert werden können.
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Jede der entwickelten Methoden wird an verschiedenen Bewegungsaufzeichnungen
von mehreren Probanden evaluiert, die von einfachen Punkt-zu-Punkt-Bewegungen
bis hin zu komplexeren zweiarmigen Objektmanipulationsaufgaben reichen. Darüber
hinaus wird die Anwendung der präsentierten Algorithmen in einem Framework
zum Erlernen neues Roboterverhaltens aus menschlichen Demonstrationen gezeigt.
Verschiedene Wurfbewegungen werden nahezu automatisiert und in angemessener
Zeit auf verschiedene Robotersysteme übertragen. Zusätzlich werden die Segmen-
tierungsansätze auf teleoperierte Bewegungen angewandt, welche mit einem Ex-
oskelett aufgezeichnet wurden.

Mit den vorgestellten Algorithmen kann die Nachahmung menschlichen Verhaltens
für Robotiksysteme intuitiver, automatisierter und genereller anwendbar gemacht
werden. Darüber hinaus wird durch den Ansatz der hierarchischen Bewegungsseg-
mentierung die Möglichkeit geschaffen, hierarchische Lernansätze zu konstruieren,
welche aus menschlichen Bewegungsdemonstration komplexes Roboterverhalten
effektiver erlernen.
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Part I.

Motivation and Goals
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1 Chapter 1.

Introduction

In this thesis, new approaches to analyze human movements are proposed and used
to generate robotic behavior from human demonstration. By observing and analyzing
the human behavior, insights are gained that can be used to realize an intuitive and
adaptive interaction between humans and robotic systems and to generate more
human-like robotic behavior. In this chapter, a more detailed motivation is given by
shortly summarizing current research challenges in human-robot interaction, robot
learning through interaction and human-like behavior learning in robotics. Afterwards,
the goals of this thesis are presented and it is discussed how the presented work
contributes to these research challenges in robotics.

1.1. Motivation and Research Challenges

While robotic systems have already been deployed in industrial settings in the last
decades, current research and developments strike for systems which closely collab-
orate with humans. In these scenarios, the robotic systems need to operate outside
shop floors and labs but in human environments where they are not isolated. For
this, the systems need to continuously adapt to changing environments and may
face tasks that were not pre-programmed during design. Furthermore, the systems
need to closely collaborate with the human to provide the best possible support. For
this collaboration, the robotic system must be equipped with new capabilities, as
described in the following section. Furthermore, the system can directly learn during
the interaction with a human, which is described in more detail afterwards.
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1. Introduction

Figure 1.1.: Human-robot collaboration in a kitchen environment. Image extracted from [Dragan
et al., 2015], Figure 1.

1.1.1. Towards an intuitive human-robot interaction

New and future applications demand a close collaboration of robotic systems with
humans, e.g., in the support of elderly, as assistants at home (see Figure 1.1) or
in co-work situations in industry [Schaal, 2007]. This leads to a closer interaction
of the system with non-experts, which makes an intuitive control and interaction
with the systems desirable. To enable a close interaction with humans, not only the
robotic systems must be equipped with enlarged dexterities and control mechanisms
that allow intuitive and safe interaction [De Santis et al., 2008], but also the human
intentions, behaviors, and habits must be better understood [Kirchner et al., 2015].
Only if the human behavior can be understood in detail, the system will be able to
react in an appropriate way and a natural and intuitive interaction can be realized.
For this, the robot has to recognize its environment, which includes the recognition,
tracking, and segmentation of objects [Yan et al., 2014] and additionally the human
interaction partner and its behavior has to be recognized, understood, and predicted.

Human motion recognition is one of the most active research areas, with application
in different fields ranging from gaming, animation, and sport analysis to surveillance
applications. In robotics, human motion recognition not only plays an important
role in human-robot collaboration but also in other human-robot interfaces. On
different modalities, such as RGB or depth videos, marker-based motion tracking,
and data gloves, a wide range of methods are applied to recognize the human and
its motion. Surveys on different methods and applications are, e.g., given in [Poppe,
2010] or [Zhang et al., 2019]. However, most of these methods are supervised and
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1.1. Motivation and Research Challenges

require a lot of training data.

In order to achieve a fluent human-robot collaboration, where the robot directly
reacts to the human behavior, not only the current human action needs to be recog-
nized, but also the human intentions that include goals, desires, and plans, need to be
inferred from the observed human action [Wang et al., 2013]. An overview of recent
approaches is given in [Kong and Fu, 2022].

Another important aspect of human-robot interaction is the generation of appro-
priate robot movements. In human-robot collaboration, the way the robot moves
has a direct influence on the quality of the interaction [Dragan et al., 2015]. Many
of these collaborations replace interaction tasks which were previously performed
as human-human collaboration, e.g., in handing over tasks. As a result of long ex-
perience of these tasks, humans expect specific behavior and movements from their
collaboration partner. If these are not matched by a robotic collaborator, the collab-
oration can be interrupted which could lead to safety issues. Studies showed that
the collaboration of a human with a robotic system is more fluent if the human can
predict robot motions [Dragan et al., 2015, Koppenborg et al., 2017]. Furthermore,
movement speed has an influence on human-robot cooperation [Koppenborg et al.,
2017]. Predictable motions can be generated using motion controllers, such as those
presented in [Dragan et al., 2013], or by generating human-like robotic motions that
humans are accustomed to through multiple interactions with other humans. Motion
controllers which generate human-like movements are often designed for very specific
tasks with limited opportunities for generalization whereas a machine learning based
generation of human like-motions allows for some generalization. An overview of
different approaches is given in [Gulletta et al., 2020]. For example, in [Gäbert et al.,
2021], a motion planning approach is proposed which considers human joint limits
and human arm movement characteristics to generate human-like arm movements
while reaching the goal positions and avoiding obstacles.

1.1.2. Robot learning through interaction

One part of human behavior learning is learning through social interaction such as
through imitation. This type of learning has gained a big interest in robotics, as
it provides an intuitive mechanism to teach robots new skills. Learning through
interaction is adressed, for example, in [Hörnstein et al., 2010], where language is
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1. Introduction

Figure 1.2.: Imitation of a stick-throwing movement. The movements of the human are recorded with
marker-based motion tracking (left image) so that the movement trajectory (orange line)
can be imitated by the robotic system (right image). Details are explained in chapter 7.

acquired for a humanoid robot during interaction with a human. Similar to human
language acquisition in the interaction of adults with infants, an approach is developed
which enables a robot equipped with embodied models of the infants’ ears, eyes,
vocal tract, and memory functions, to learn new words and their meanings though
interaction with a human.

But also new movements can be acquired for robotic systems during interaction.
In the area of robotic movement generation, several methods for Learning from
Demonstration (LfD), also known as imitation learning, were published in the last
years. In these methods, the human teaches a robotic system new behavior in an
intuitive way that does not require expert knowledge. Motions to be learned can be
taught directly by moving the robot extremities or indirectly by recording human
movements to use them as movement examples from which new behavior is learned,
as shown in Figure 1.2. An overview of several methods is given in [Argall et al.,
2009]. Matarić proposed a biologically inspired model for imitation learning [Matarić,
2002]. This approach includes the perception of relevant movements by extracting
salient features from visual information and a mapping of the visual input to an
executable motor command. Additionally, a motor control system that consist of motor
primitives which can be combined or superimposed to generate different movements
is included as well as a movement classification mechanism which maps observed
movement to executable movement to reuse already modeled motor programs. In
their work, discrete, oscillatory as well as posture primitive should be modeled.
They extract discrete as well as oscillatory movement from observed movement data
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1.1. Motivation and Research Challenges

using clustering approaches. Parts of their model have already been implemented
and evaluated, including an automated approach to derive motion primitives from
observed behavior [Jenkins and Matarić, 2003].

More recently, a parametric representation of motion primitives called Dynamical
Movement Primitives (DMPs) was introduced [Ijspeert et al., 2013] which encode
arbitrarily shapeable, goal-directed trajectories. Different variants of DMPs were
developed [Kober et al., 2010, Mülling et al., 2013], which can be adapted to explore
different movements using reinforcement learning [Kober and Peters, 2012, Deisenroth
et al., 2013]. Another way to face the tasks of learning of new robotic movements
through imitation is the consideration of semantic information of behavior to be
learned [Ramirez-Amaro et al., 2017]. This takes the importance of the relation between
the movements and the involved objects into account which can, for instance, be
important in household environments.

If the robotic movement should directly be learned from human movement observa-
tions, the correspondence problem must be solved, which is the problem of mapping
human body positions to their robotic counterparts [Nehaniv and Dautenhahn, 2002].
Additionally, the relevant parts of the human movement demonstrations must be
extracted from the movement observation. This can be done manually or by using
automated approaches based on, for example, semantic information [Bouchard and
Badler, 2007, Ramirez-Amaro et al., 2014] or probabilistic machine learning [Chiappa
and Peters, 2010, Kulić et al., 2012, Fox et al., 2009, Lioutikov et al., 2017]. A more
detailed overview will be given later in this thesis in section 4.1. Although, these
methods segment human movements, it is in general not clear if the detected segments
are the central movements of the demonstrated behavior.

1.1.3. Human-like learning of complex tasks

Artificial intelligence approaches achieved a great success in the last years and were
able to solve tasks at a human-level performance [Lake et al., 2017]. This is mainly
due to the use of deep neural networks, which obtained remarkable results in object
or speech recognition [LeCun et al., 2015] or in playing of video games [Guo et al.,
2014]. Also in robotics, there has been an impressive progress, for example, in learning
in-hand manipulation of a cube [Andrychowicz et al., 2020]. However, in several areas
robotics systems are still far away from learning and behaving like a human. Solving
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1. Introduction

a task like grasping a cup can easily be performed by humans independent of, e.g.,
the orientation of the cup. For a robot, even minor changes to the task or the objects
involved could require the use of new, accordingly adapted control mechanisms. With
increasing complexity of the task and the system, the control of robot movements gets
even more challenging.

Next to learning through interaction, also other principles of human learning can be
used to learn new robotic behavior. Learning of complex behaviors in humans takes
place incrementally, as shown in behavioral studies [Sakai et al., 2003]. This means
that smaller individual building blocks are learned separately and later combined
to a single, higher level complex behavior. This process is called chunking of action
repertoires [Graybiel, 1998]. Hierarchical reinforcement learning is an approach to
address the learning of complex tasks for artificial systems by decomposing learning
problems into subtasks. A recent overview of current approaches is, for example,
given in [Pateria et al., 2021]. In contrast to this, most state-of-the-art LfD methods are
monolithic learning approaches, i.e., they learn one behavior that covers the whole
demonstration. In order that hierarchical approaches can be used in LfD in the future
to transfer the principle of hierarchical learning of complex tasks using simple building
blocks to a robotic system, the subtasks of a demonstrated human behavior need to be
identified. This is the main goal of this thesis, as detailed in section 1.3.

1.2. Terminology

To better understand the goals and contributions, three important terms used during
this thesis are defined as follows:

Definition: Manipulation Movement

Hand or arm movement executed to manipulate an object. In this thesis, it is focused on
these discrete, goal-directed movements. Examples for manipulation movements are pick-
and-place tasks or dual arm manipulations such as pouring water into a cup. Rhythmic
arm movements, which would be executed, e.g., during a stirring movement as well as
whole body motions such as walking or dancing are not considered in this work.
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1.3. Thesis Goals

Definition: Building Block

A movement building block is a central movement entity of manipulation which can
be combined with other building blocks to solve different tasks. Building blocks can be
seen as submovements during manipulation, such as reaching or placing. The observable
characteristic of these building blocks is a bell-shaped hand velocity, which will be shown
later in this thesis.

Definition: (Movement) Action

Concatenations of multiple building blocks are named movement action within this thesis.
Actions can be for example manipulation movements such as pour water into cup or
cutting vegetable.

1.3. Thesis Goals

One central aspect for human-robot interaction and especially imitation learning is
the detection of movement building blocks, which are also referred to as motor or
motion primitives in the literature. If they are recognized in human motion, the
current behavior can be determined and the movement that may occur next can be
inferred [Matarić, 2002]. This is important to achieve a precise reaction of a robotic
system in human-robot collaboration tasks as described in section 1.1.1. Additionally,
building blocks are good models for imitation learning problems as described in
section 1.1.2, because they can be combined to different movements.

In this thesis, human manipulation movements are automatically analyzed to detect
movement building blocks and their connections. For this, two central questions are
addressed: (a) What are these building blocks? and (b) How can they automatically
be detected in observed human behavior despite the huge variances in different
executions of the same task. To achieve a board applicability, approaches should
be developed which are applicable in different situations with low user input and
minimal requirement of manual optimization. The detected building blocks should be
transferred to a robotic system to generate central elements of robotic behavior from
human demonstration.

The goal of this thesis can thus be formulated as follows:
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Development of methods to detect building blocks in human manipulation movements that can
be used to generate robotic behavior.

To achieve this goal, several subgoals must be fulfilled and are addressed within this
thesis:

Subgoal (1) Unsupervised segmentation of human manipulation movements to detect build-
ing blocks. Development of an approach to segment recorded movement
trajectories into building blocks. To reduce manual user input, the ap-
proach should work unsupervised and only with a small number of
(hyper-) parameters that need to be tuned. Part of the development
of this algorithm is the identification of useful features in movement
trajectories of manipulation building blocks.

Subgoal (2) Few-shot recognition of building blocks. Development or identification of
methods to classify detected building blocks to indicate what kind of
movement is currently observed. To minimize the effort needed in the
generation of training data, recognition methods should be used which
classify movement segments using a small number of labeled training
data.

Subgoal (3) Recognition of connections between building blocks. Development of an ap-
proach to hierarchically segment manipulation movements. In a hierar-
chical segmentation, the building blocks of the demonstrated movement
should be detected as well as their combinations to more complex actions
to generate a deeper understanding of the composition of the human
behavior.

Subgoal (4) Generation of robotic behavior based on human movement building blocks.
Integration of the developed methods into a framework to generate
robotic behavior from human movement demonstrations. With this, the
application of the developed segmentation and recognition approaches
should be shown.
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1.4. Contributions

With the detection of building blocks in human movements and the connection be-
tween these, this thesis contributes to all three research areas described in section 1.1.
A more detailed knowledge about the current human behavior can be achieved by
detecting the currently performed building block and the action this building block
belongs to. This can be used to develop a more intuitive human-robot interaction and
to generate robotic movements from human examples in an efficient way.

The velocity-based Multiple Change-point Inference (vMCI) algorithm is developed
in this thesis to automatically detect movement building blocks in human manipu-
lation movements. An open source implementation of the algorithm is available at
GitHub. The algorithm works unsupervised, without the need for manual adaption of,
e.g., hyper-parameters, also on movement recordings obtained from different modal-
ities or different movement tasks. That means, no time intensive manual training
data generation is needed and the algorithm can be run on different manipulation
movements or different datasets without manual hyper-parameter adaption. Using
this algorithm, the building blocks of movements demonstrated by the human can be
detected, which can be directly used to generate robotic behavior. The idea is that by
detecting the building blocks needed to solve different manipulation tasks, a robotic
system can be equipped with these building blocks and is then able to solve different
tasks by combining them in different ways. This thesis contributes to this with the first
step needed: the detection of building blocks in human movement demonstrations.

The vMCI algorithm segments human motion data into building blocks but without
relating these building blocks to certain movements, e.g., by giving them movement
labels. This next step is called movement recognition within this thesis. It is needed to
understand what the human is currently doing. Additionally, movement segments
that should be used for imitation in LfD applications can intuitively be selected
based on assigned movement annotations. To recognize human behavior in video
or image data, many approaches were proposed in the last decades [Poppe, 2010].
Most of these approaches benefit from a huge amount of available data. In contrast
to human activity recognition in the wild, smaller movement entities, such as a
specific direction of approaching an object which should be grasped, need to be
detected in LfD applications. To collect training data for these applications, movement
demonstrations need to be recorded, preprocessed, and manually labeled. These
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efforts can be minimized if so-called few-shot classification methods are used for
movement recognition which can recognize various behaviors with a small number of
training examples. Using these methods, training time can be minimized. This makes
these algorithms additionally interesting for adaptive approaches in which newly
observed movements are addressed using re-training. In this thesis contributes to this
area by comparing different state-of-the-art movement recognition approaches with
respect to their classification accuracies with a small number of training examples.
For this, k-Nearest Neighbor (k-NN), Hidden Markov Model (HMM), and Long-
short Term Memory-Network (LSTM)-based classification are compared on different
datasets, some consisting of building blocks detected using vMCI and one dataset
containing more complex gestures.

Additionally, this thesis contributes to the identification of the connections between
detected building blocks. If not only the building blocks in observed movement record-
ings can be detected, but also how they are connected, i.e., which sequence of building
blocks can be observed in different actions, a deeper understanding of the observed
human behavior can be obtained. This could be used to generate robotic behavior
similarly to human movement generation based on the combination of building blocks
to perform different actions as described in section 1.1.3. For this, the hierarchical
segmentation approach velocity-based Hierarchical Movement Segmentation (vHMS)
is developed, which identifies building blocks as well as their combinations to more
complex actions in observed human manipulation movements. This algorithm forms
the basis for the generation of hierarchical learning approaches for robotic movement
generation based on human examples.

The contributions of this thesis are not limited to the analysis and automatic seg-
mentation and recognition of human manipulation movements. Additionally, the
developed methods are integrated into a framework for LfD, which can be used to
directly transfer the detected building blocks to a robotic system. It will be shown that
useful and successful robotic movements can be learned from the detected human
movement building blocks. Additionally, the application of the developed approaches
on movements obtained using an exoskeleton during teleoperation is shown. This
opens the door for future applications which use the automatically determined move-
ment segments, e.g., to learn robotic behavior directly during teleoperation of the
system.

An overview of all contributions and their grading from human movement anal-
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Figure 1.3.: Overview of the structure and contributions of this thesis. After starting with the
motivation and research challenges, the background is presented, which includes a
summary of neurobiological studies and experiments to characterize movement building
blocks. The gained insights are then used to develop automated analysis methods
for segmentation and recognition of human manipulation movements. Afterwards, the
developed methods are applied and integrated to generate robotic movements from
human examples. At the end, the thesis is completed with the conclusion and an outlook.
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ysis to the generation of robotic movements is shown in Figure 1.3. To validate the
developed methods and to compare them to other state-of-the-art methods from the
literature, several human manipulation movements were recorded using marker-
based motion capturing. The recorded movements range from simple point-to-point
movements to more complex dual arm manipulation tasks. For evaluation of the
approaches, manually determined segment borders and movement labels are required.
To generate these, a software tool for trajectory visualization and simplified trajectory
labeling is developed.

Most of the work presented in this thesis was already published in several publica-
tions. In each chapter, it is stated in the introduction which publications are related to
the presented work. In appendix B, all publications are listed and details about my
contribution to each of these are given.

1.5. Thesis Structure

This thesis is divided into four parts. Part I is comprised of the previous sections
which motivate the thesis and describe the goals and contributions. Additionally,
the neurobiological background is presented in chapter 2, which gives details about
human movement generation, the way humans learn new behavior and the main
characteristics of human manipulation movements. At the end of that chapter, in
section 2.4, it is discussed why the bell-shaped velocity of the hand is selected as the
main feature to characterize manipulation building blocks. In the overview diagram
of Figure 1.3, this Part I is colored in green.

Part II introduces the developed methods for automated analysis of human motions,
marked in yellow in Figure 1.3. In chapter 3, the marker-based movement recording
systems are described and the datasets are introduced that were acquired for the
evaluations of the developed methods. In section 3.8, the methods to generate a
labeled ground truth for these datases to be used as reference for the automated
segmentation and recognition approaches are described. Chapter 4 starts with an
analysis of different features of human manipulation movements, before the vMCI
algorithm is introduced which segments human movements into building blocks
with a bell-shaped velocity profile. The algorithm is evaluated on several of the
recorded one-arm manipulation movements. In chapter 5, different machine learning
methods to classify human manipulation movements into known movement classes
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are compared. Three algorithms, k-NN, HMM, and LSTMs, are evaluated with respect
to their ability to classify building blocks obtained using vMCI with a small number
of labeled examples used for training. In chapter 6, vHMS is introduced which is
developed to infer the connections between building blocks and their combination to
movement actions. The approach is evaluated on simple one-handed movements as
well as on more complex dual arm motions in which building block movements of
each hand are combined to perform a bimanual rotation task.

In Part III, two applications of the developed segmentation and recognition ap-
proaches are presented, which are colored in blue in Figure 1.3. In chapter 7, a learning
platform to learn robotic behavior from human demonstrations is introduced. The
vMCI segmentation as well as the movement classification approaches are integrated
into this framework to detect the movement sequences in human demonstrations
which should be transferred to a robotic system using imitation and reinforcement
learning. The learning platform is evaluated on two different types of throwing
movements, which are transferred to different robotic systems. In chapter 8, vMCI
and vHMS are run on movements obtained during teleoperation of a humanoid
robotic system. In this application, the developed algorithms are tested on challenging
movement data, which are not perceived directly from human body positions but
indirectly through an exoskeleton. Thus, the human is restricted in the execution of the
movements which causes more irregularities and variance in the recorded movement
trajectories.

In part IV, a summary as well as a conclusion are given in chapter 9. Future work is
discussed in the outlook in chapter 10. The last part is the appendix, which includes a
list of publications published during the preparation of this thesis.
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2 Chapter 2.

Neurobiological Background

In this chapter, the basic principles and most established theories about the computa-
tional mechanisms of human movement generation and adaptation through learning
are explained. A short literature review is given to highlight the different theories and
the complexity of the generation of goal-directed human motions. This gives a basic
understanding of how observable human behavior, which can for example be recorded
via motion tracking, may be generated by the human central nervous system (CNS). In
the presented overview, the focus is on the generation and adaptation of goal-directed
reaching movements, to which the approaches in this thesis refer.

Next to the short review of the computational principles of the generation of goal-
directed human movements, the literature dealing with the investigation of character-
istic patterns in these movements is presented. This is a fundamental background of
the human movement analysis part of this thesis, as these characteristics are used to
motivate the algorithms introduced in the later chapters. At the end of this chapter, a
short summary is given and the presented theories and literature is set into relation
to the presented thesis. A more detailed overview of the computational principles
of human movement generation is given, for instance, in [Wolpert and Ghahramani,
2000] or [Shadmer and Wise, 2005b].

2.1. Human Movement Generation

To generate a specific movement needed to achieve a certain task, the CNS not only
has to generate the appropriate motor commands but it also needs to measure the
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2. Neurobiological Background

Figure 2.1.: Sensorimotor loop and involved internal models in the CNS. 1: Based on tasks and
environmental states the CNS generates motor commands using inverse models. 2: The
resulting next state of the arm can be predicted by the CNS using forward dynamic
models. 3: The execution of the motor commands causes a change in the position of
the arm and the involved object, which can be measured suing sensory feedback and the
forwards sensory model of the CNS. Image adapted from: [Wolpert and Ghahramani,
2000] Figure 1.

consequences during movement execution. It is assumed that the CNS generates
internal models for this, which are included in the sensorimotor loop [Wolpert and
Ghahramani, 2000]. The sensorimotor loop models the relation between motor com-
mands and sensory consequences as shown in Figure 2.1. It consists of three phases. In
the first phase, named command generation, the motor commands are generated based
on the given task and the current state of the system and the environment. Secondly,
in the state transition, the execution of the motor commands results in a change of
the state of the system and the environment. In the last phase, called sensory feedback
generation, these new states are predicted or measured using the sensory system of the
human. It is assumed that each of these phases are represented as internal models in

18



2.1. Human Movement Generation

the CNS.

In the example task of grasping an object, the processing steps needed to be per-
formed by the CNS in the sensorimotor loop can be described as follows: (1) The
movement of the hand towards target object is planned and the corresponding motor
commands are generated. (2) Based on the motor commands, the reaching movement
is executed and the arm starts to move. This induces a change of the state of the arm
and later during grasping also of the object which should be manipulated. (3) These
state changes are measured or predicted by the CNS to ensure that the task of grasping
the object is performed correctly. (4) In the case of errors, i.e., incoherences between
excepted and measured states, new motor commands are generated to correct the
movement by restarting the sensorimotor loop. In the following sections, the theories
and studies about the realization of each step (movement planning, generation of
motor commands, state estimation, and prediction) are explained.

2.1.1. Movement planning

There are infinitely many possible ways to move the arm and hand. This is also the case
for goal-directed movements such as grasping an object. Despite the huge possibilities
to vary the movement trajectories, the CNS always generates very similar movements.
It is assumed that this is because the CNS generates movement with low cost, a theory
which is called optimal control [Diedrichsen et al., 2010]. However, it is an open
question what optimization function the CNS uses to generate movements with low
cost. Flash and Hogan proposed in the 80’, that arm movements are generated by
maximizing smoothness in the hand trajectory [Flash and Hogan, 1985]. In their
experiments, empirical data consisting of straight as well as curved arm motions
could be reproduced by minimizing the jerk of the trajectories, which is the second
derivative of the movement position. However, it remained unclear how the CNS
measures the smoothness for optimization [Wolpert and Ghahramani, 2000]. Later,
another cost function for goal-directed eye and arm movements were proposed, which
is based on minimizing the movement error [Harris and Wolpert, 1998]. The idea in
this work is that the observed direct and smooth movements are generated using short
movement commands, which reduces noise in the movement execution. By reducing
noise, movement errors can be minimized. In this model the smooth trajectories are
an observable side-effect.
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2.1.2. Generation of motor commands

There are several hypotheses on how the motor commands are generated by the CNS
in order that a desired movement is performed. One of the first was the equilibrium
point hypothesis [Flash, 1987]. An equilibrium point is defined as the situation in
which opposing muscles are in a state of balance with each other. In the equilibrium
point hypothesis, it is assumed that movements are generated by the CNS as successive
equilibrium points of the limp on a trajectory. However, this hypothesis has been
controversially discussed in the literature, since a high stiffness of the human limbs
would be needed to effectively generate arm movements based on this idea [Wolpert
and Ghahramani, 2000]. Instead, the equilibrium points are assumed to be a stabilizing
mechanism in [Shadmer and Wise, 2005a].

Another popular theory suggests that the motor commands are generated using
inverse models which map the desired state at every point on the trajectory to the
corresponding motor commands [Kawato et al., 1987, Kawato, 1999]. Using inverse
models, only little stiffness of the system is needed [Wolpert and Ghahramani, 2000].
Due to a study indicating that the human limps have low stiffness, this theory is
preferred by some experts compared to the equilibrium point hypotheses, because in
the latter complex trajectories would be required for simple movements [Gomi and
Kawato, 1996, Wolpert and Ghahramani, 2000].

In addition to these two opposing theories, there is the assumption that movements
are generated based on a small number of motor primitives in the spinal cord. The
theory arises from experiments performed on frogs [Bizzi et al., 1991, Giszter et al.,
1993]. In these experiments, frogs were spinalized to directly perform an electrical
stimulation in the lumber spinal cord of the frog which provokes a movement in
the hindlimb. Using a six-axes force transducer placed on the ankle of the frog, the
resulting forces were measured. The limp was placed at different locations within
the legs workspace to record the direction and amplitude of the force generated at
these positions, see Figure 2.2(a). From this, a vector field of generated forces for
the workspace of the frog’s leg was determined. During the experiments a small
number of convergent force fields were detected. Two of these force fields can be
seen in Figure 2.2(b). In [Mussa-Ivaldi et al., 1994], the resulting vector field of
the simultaneous stimulation of two areas in the spinal cord was compared to the
mathematical summation of the vector fields resulting from the individual stimulation
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(a) (b)

Figure 2.2.: Force fields generated in splinalized frogs which lead to the idea of movement generation
based on a small number of motor primitives. (a) Positions where the limp of the frog
was placed before stimulation of a certain area in the spinal cord. At the ankle of the
frog, a transducer measures the resulting forces. (b) Resulting vector fields. Field A and
Field B were generated by stimulating two different positions in the spinal cord. Field &
is the result of the simultaneous stimulation of these two positions. Vector Field + is the
mathematical summation of Field A and Field B and looks very similar to Field &. Image
sources: (a) [Bizzi et al., 1991] Figure 1A, (b) [Mussa-Ivaldi et al., 1994] Figure 3 (left).

of the same areas. The results can be seen in Figure 2.2(b). Interestingly both, the
simultaneous stimulation as well as the mathematical summation, result in a similar
vector field. From this, the hypothesis was put forward that movements are generated
from a small number of motor primitives, which is supported by several other similar
experiments [Mussa-Ivaldi and Bizzi, 2000]. Each primitive is in this hypothesis
represented by a certain area in the spinal cord which generates a convergent force field.
By activating several of these areas in combination, a variety of different movements
are generated.
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2.1.3. State estimation and prediction

The last part needed in the sensorimotor loop is the estimation of the current state
of the human and the manipulated environment in the CNS. This can be measured
using sensory signals, such as the visible information captured by the eyes. However,
sensory signals reach the CNS with delays and can be noisy or provide only partial
information. An alternative is to predict the current state of the limps using a forward
model, which maps the performed movements to its consequences using a copy of
the motor commands and a model of the involved dynamics. Empirical studies, for
example two studies examining human hand motions [Wolpert et al., 1995b, Beers
et al., 1999], suggest that these two approaches, the forward model and the feedback
generated by the sensory inputs, are combined into a so-called observer framework
to estimate the current states. An example of this observer framework is the Kalman
filter, in which the current state is determined from the estimation of the previous
state and a model of the motor command and the involved dynamics. Based on this
prediction of the current state, the expected sensory feedback can be determined. In
case of differences to the actual sensory feedback, the current state estimate can be
corrected.

2.2. Learning in Humans

Humans can adapt their behavior to different situations and to learn motions which
can effectively be generated in recurring situations. A good overview of different
learning and adaption mechanisms is given in [Shadmer and Wise, 2005b], especially in
chapter 4 of this book. The authors combine the different learning mechanisms under
the term motor learning, which includes the adaption of motor commands to changing
environments, as well as mechanisms to acquire skills, learning of instinctive behaviors,
and decision making. The first of these terms, motor adaption, comprises the changes
in the existing motor commands triggered due to changing context related to the tasks.
If the existing motor commands, referred to as motor repertoire in [Shadmer and Wise,
2005b], is extended this is called skill acquisition or skill learning. This happens in
each individual during its lifetime as well as over generations.

If it is looked at motor adaption from the perspective described in section 2.1, in
which movement generation takes place in the context of the sensorimotor loop using

22



2.2. Learning in Humans

internal models, motor adaption refers to the adaption of the internal models to new
situations. For example, an internal model which generates the movement to grasp a
ball needs to be adapted if the context changes, for example the position of the ball,
its size or if another object should be grasped. Additionally, changes of the system
must be considered, which origin for example of changes in the size of the limps due
to growth. To learn motor commands for these new properties in the sensorimotor
loop, the sensory input can be used to generate a feedback learning model [Wolpert
and Ghahramani, 2000]. In this model, the error between desired and estimated states
are used to update the inverse model to the new context. Using this feedback-error
learning, internal models can be adapted to a changing environment. Wolpert et al.
suggest that internal models for new contexts are generated using combinations of
existing internal models generated or adapted for specific situations or contexts. In
this understanding, multiple internal models are treated as building blocks to generate
behavior for different situations. Experiments examining the learning of reaching
movements in environments with modified kinematic and dynamic properties support
the theory of combination of internal models during learning [Flanagan et al., 1999].

The adaption of behavior is studied in more detail in motor sequence learning
tasks. Graybiel et al. investigated mechanisms in the basal ganglia, which contribute
to behavior learning [Graybiel, 1998]. She suggests that during learning of new
movements, known motor actions represented in the striatum of the brain are chunked
together to learn movements for new situations. From these processes in the brain, it is
deduced that complex human behavior is generated from known blocks, a mechanism
called chunking of action repertoires. In the selection of chunked actions, the basal
ganglia may play an important role. This is supported by several behavioral studies.
For example, in [Adi-Japha et al., 2008] learning experiments were conducted, in which
the participants had to learn a certain movement sequence in which the tip of the
thump had to be touched with each other finger in a predefined order. The results do
not support the proposed hypothesis that the movement sequence is learned withing
a single learning process. This suggest that the movements are learned incrementally
by concatenating consecutive movement elements referred to as chunks. This is also
supported by further behavioral studies, e.g., the results in [Sakai et al., 2003] indicate,
that chunking is important for the representation of long motor sequences in the brain.
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(a) (b)

Figure 2.3.: (a) Experimental setup to determine the characteristics of point-to-point movements
performed in [Morasso, 1981]. (b) Resulting joint angle positions for the elbow (e)
and shoulder (s) joint angular velocities and absolute hand velocity for three different
point-to-point movements. First column: movement from T1 to T4; Second column:
movement from T1 to T5; Third column: movement from T2 to T5. Whereas the joint
angular velocities show different patterns with respect to the position of the points, the
absolute hand velocity is always bell-shaped. Image sources: (a) adapted form [Morasso,
1981] Figure 1, (b) [Mussa-Ivaldi and Solla, 2004] Figure 1 (A).

2.3. Characteristics of Human Movements

In the previous section, different hypotheses from the literature were introduced,
indicating that human movements are generated from a small number of motion
primitives, which are activated with respect to internal models to fulfill a certain
movement task. However, the full cycle of movement generation is an ongoing
research topic and not every step is or can be proved. If the human movement
resulting from the neurobiological mechanisms should be investigated, the analysis
of external observations of the performed movement suggests itself because these
observations can easily be acquired, e.g., by using videos of the movements or motion
tracking. As described in section 2.1.1, the CNS plans movements in a way, that the
hand follows a nearly straight path with smooth trajectories. As observed in several
experiments, these trajectories show a bell-shaped velocity profile. In this section,
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Figure 2.4.: Drawn trajectory with inflection points (left) and resulting curvature (C) and velocity (V)
profile. For this curved trajectory, multiple velocity peaks can be observed. Image source:
[Morasso and Mussa-Ivaldi, 1982] Figure 7 (middle).

the main experiments conducted in the literature in analyzing common observable
characteristics of human goal-directed arm movements are explained.

Studies performed by Wolpert et al. showed that the CNS generates movements
which lie on a path with slight curvature in Cartesian coordinates but on a straight path
in visual coordinates [Wolpert et al., 1994, Wolpert et al., 1995a]. Possibly, this results
from a distortion of the visual system in the perception of the Cartesian space [Shad-
mer and Wise, 2005b]. These nearly straight movements of the hand show a recurring
pattern, which was firstly reported in [Morasso, 1981]. In their work, the characteris-
tics of point-to-point movements were analyzed using potientometers of two shafts
representing the lower and upper arm movement, as shown in Figure 2.3 (a). The
results for three different point-to-point movements can be seen in Figure 2.3 (b):
While the recorded joint angle positions and velocities for the elbow and shoulder joint
are different for different movements, the position of the hand changed monotonically
with a bell-shaped velocity pattern. From this it is derived that the central commands
generated by the CNS are in hand coordinates [Mussa-Ivaldi and Solla, 2004].

Further analyses on regularities of hand movements were conducted which are
not limited to point-to-point movements. An early analysis on different handwriting
patterns, including straight movements as well as curved or circular movements, is
reported in [Morasso and Mussa-Ivaldi, 1982]. While also a symmetric bell-shaped
velocity profile for point-to-point movements were observed, velocity profiles with
multiple velocity peaks could be observed for curved movements, as shown in Fig-
ure 2.4. These multiple velocity peaks in handwriting and drawing movements show
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a specific relation between the curvature of the trajectory and the velocity: the an-
gular velocity of the movement is equal to the curvature to the power of two-thirds
times a constant called the gain factor [Lacquaniti et al., 1983, Viviani and Cenzato,
1985]. In this regularity, called the two-thirds power law, the gain factor describes
the average velocity of the movement and is constant between points of inflection.
From these piecewise regularities it is derived that the observed hand movements
during writing are compositions of submovements [Flash and Hochner, 2005], which
are also described as overlapping segments with a bell-shaped velocity [Morasso
and Mussa-Ivaldi, 1982]. All these observations suggest that the hand velocity is
an important feature in hand movements and that observable bell-shaped velocity
profiles may be a characteristic of submovements.

Several behavioral studies indicate that during learning of hand movements the
number of submovements decreases and smoother trajectories with less velocity peaks
are executed. This pattern could be observed in studies with stroke patients [Rohrer
et al., 2004], babies performing reaching movements [Berthier et al., 2005] as well
as in a study with healthy participants learning a sequence of point-to-point move-
ments [Sosnik et al., 2004]. One of the resulting velocity curves during learning in
the last study investigating the co-articulation of movement primitives in healthy
adults can be seen in Figure 2.5. The image shows, that during learning the task of
drawing a line through four different via points, the velocity curves change from
single bell-shaped velocity curves for each of the four point-to-point movements to
a velocity curve with only two peaks at the fifth day of learning. The straight path
through the 4 points vanished and were replaced by two curved paths, resulting in
less velocity minima and a reduced duration of the whole movement.

The relation between these observable regularities in movement execution and
the generation of hand movements is not fully understood. It was assumed that the
observable submovements originate in a segmented control of hand movements by
the CNS [Viviani and Cenzato, 1985]. For rhythmic movements, which are for example
performed during cyclic drawing movements, the segmented control hypothesis was
challenged by [Sternad and Schaal, 1999]. In their experiments, human cyclic drawing
movement could be reconstructed using a robotic arm with a continuous control
mechanism. The conclusion for discrete movements is an open question. Richardson
and Flash also could not verify the theory of segmented control [Richardson and
Flash, 2002]. In their experiments, several arm movements were reconstructed math-
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Figure 2.5.: Representative movement example of learning to connect four different points (top row)
and corresponding velocity profiles (bottom row). During learning, the movement gets
smoother with less velocity peaks. Image source: [Sosnik et al., 2004] Figure 3A.

ematically by minimizing several cost functions. Point-to-point as well as curved
movements could be modeled using a single cost function, which contradicts the
assumption of segmented control. This leads us back to the theory described in sec-
tion 2.1.1, that the observed smooth trajectories are a result of a trajectory optimization
mechanism performed by the CNS.

2.4. Discussion: How neurobiological theories may help to
investigate human behavior for robotic applications

The previous sections described the complex computational mechanisms involved
in human movement generation which are not fully understood. To generate goal-
directed arm movements, the CNS needs to determine internal body states and it
needs to estimate and process the sensory information about the environment to plan
the movements and to monitor their execution. At the same time, the performed
movements need to be adaptable to a continuously changing environment.

The reviewed literature in the previous sections show that there are strong indica-
tions that the movement generation mechanisms are accomplished using movement
building blocks on different levels. On the neural level, the studies in spinalized
frogs suggest that there is a small number of areas in the spinal cord which constitute
building blocks for movement generation in the form of spinal force fields. These
can be combined to execute a wide range of movements. On the level of movement
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execution, observable regularities can also be interpreted as indicator for movement
building blocks which supports the theory of generation of movement based on a
combination of a small number of movement building blocks. This is in line with
studies dealing with the generation of new movement sequences. As described in
section 2.2, these studies indicate that humans do not learn complex movements as a
whole, but successively by combining already learned movement blocks.

The internal mechanisms that underlay the movement generation based on prim-
itives are not directly observable from outside. However, in order that a similar
principle based on combination of building blocks can be used for robotic applica-
tions, the building blocks of human movements need to be identified. To this end,
human movement demonstrations can be used as starting point to generate basic
robotic movements, which can successively be combined to generate different robotic
behavior which is similar to the human movement example.

To detect building blocks in human movements, observable regularities in the hand
velocity can be used. These observable direct and smooth trajectories cannot be directly
mapped to internal movement building blocks on a neural level but are an indication
that the CNS plans movements based on an internal optimization principle. From
this origins the reoccurring pattern in human manipulation movements, which is
the bell-shaped velocity profile. This velocity pattern of the hand will be used in
this thesis as main feature to separate human movement into individual entities. A
bell-shaped velocity curve is observable in point-to-point movements but also in other
arm movement as a superposition of single bell-shaped curves which result in multiple
velocity peaks. The minimization of velocity peaks during learning could be seen as
indicator, that already learned and optimized movement parts have one, or at least a
very small number of velocity peaks. In chapter 4, this characteristic will be used to
automatically detect movement building blocks in human manipulation movements.
However, it is important to note that there is no prove that the observable movement
parts with a bell-shaped velocity are referring to movement primitives. Rather, they
are a result of the movement optimization performed by the CNS. Nonetheless, strong
occurrence in point-to-point movements as well as their superposition when learning
curved movements allow a reference to primitives. In this thesis, it is assumed that
the analyzed manipulation movements are concatenations of movement entities with
a bell-shaped velocity. This bell-shaped profile is not limited to movements with
velocities starting or ending at time points with no movement where the velocity is
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zero, as shown in Figure 2.3(a) and in the left velocity plot of Figure 2.5. In fact, an
algorithm for detecting building blocks which are characterized by bell-shaped velocity
curves with varying start and end velocities and symmetric as well as asymmetric
profiles will be presented. With this, the movement characteristics of point-to-point
movements as well as more complex movements with superimposed bell-shaped
velocity curves are considered. It will be shown during this thesis, that the bell-
shaped velocity is a promising feature to detect individual movement units were
defined as movement building blocks in section 1.2. In chapter 7, it will be shown
that these detected building blocks are suitable to be a template for robotic movement
generation.
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3 Chapter 3.

Acquired Datasets

For this work, several datasets of human manipulation movements were recorded and
will be used in the upcoming chapters to evaluate the developed segmentation and
recognition approaches. The movement data was acquired with the Qualisys motion
capture system, which records positions of markers attached to the subjects at high
precision, see section 3.1.1. One dataset consisting of several gestures was recorded
using the inertial measurement unit (IMU) based Xsens motion capture suit described
in section 3.1.2. Although the recorded gestures are not manipulation movements
as defined in section 1.2, this dataset will be used to evaluate different methods for
movement recognition with small training set sizes in chapter 5 because it comprises
more complex movements with high inter-subject variations.

In total, 8 different motion datasets were recorded, ranging from simple movements
in a restricted environment (step data, section 3.2), to complex dual arm manipulation
tasks (object rotation data, see section 3.7). An overview of all recorded datasets is
given in Table 3.1. For each dataset, the movements of several subjects were recorded,
with multiple repetitions of the same movement. To generate labeled ground truth seg-
ments, some datasets were manually segmented using a visualization tool described in
section 3.8. These datasets will be used in chapters 4 and 6 to evaluate the movement
segmentation approaches. Parts of the recorded datasets were automatically seg-
mented using the vMCI algorithm introduced in chapter 4 with a manual annotation.
These datasets are subsequently used in chapter 5 to evaluate different movement
recognition approaches. The recording modalities and each recorded dataset are
described in detail in this chapter. Parts of these descriptions and corresponding

33



3. Acquired Datasets

name section # subjects # recorded manually manually
movements segmented labeled

step movements 3.2 6 171 x x
lever-pulling data 3.3 2 68 x
pick-and-place 3.4 3 18 (+8) x (partly) x
ball-throwing 3.5 10 240 x
stick-throwing 1 3.5 7 697 x
stick-throwing 2 3.5 3 34 x x
gestures 3.6 6 1045 x
object rotation 3.7 3 33 x x

Table 3.1.: Recorded datasets. for the pick-and-place movements, only 18 recordings were manually
labeled.

visualizations are taken or adapted from several publications [Gutzeit and Kirchner,
2016, Gutzeit et al., 2016, Gutzeit, 2021, Gutzeit, 2022, Gutzeit and Kirchner, 2022].

Ethics Statement: All movement data was conducted in accordance with the decla-
ration of Helsinki and approved with written consent by the ethics committee of the
University of Bremen. Subjects gave informed and written consent to participate.

3.1. Movement Recording Systems

3.1.1. Qualysis motion tracking

The company Qualisys AB produces motion tracking cameras, which can track marker
position very precisely at a high framerate. The data acquired for this work were
recorded using Oqus300 cameras, which can track positions of markers with an error
of less than 1mm at 500 Hz.

Passive reflecting markers were used, of which the 3D positions are tracked using
infrared light. To record the arm movements during manipulation tasks, single mark-
ers were attached near the shoulder and the elbow of the subjects. Clusters of three
markers were attached to the hand and additionally to the back of the subjects. With
these orientations can be determined. The orientation of the hand can be an important
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(a) (b)

Figure 3.1.: Qualysis motion tracking setup. (a) Participant with passive markers attached to back,
arms, and hands (image adapted from Figure 3 in [Gutzeit, 2022]). (b) Exemplary camera
arrangement. In this setup, positions of the markers are tracked using 7 cameras. The
highlighted white marker on the right hand is in this position tracked by 3 cameras, as
indicated by green lines.

feature to differentiate between varying manipulation movements. The orientation
of the back is used to transfer the recorded data into a coordinate frame local to the
subject, which makes the recorded movements independent from the position of the
subject in the global coordinate frame of the tracking system. If desired, additional
makers can be placed on the hand. For example, with markers on the fingertips not
only the hand position but also the grasping movement can be recorded. A marker
setup for dual arm movement recordings, for which markers are attached to both arms
and hands, can be seen in Figure 3.1(a).

The movements were recorded in a lab in which several cameras are mounted at
the walls. Additional cameras can be added to the setup using tripods. The cameras
were arranged in a way that during movement recording each marker was tracked by
at least 2 cameras. In this way, the system can obtain the three-dimensional positions
of the markers. An example camera setup consisting of 7 cameras can be seen in
Figure 3.1(b). One marker attached to the right hand of the subject is highlighted.
This marker can in this position be seen by three cameras, visualized by green lines.
The cameras are arranged below the ceiling around the subject. Before recording,
the camera system needs to be calibrated. With a good camera arrangement and
calibration, the marker position can be tracked with a measurement error below 1mm.
In the experiments conducted for this work, 7 cameras were used for motion tracking
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to achieve high precision and minimize occlusions. For the recording of stick-throwing
movements described in section 3.5, up to two additional cameras were integrated
into the setup. The position and/or orientation of certain points in the environment of
the subject or the objects that are manipulated can be tracked by placing additional
makers at these positions.

Since passive markers were used for motion tracking, the recorded marker trajec-
tories needed to be assigned to a marker label denoting the marker position (e.g.,
“right shoulder” denotes the marker placed near the right shoulder). This can be done
manually using the Qualisys Track Manager provided with motion cameras [QTM,
2022]. However, this manual marker labeling can become time intensive if the marker
positions were not continuously tracked, for example due to a suboptimal camera
arrangement or occlusions. In these cases, the recorded trajectories are fragmented and
each fragment needs to be assigned to the correct marker. Alternatively, the Qualisys
track manager offers an “automatic identification of markers” which uses previously
labeled motion data to infer the marker labels.

3.1.2. Xsens motion capture suit

A further system used to record human movements is the MVN Avinda sensor suit
of the company Xsens [Xsens, 2022]. The sensor suit consists of 17 IMUs, which are
placed to predefined positions on the body, as visualized in Figure 3.2. The IMUs
measure angular velocities and accelerations in each direction. Using the provided
capturing software, the position and orientation of each body part of the subject can
be determined at a maximal frequency of 240 Hz. For this, certain body statistics need
to be measured before recording, such as height of the knee, hip, shoulder, and whole
body, or the arm span. From these measurements, an internal body representation is
determined, as depicted in Figure 3.2(b).

Using the Xsens software, the measurements of the IMUs are directly matched to the
internal body representation during recording. This minimizes the problem of drifting
positions which often happens in IMU recordings. In contrast to data acquisition using
the Qualisys motion tracking system, motion recordings using the IMU sensor suit are
not limited to a lab environment that is equipped with cameras. However, the system
is less precise compared to Qualisys and the position of, for example, objects which
are manipulated cannot be recorded directly using the software of the sensor suit.
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(a) (b)

Figure 3.2.: (a) Xsens Avinda sensor suit and (b) internal representation of the human body in
the corresponding MVN Analyse Software. Image (a) is taken from the software user
manual [Xsens, 2022].

3.2. Reference Setup

The reference setup was designed to record movements in a restricted environment
in which movement segments can easily be identified to generate a ground truth
segmentation. Additionally, the setup should be used to analyze different movement
features in an environment with only little possibility to vary movement direction.
The reference setup is built in two layers: a bottom layer consisting of an iron sheet
and a top layer in which a step-like path is cut. Through this path, a stick should be
moved by the subject which is connected to the bottom layer via magnetic balls. With
this connection the stick can be movement through the path without leaving the plane.
The setup can be seen in Figure 3.3. Each step has a height and length of 16 cm, the
path a width of 4 cm and the stick a diameter of 3.6 cm.

If the stick is moved through the pattern, the position of the hand is very restricted,
as the subjects have only little possibilities to move the stick differently than on the
straight line through the pattern. Thus, the subjects are forced to do point-to-point
movements. Due to the restricted movement position, the recorded movements can
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Figure 3.3.: Reference step design. The stick, which is connected to the bottom layer with magnetic
balls, should be movement through the step-like path which is cut into the top layer.

be segmented into the main movement building blocks up, down, right, and left, with
ground truth segment borders at the corners of the step pattern as indicated with
circles in Figure 3.4.

Although the position of the stick is very restricted in the step setup, the movement
speed can be varied, which results in different velocity profiles of the hand, see
Figure 3.4. In chapter 4, the step movements are used to analyze different features
of point-to-point movements and to evaluate the developed automatic segmentation
technique.

The movement through the step pattern was recorded for 6 different subjects using
the Qualisys system. Each subject performed several repetitions of the movement,
where the task in one repetition was to move the stick from lower left of the pattern to
the upper right and back, resulting in 8 point-to-point movements. This was repeated
several times for roughly three minutes with a short break after each minute. The
subjects were instructed to perform the movement as precisely as possible, i.e., without
hitting the borders while moving as fast as possible. In total, 171 repetitions of the
movement where recorded.

3.3. Lever-Pulling Movements

In the lever-pulling demonstrations, the task of each subject was to pull a lever
down. The lever was fixed to a table resulting in a strongly predetermined movement
execution but compared to the reference setup in a three-dimensional instead of a
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Figure 3.4.: Example of the bell-shaped velocity pattern in human point-to-point movements. The
subject was instructed to move a stick though a step pattern, starting at the lower right,
going to the upper right and backwards. The absolute velocity of the hand is visualized
on the right side. The positions of the corners are marked as green dots in the left image
and green dashed lines on the right side respectively. The turning point of movement
is indicated in red. The movement was performed fast (right top) and precisely (right
bottom), i.e., with the intention to not hit the boundaries. In both cases, bell-shaped
curves can be observed in the velocity of the hand for single point-to-point movements.
Image adapted from Figure 1 in [Gutzeit and Kirchner, 2022].

two-dimensional space. The setup is depicted in Figure 3.5. At the beginning of each
movement the subject was in a rest position with the arm hanging down at the side of
the body. Next, the subject reached for the lever with the right arm and pulled down
the lever. Finally, the subject turned the arm back to the rest position (arm hanging
down). After returning to the rest position, the lever had to be pulled up again, which
was done with the left arm and was not recorded by motion tracking. This very simple
behavior is selected to show that for simple movements only very few demonstrations
are needed for movement classification in chapter 5. The individual movement parts
of each demonstration could be divided into 4 different main classes: idle, approach
forward, move lever, and move to rest. In the recordings, only the movement of the arm
was tracked and not the position of the involved object, the lever. This is because the
spatial distance of the lever to the demonstrator’s hand is fixed and plays no role in
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Figure 3.5.: Lever-pulling setup. Image adapted from [Gutzeit et al., 2016], Figure 3 (b).

this experiment. The lever-pulling task was demonstrated by two different subjects,
performing 32 and 36 pulls, respectively, which were recorded with the Qualisys
system.

3.4. Pick-and-Place Movements

Pick-and-place movements of three different subjects were recorded using the Qualisys
system, in which the task was to grasp a box from a shelf, place it on a small table
on the right side and vice versa. To increase movement variability, the exact position
where the box should be placed was not specified. In these movement recordings,
markers were placed next to the back, right arm, and right hand of the subjects also on
the thumb, index, and middle finger of the right hand. Additional, two markers were
placed on the box. The marker setup as well as the performed movements can be seen
in Figure 3.6.

After placing the box on the table or the shelf, the subject moved the arm into a
resting position. This results in demonstrations composed of 7 different segments
assigned to the following movement categories: approach forward, move object to table,
move to rest right, approach right, move object to shelf, move to rest down, and the class idle
for periods in which the subjects did not move their arms. The pick-and-place task
was performed by three different subjects, repeated 6 times by each. Two of these
subjects performed the task again with four repetitions while their movements were
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Figure 3.6.: Pick-and-place movement consisting of 7 main movements as depicted in the images.
Next to the markers on the back and right arm and hand, additional makers are placed
on the tip of the thump, index, and middle finger as well as on the manipulated box.

recorded with slightly different camera positions and a different global coordinate
system. This resulted in different positions of the person and the manipulating object
in the scene which should be handled by the presented movement segmentation and
recognition methods.

3.5. Throwing Movements

Compared to the point-to-point, lever-pulling, and pick-and-place movements dis-
cussed in the previous sections, throwing movements show different patterns, as
they are faster and the hand must be moved with a certain velocity in order that the
object that its thrown reaches its goal position. This makes throwing movements espe-
cially useful to evaluate imitation learning methods. Ball- as well as stick-throwing
movements were recorded using the Qualisys system.

The ball-throwing movements were recorded using seven motion tracking cameras.
Five of these cameras were focused directly on the subject, the rest were focused on the
target area. This setup is chosen to also record the movement execution on a robotic
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(a) (b)

Figure 3.7.: Setups to record ball-throws (a) and stick-throws (b). Images adapted from [Gutzeit and
Kirchner, 2016], Figure 3, and [Gutzeit et al., 2019], Figure 2 (a).

arm after movement imitation, in which the thrown ball is additionally tracked to
determine the goal position. The subjects had to throw a ball to a goal position on
the ground, approximately 2 m away, as depicted in Figure 3.7(a). To limit the range
of possible throws, they were instructed to throw the ball from above, i.e., the hand
is above the shoulder while throwing (see Figure 3.7(a)). Between the throws, the
subjects should move their arm to a resting position in which it loosely hangs down.
Throwing movements of 10 subjects were recorded. All subjects were right-handed
and had different throwing skills ranging from non-experts to subjects performing
ball sports in their free time, like basketball, volleyball, or handball. Each throw can
be split into 3 main movement phases: the strike out movement at the beginning, the
actual throw, and a swing out movement at the end. In between short phases of no
movement, in which the subject is idle, can be observed. Each subject demonstrated 8
throws in 3 experiments which results in total numbers of 24 throws per subject, 30
experiments, and 240 throws for all subjects.

Additionally, two datasets of stick-throwing movements in a Touhu scenario were
recorded. Touhu, also known as pitch-pot, is a throwing game that is traditionally
played in Eastern Asia. The goal is to throw a stick from a given distance into a pot.
The main movement parts are with strike out, throw, and swing out the same as in the
ball-throwing scenario. However, the execution of the throw differs, because the stick
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Figure 3.8.: Main throwing segments. Shown are the positions of the markers placed on back, right
arm, and right hand. The lines show the movement, the end position of each marker is
marked with a dot. The three hand markers are highlighted in blue.

is grasped differently compared to grasping a ball, see Figure 3.7. Stick-throwing
demonstration of 7 different subjects were recorded using 9 motion tracking cameras.
Each subject performed between 41 and 246 throws. In total, 697 throws were recorded.

In the second stick-throwing dataset, an additional maker was placed on the stick to
determine its position during the throw. These recordings will be used to compare
the trajectories of the stick in the throwing demonstration to throwing movement
imitation by a robotic system in chapter 7. In this second stick-throwing scenario
demonstrations of three subjects were recorded using 8 motion cameras. The subjects
performed 10, 11, and 13 throws respectively.

3.6. Gestures

The gesture dataset was recorded using the Xsens sensor suit at 60 Hz and is used
in chapter 5 to compare different movement recognition methods. Eleven gestures,
which may be relevant in human-robot collaboration, were recorded. All gestures
were performed with the right arm and started in a neutral position, in which the
arm hangs relaxed next to the body. The following gestures, which are depicted in
Figure 3.9, were recorded:

• come closer: The hand is waved towards the body. At the beginning of the
movement, the palm faces upward, then the wrist is bent towards the palm and
the elbow is slightly bent. The waving movement can be repeated several times.

• move backwards: The hand is waved away from the body, with the back of the
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Figure 3.9.: Recorded gestures. Arrows indicate the direction of the movement. The performed
gesture from top left to bottom right are: come closer, move backwards, move upwards,
move downwards, move left, move right, stop, rally, hello, thumbs up, and thumbs down.
Image extracted from [Gutzeit, 2021], Figure 2.

hand rotated towards the body of the subject (opposite to come closer).

• move upwards: The flat hand with the back of the hand rotated downwards is
waved several times upwards.

• move downwards: The back of the hand is rotated upwards while the hand is
moved several times downwards (opposite to move upwards).

• move left: With the loose hand and the arm stretched forward, a wiping gesture
from right to left performed with the wrist of the hand.

• move right: Wiping gesture from right to left performed with the wrist of the
hand (opposite of move left).

• stop: The subject raises the arm, which the palm of the hand stretched away. This
position is kept for a short time period before moving the arm back.

• rally: The hand is raised to head height, the index finger is extended upwards,
and the remaining fingers are closed into a fist. The hand is then moved several
times in a circular path without changing its orientation.

• hello: The flat hand is raised to about head height and waved to the right and

44



3.7. Dual arm Object Rotation

Figure 3.10.: Movement steps to rotate a rectangular frame clockwise. In the top row, the rectangular
frame is turned by first holding the object with the left hand and re-grasping with the
right hand, and second turning with the right hand and re-grasping with the left. In the
lower row it is turned by first re-grasping with the right hand while turning with the left
hand, followed up by a turn of the right hand and a re-grasp of the left. That means,
while the same dual arm action turn clockwise is executed, two different combinations
of building block movements for both hands are used. Image extracted from [Gutzeit,
2022], Figure 1.

left. The palm of the hand points away from the subject.

• thumbs up: The hand is stretched out in front, the fingers closed into a fist and
the thumb extended upwards. The hand remains in this position for a moment
before the arm is moved back to the starting position.

• thumbs down: Opposite to thumps up with hand rotated downwards.

Each gesture was demonstrated one time to the subjects before recording. Afterwards,
each subject performed each gesture with the instruction to move naturally. For
recurring gestures, such as rally, the number of repetitions was not specified but
intuitively selected by the subject. In total, each subject performed each gesture
10 − 11 times. For one subject between 30 and 50 repetitions of each gesture were
recorded. In total, 1045 examples of different gesture executions were acquired.

3.7. Dual arm Object Rotation

The most complex data recorded for this work is a dual arm movement, in which
an object is rotated. The participants were instructed to grasp a rectangular frame
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of aluminum profiles with acrylic glass in the middle with both hands and move
it to a horizontal position. Then, the rectangular frame should be turned into a
vertical orientation with re-grasping, as visualized in Figure 3.10, and finally back into
horizontal orientation. At the end, the frame is placed back on a table standing in front
of the subjects. The participants were not restricted in how they move their hands
during object rotation as long as the object turning starts and ends in a horizontal
position. They intuitively decided if they wanted to turn the rectangular frame
first clockwise or counterclockwise. Between 10 and 13 repetitions of turning the
frame were recorded from 3 different participants. The data consists of four different
dual arm actions lift, turn clockwise, turn counterclockwise, and place, with 7 building
block segments for each hand: lift, re-grasp down, re-grasp up, hold, turn clockwise, turn
counterclockwise, and place. To rotate the rectangular frame, different combinations of
these building block movements were performed by the subjects. As an example, two
variants of turning the frame clockwise are depicted in Figure 3.10. These movements
are used in chapter 6 to evaluate the hierarchical segmentation. In total, 33 examples
of each action were recorded, with different compositions of building block segments
for each action.

3.8. Manual Segmentation

In order to analyze different features of the recorded movements and to evaluate
the automatic segmentation, a ground truth segmentation is needed. Whereas this
ground truth segmentation comes naturally with the position of the stick in the pattern
in the step data, it becomes more difficult to determine exact segment borders with
increasing movement complexity. To determine segment borders for the recorded
movement trajectories manually, a time series visualization tool was implemented.
With this tool, the 3D positions of the markers placed on the human can be visualized
as time series in a two-dimensional plot, which is synchronized to a 3D visualization
of the marker positions. The tool allows to directly define segmentation points in the
time series by clicking on the time frame at which a segment border is assumed.

The visualization of stick-throwing movements using this tool can be seen in Fig-
ure 3.11. In plot (c) of this figure, the velocity of the marker(s) of interest for the
whole movement demonstration can be seen as well as the summed-up velocity of all
recorded markers, whereas the velocity of the selected marker is scaled. In the other
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Figure 3.11.: Trajectory labeling tool. In the depicted screenshot, a sequence of stick-throwing
movements should be manually segmented. Three segments are already defined, as
visualized in green in plot (c) in which the cumulative velocity of all markers is shown in
blue and the velocity of the selected marker Hand top in orange. By moving the red
vertical line, the starting or end point of the next segment can be selected. The marker
trajectories are shown in detail in plot (a), in this example, the position of the selected
marker is shown. In plot (b), all marker positions are visualized in a three-dimensional
plot as well as part of the trajectory of the selected marker Hand top.

visualizations in the tool, the three-dimensional marker positions can be seen (plot (b))
as well as the position and velocity of the selected marker(s) in a detail plot (a). In
this visualization, it can be selected if the velocity or the position should be shown in
detail. By moving the slider in plot (c) with the mouse, the user can go through the
trajectory to understand the movement. If the slider is moved to a position where the
user identifies the start point of a new movement, the button start should be pressed.
At the end of the segment the button end should be clicked. The label of the defined
segment can also be defined.

By using this labeling tool, the step movements, 18 of the pick-and-place move-
ments, the second stick-throwing recordings as well as the dual arm object rotation
movements were manually segmented by the same person to generate a ground truth
for the evaluations in this work. Furthermore, it is possible to load segmentation
borders determined by the vMCI segmentation approach into the labeling tool. With
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this, the segmentation points can be verified and if needed corrected. Additionally,
labels can be assigned to the segments, which was done for all datasets.
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4 Chapter 4.

Segmentation into Building
Blocks

Human movement segmentation is a challenging problem because in naturally per-
formed behavior, the variations in the execution of the same movement can be big, even
if it is performed by the same person. By using automated segmentation approaches,
which can handle inter-subject as well as intra-subject variations, applications which
require segmented movement data, such as learning from demonstration or other
applications in human-robot interaction, can be sustainably simplified and accelerated.
In this chapter, the velocity-based Multiple Change-point Inference (vMCI) algorithm
is introduced which identifies building blocks in human manipulation movements in
an unsupervised manner. With this algorithm, an approach is presented which uses
repetitive characteristics in the velocity of the hand in human arm movements, as
described in section 2.3, directly to segment a movement sequence into its building
blocks. Before the description of the algorithm, the characteristics of the movements
that were recorded within this thesis are examined in more detail. Different features
of point-to-point movements as well as pick-and-place movements are compared to
verify the assumption that a bell-shaped velocity profile is a suitable characteristic of
building blocks in manipulation movements.

To automatically detect building blocks in recorded data streams, there are differ-
ent requirements for the segmentation algorithm. First, it should be able to handle
variations in the movement data. Although, the CNS always executes very similar
movements, as discussed in section 2, several repetitions of the one movement can
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show considerable variations in the movement trajectory. In a grasping movement,
this could result, e.g., from changing relations in the position between the hand and
the object at the start of the movement. This variation is even higher if the same
movement is executed by different persons which origins, for instance, from different
limp sizes of the persons. Also the velocity can show variations. For example, the
velocity and the start or end of the movements can differ, especially if a sequence
of movements is performed. Additionally, the maximal points or the width of the
velocity curve can differ between movement executions. If a movement is performed
slowly, the velocity also may contain noise. Additional noise in the movement can
result from inaccuracies in the movement recording induced by the recording system.
However, this can be neglected for precise systems like the Qualisys motion capture
system. All these variations in the movements make it more difficult to automatically
segment recorded data reliably.

Next to the handling of movement variations, it is desirable that an automated
segmentation approach is applicable with no or minimal adaptions, e.g., of parameters,
on different movements performed by different persons. This reduces the tuning of
parameters or pre-knowledge which may be required. Furthermore, the development
of online segmentation approaches makes it easier to integrate the methods into an
interaction framework running on a robotic system.

To detect building blocks automatically in human manipulation movements, the
probabilistic and unsupervised segmentation method vMCI is introduced. This al-
gorithm is based on Bayesian inference, where noise and variations in the recorded
movement can be integrated into the model. The segmentation algorithm is based on
an online variant of an algorithm to detect change-points in time-series data proposed
in [Fearnhead and Liu, 2007] which is called Multiple Change-point Inference (MCI).
Within this thesis, this approach was extended to a velocity-based MCI (vMCI), in
which the characteristics in the velocity profiles, as described in section 2.3, are in-
tegrated into the segmentation process. VMCI is the first unsupervised behavior
segmentation algorithm, which includes the characteristic velocity pattern into the
segmentation process to detect building blocks in manipulation movements. The
developed algorithm is evaluated on artificial data and on several real human move-
ments in comparison to the original MCI algorithm, a method based on local minima
segmentation (locMin) and two promising probabilistic segmentation methods from
the literature: Beta-process auto-regressive Hidden Markov Model (BPARHMM) [Fox
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et al., 2009] and Probabilistic Segmentation (ProbS) [Lioutikov et al., 2017].
This chapter is structured as follows: First, a short overview of related work is

given, which is followed by the analysis of movement features in point-to-point as
well as pick-and-place movements. Afterwards, the vMCI algorithm is presented
in section 4.3 which is followed by several experimental evaluations of vMCI with
respect to influence of the hyper-parameters of the algorithm on artificial data and
in comparison to MCI, locMin, BPARHMM, and ProbS on several real movements.
At the end of this chapter, the results are discussed. The texts, figures, and tables in
this chapter are partly taken or adapted from [Senger et al., 2014] and [Gutzeit and
Kirchner, 2022].

4.1. Related work

For a long time, most approaches to segment time series data of human movements
were supervised and required manual segmentation of movement examples to gener-
ate training data. An overview is given in [Aggarwal and Cai, 1999]. In the last years,
several new approaches were proposed which can be run unsupervised [Lin et al.,
2016], i.e., manual efforts can be reduced and the methods are also applicable if the
behavior segments are not know in advance. [Fod et al., 2002] presented a heuristic
approach, in which segment boundaries are detected using the angular velocities of
several degrees of freedom. If these cross zero, the start of a new movement segment is
assumed. This approach is very sensitive to noise and tends to over-segment the data,
in particular if many DOFs are considered as data input. Similarly, in [Jenkins and
Matarić, 2003] segments are detected based on ‘swings’ in the velocity of joint angle
data. In both approaches, thresholds need to be defined in advance, which probably
have to be adapted for different datasets.

Probabilistic approaches generalize to different movement executions by integrating
movement variations directly into the model. With a predefined number of segments
to be detected, the probabilistic approach presented in [Chiappa and Peters, 2010]
detects movement identities in table tennis demonstrations using a belief network.
This approach is applicable without manual segmentation of training data, but the
number of segments must be determined in advance or by, e.g., cross-validation. An-
other probabilistic model, which does not require a priori knowledge, was presented
in [Kulić et al., 2012]. In that work, human movements are segmented and additionally
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4. Segmentation into Building Blocks

clustered based on HMMs. Gong et al., on the other hand, used Hilbert space embed-
ding of distributions for segmentation [Gong et al., 2012]. In both works whole-body
motions were segmented online.

A probabilistic model, for which also the implementation is available online, is pre-
sented in [Fox et al., 2009]. In this method, repeated building blocks of the same move-
ment are inferred using the so-called beta process autoregressive HMM (BPARHMM).
Like in the method proposed in this thesis, the segments are represented by linear
regression model (LRM)s. Their inference model allows for shared regression models,
i.e., repeated building blocks of the same movement can be detected. Niekum et
al. used the BPARHMM algorithm to segment kinesthetic demonstrations provided
by hand-coded controllers of a pick-and-place task [Niekum et al., 2012]. The MCI
algorithm [Fearnhead and Liu, 2007], which serves as a starting point for the method
proposed in this chapter, is a similar segmentation method which works without a
priori knowledge of the number of segments. Furthermore, it has a data model that
allows to integrate characteristic velocity patterns into the segmentation which is
crucial to find segments related to re-usable building blocks, as discussed in chapter 2.
The MCI algorithm was used by Konidaris et al. to segment trajectories recorded
by maneuvering a robot through a corridor [Konidaris et al., 2012]. In [Lioutikov
et al., 2017], a probabilistic segmentation approach called ProbS is presented, in which
segmentation points are inferred using expectation maximization based on initially
over-segmented data. The detected segments are represented using DMPs [Ijspeert
et al., 2013], which is a popular representation of movement demonstrations in LfD.
Using this approach, it was possible to automatically learn primitive movements that
are needed to assemble a chair with a robotic system from human demonstrations.
In [Lioutikov et al., 2017], ProbS performed better than BPARHMM on the examined
datasets.

Most of the methods presented in the literature are evaluated on small datasets of
single subjects [Lin et al., 2016]. The approach presented in this chapter is evaluated
on multiple datasets, each containing movement data of different subjects to show the
generalization ability of the algorithm. Furthermore, the presented segmentation algo-
rithm is the only approach which includes characteristic velocity pattern of building
blocks into the segmentation process. It is compared to MCI, BPARHMM, and ProbS,
which are the most promising probabilistic segmentation approaches presented in the
literature.
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Figure 4.1.: Different features of the point-to-point movements in the reference testbed shown in
Figure 3.4. Shown is the mean value and standard deviation of the point-to-point
movements right, up, down, and left (columns 1-4) for the movement features: hand
velocity in x, y, and z direction (lines colored in green, blue, and magenta), absolute
hand velocity, elbow joint velocity, and shoulder joint velocity. In the first column the
positions of all analyzed segments are plotted. The only feature that looks similar for all
movements is the absolute hand velocity, which is a bell-shaped curve. Image extracted
from [Gutzeit and Kirchner, 2022], Figure 4.

4.2. Characteristics of Building Blocks

In chapter 2, several experiments from the literature were presented which indicate
that in human arm movements bell-shaped curves in the velocity of the hand are a
characteristic feature of movement segments [Morasso, 1981, Morasso and Mussa-
Ivaldi, 1982]. The data recordings of the reference step pattern and the pick-and-pace
data were used to examine this theory on movement data recorded at high precision.
Using the position-based visualization described in section 3.8, the point-to-point
movements of the step pattern and the pick-and-place movements were manually
divided into 4 and 7 movement building blocks as described in section 3.2 and 3.4
respectively. Parts of the movements which could not be assigned to one of the
building block classes remained unsegmented and were not considered for further
analysis. For all movement segments, the following features were calculated from the
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4. Segmentation into Building Blocks

recorded marker positions:

1. hand velocity in x, y, and z direction,

2. absolute velocity of the hand,

3. elbow joint velocity calculated using the temporal derivative of the elbow joint
position, which is determined using the angle between lower and upper arm,

4. shoulder joint velocity calculated using the temporal derivative of the shoulder
joint position, which is calculated using the angle between upper arm and upper
body.

The features of all segments were normalized to the same time period between 0 and 1
seconds. For all segment features belonging to the same movement class, the mean
value and its standard deviation were calculated. This mean feature values of each
class were visualized to determine similarities and differences in the features of the
different manipulation movements.

The resulting plots for the point-to-point movement building blocks are shown in
Figure 4.1. In these plots, the 2D position of the hand is visualized as well as the
mean values of the four calculated features. Each segment class was executed two
times in one demonstration of the step pattern movement. Additionally, the reference
setup was located at different positions in the global coordinate frame for individual
movement recordings, so that movements belonging to the same movement class can
be located at different positions (first column in Figure 4.1). Based on the direction of
the movement, the highest velocity can be observed in a different coordinate of the
hand position. For some movement classes an increasing elbow joint velocity can be
observed. In the up and down movements, the main change in the velocity is in the y
coordinate of the hand and in the elbow joint velocity. A change in the x coordinate
of the hand can be observed in the movements belonging to the classes right and
left, without an increasing elbow joint velocity. The only feature that looks similar
for all movement segments regardless of the position and direction of the performed
movement is the absolute velocity of the hand.

The visualization of the features for the pick-and-place movements can be seen in
Figure 4.2. In comparison to the point-to-point movements, these movements are
three-dimensional and not restricted in the position of the hand. The participants
were free in the selection of the exact position to place the box on the table or shelf.
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Figure 4.2.: Different features of the pick-and-place movements shown in Figure 3.6. Shown is the
mean value and standard deviation of the pick-and-place movements approach forward,
move object to table,move to rest right, approach right, move object to shelf, and move to
rest down(columns 1-6) for the movement features: hand velocity in x, y, and z direction
(lines colored in green, blue, and magenta), absolute hand velocity, elbow joint velocity,
and shoulder joint velocity. In the first column the positions of all analyzed segments
are plotted. The only feature that looks similar for all movements is the absolute hand
velocity, which is a bell-shaped curve. Image extracted from [Gutzeit and Kirchner, 2022],
Figure 5.
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4. Segmentation into Building Blocks

This resulted in a higher variety in movement execution. Nonetheless, the common
feature for all building blocks of the pick-and-place task is the bell-shaped pattern
in the absolute velocity of the hand, whereas the angular velocity of the elbow and
shoulder joint differ between building block movements. Especially the elbow joint
velocity shows multiple minima within one movement class, which would result in an
over-segmentation if segment borders would be assumed at points where this angular
velocity is minimal. However, compared to the simple point-to-point movements,
the absolute hand velocity shows more variations for different building blocks in the
pick-and-place movements with the main impact that the velocity peak is for some
movement classes clearly shifted to one side, for example for the move object to shelf
class. These variations in the bell-shaped absolute velocity will be considered in the
vMCI algorithm.

These observations support the assumption that manipulation building blocks may
be characterized using the absolute velocity of the hand. As shown in the next section,
segmentation based on these findings improves segmentation accuracy.

4.3. Velocity-based Multiple Change-point Inference

The vMCI is an algorithm which automatically detects the borders of building blocks
with a bell-shaped velocity in human movement data. It is based on the MCI algorithm
introduced in [Fearnhead and Liu, 2007] and presented in this section.

4.3.1. Data representation

In the vMCI algorithm, it is assumed that a data sequence y = (y1, .., yT) of length
T, with yi = (yp

i , yv
i ) ∈ Rd+dv

being an observation at time point i with position
information of the observation yp

i and its velocity yv
i , consists of an unknown number

of segments with a bell-shaped velocity. The segments are modeled independently
of each other with LRMs. In this manner, they are represented as a weighted sum of
basis functions with added noise. The position information of a single segment yi+1:j,
starting at time point i + 1 and ending at time point j, is represented as:

yp
i+1:j =

q

∑
k=1

βkϕk + ε, (4.1)
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4.3. Velocity-based Multiple Change-point Inference

with q basis functions ϕk, k ∈ {1, ..., q}, model parameters β = (β1, ..., βq), and indepen-
dent and identically distributed Gaussian noise ε with zero mean and variance Σ. This
model is identical to the data model in the MCI algorithm [Fearnhead and Liu, 2007].
To infer the model from the data, prior distributions are set over the weights and the
noise variance. The parameters β are assumed to be matrix-normal distributed with
zero mean and covariances D and Σ along rows and columns respectively. To ensure
direct calculation of the posterior probability of the data, conjugate priors are assumed.
This results in an inverse Wishart prior for the variance Σ with hyper-parameters ν

and S.
To account for the bell-shaped velocity for each segment, the velocity information

yv
i , which is the absolute velocity in the direction of the movement, is in contrast to the

MCI algorithm modeled separately in vMCI with a basis function ϕv that represents
the bell-shaped structure. The basis ϕv is defined as a single radial basis function with
center c and width r:

ϕv(xt) = exp
{︃
− (c − xt)2

r2

}︃
. (4.2)

The width parameter r is chosen to be half of the assumed segment length, i.e., r =

(j − i)/2, so that the whole segment can be covered by the model. The center c
regulates the alignment to different velocity curves. For example, a center location
closer to the starting point of the segment allows to approximate a segment with high
velocity at the beginning and rather low velocity at the end.

With this, the velocity yv
i is represented using:

yv
i+1:j = α1ϕv + α2 + εv, (4.3)

with weights α = (α1, α2) and noise εv. Again, weights and noise are matrix-normal
distributed with α ∼ MN (0, Dv, Σv) and ε ∼ MN (0, I, Σv). Dv and Σv are the
prior parameters. The prior distribution of Σv is again chosen to be inverse Wishart,
Σv ∼ IW(νv, Sv) to provide conjugate priors. The model order is fixed to 2, with the
two basis functions ϕv and 1. The constant, weighted with α2, is added to account for
velocities unequal to zero at start or end of the segment.

To determine the emission probability (see Figure 4.3), the likelihood of the data
yi+1:j given model m and velocity model mv needs to be determined. As independent
models are assumed for the velocity and the position, the likelihood of the data
sequence p(yi+1:j|m, mv) given the model m of order q and velocity model mv, can be
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4. Segmentation into Building Blocks

Figure 4.3.: Schematic presentation of the hidden markov model to detect segment borders with
vMCI. The observable data sequence y, consisting of position yp and velocity yv, is
generated by hidden models m and mv separately for each segment. Segment borders
are detected at positions where the underlying models change, either to new models or
the same with different parameters. Image extracted from [Gutzeit and Kirchner, 2022],
Figure 2.

derived by marginalizing out the model parameters β and α, i.e.,

p(yi+1:j|m, mv) =
∫︂

p(yp
i+1:j|β, m)p(β) dβ ·

∫︂
p(yv

i+1:j|α, mv)p(α) dα

=
∫︂ ∫︂

p(yp
i+1:j|β, Σ) · p(β|D, Σ) · p(Σ|ν, S) dΣ dβ

·
∫︂ ∫︂

p(yv
i+1:j|α, Σv) · p(α|Dv, Σv) · p(Σv|νv, Sv) dΣv dα. (4.4)

Due to the chosen conjugate priors for both LRMs, the integrals can directly be solved
resulting in

p(yi+1:j|m, mv) = (2π)−
nd
2
|M| d

2

|D| d
2

|S| ν
2

|(yp)TPyp + S| n+ν
2

Γd(
n+ν

2 )

Γd(
ν
2 )2

νd/2

· (2π)−
ndv

2
|Mv|

dv
2

|Dv|
dv
2

|Sv|
νv
2

|(yv)TPvyv + Sv|
n+νv

2

Γdv(
n+νv

2 )

Γdv(
νv
2 )2

νvdv/2 , (4.5)

with M = (HT H + D−1)−1, P = I − HMHT used to determine the model evidence for
the position data yp and Mv = (HT

v Hv + D−1
v )−1, Pv = I − Hv MvHT

v used to determine
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4.3. Velocity-based Multiple Change-point Inference

the model evidence for the velocity data yv. In these notations H and Hv refer to the
matrices of basis functions, i.e., H = (ϕ1, ..., ϕq) of shape n × q and Hv = (ϕv, 1) of
shape n × 2, with n defining the length of the segment, i.e., n = j − i. The matrix I is
the n × n identity matrix and Γd is the d-dimensional Gamma function. The derivation
of this formula can be found in Appendix A.

4.3.2. Online inference of change-points

Using the model likelihood p(yi+1:j|m, mv), the segmentation points in the data y as
well as the underlying LRMs of the observed data can be determined using an online
Viterbi algorithm presented in [Fearnhead and Liu, 2007] which will be described in
this section. Here, a segmentation point is named change-point and refers to a time
point i in the time series y where the underlying LRM changes. The segment models
are assumed to be independent of each other and the change-point positions are
modeled via a Markov process, as depicted in Figure 4.3. The transition probabilities
dependent on the segment length between two change-points and are defined as:

P(next change-point at j|change-point at i) = g(j − i), (4.6)

where g(l) is the probability of a segment having length l. The cumulative distribution
function of this length is given by G(l) = ∑l

k=1 g(k). As proposed in [Fearnhead and
Liu, 2007], a geometric distribution for g(l) is assumed, so that g(l) = (1 − p)l−1 p and
G(l) = 1 − (1 − pl). Using these distributions, the parameter p regulates the expected
segment length, which is 1/p.

For each time point t, the most likely change-point position j prior to t and the most
likely model of this segment from j to t is calculated using an online Viterbi algorithm.
This is done by determining the posterior probabilities for each segment which ends
at t and for all data models. The algorithm calculates for each t > 0, j = 0, ..., t − 1,
and every model m, mv ∈ M:

Pt(j, m, mv) = (1 − G(t − j − 1))p(yj+1:t|m, mv)

· p(m)p(mv)PMAP
j , (4.7)

and

PMAP
t = max

j,m

(︃
Pt(j, q)g(t − j)

1 − G(t − j − 1)

)︃
. (4.8)
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4. Segmentation into Building Blocks

Equation (4.7) gives the probability that the most recent change-point prior to t occurs
at time j with models m and mv for the segment yj+1:t that has a length of at least t − j.
The first term is the probability that the assumed segment starting at j + 1 has a length
of at least t − j. It is multiplied with the marginal likelihood of that segment having
models m and mv, p(yi+1:j|m, mv), times the prior probability of the models, p(m) and
p(mv). The last term PMAP

t denotes the most likely change-point position prior to j.
In (4.8) the most probable j, m, and mv are determined. The initial PMAP

0 is chosen to
be 1/|M|. Because the probabilities Pt(j, m, mv) are very close to zero for most of the
possible segments, a particle filter as proposed in [Fearnhead and Liu, 2007] is used to
reduce computation time.

4.3.3. Open source implementation

In order that the vMCI algorithm can be used by other researchers, an open source im-
plementation written in python can be found online: https://github.com/dfki-ric/
vMCI_segmentation/. The code includes two usage examples: One example uses syn-
thetically data consisting of two concatenated DMPs as used in the experimental
evaluation presented in section 4.4.1. In the second example, the vMCI implementa-
tion is applied on real human motion data. For this, the pick-and-place demonstrations
presented in section 3.4 are part of the open source implementation. With this, parts of
the experiments performed in section 4.4.5 can be reproduced.

4.4. Experiments and Results

Several experiments were performed to evaluate the performance of vMCI and to
compare it to other state-of-the-art segmentation algorithms. In general, the compari-
son of different behavior segmentation algorithms is difficult because a ground truth
segmentation is not available in natural human movements. For this reason, it is desir-
able that the influence of the parameters of the algorithm is low such that they can be
fixed or calculated from the data because an optimization, e.g., via cross-validation, is
only possibly if manually segmented data which can serve as ground truth is available.
However, the generation of this manually segmented data can be very time intensive.
Hence, the reduced parameter influence of vMCI is shown in a first experiment in
comparison to the original MCI and the BPARHMM presented in [Fox et al., 2009],
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4.4. Experiments and Results

which is one of the state-of-the-art segmentation algorithms present in the literature
with promising results [Niekum et al., 2012]. The experiment was performed on
synthetic trajectories consisting of two segments with known ground truth.

In the second set of experiments, human movements recorded with the Qualisys
motion capture system described in chapter 3 were automatically segmented using
vMCI. In these experiments, the capability of vMCI to segment a demonstration into
behavior building blocks characterized by bell-shaped velocity patterns is shown. On
three different datasets of different complexity, vMCI was evaluated in comparison
to MCI, locMin, BPARHMM, and to the ProbS algorithm, which is another promising
segmentation technique published recently in [Lioutikov et al., 2017]. The algorithms
were first evaluated on movement recordings in the restricted environment of the step
reference setup, consisting of point-to-point movements with only little variation in
the position between different recordings but with noisy velocity patterns. In further
experiments, the ability of vMCI to scale to free human movements is shown on
stick-throwing and pick-and-place demonstrations. The algorithms are compared
using the F1-score, which is the harmonic mean of precision and recall. Additionally,
the number of true positives (TP) and false positives (FP) is investigated in more detail
to deduce how many of the segments contained in the data are correctly detected by
the methods. In all experiments, the basis functions ϕ of the LRM in vMCI, MCI, and
BPARHMM were chosen to be autoregressive with order q = 1, i.e., ϕ(xt) = yt−1. For
this, the data was preprocessed to a mean of zero and such that the variance of the first
order differences of each dimension is equal to 1. This preprocessing was not done
for the velocity dimension if vMCI was used. The parameter for the distribution of
the segment length p in the MCI and vMCI algorithm was fixed to p=0.02 because it
has a small influence on the segmentation results due to the Bayesian model of the
algorithm.

4.4.1. Segmentation of sequenced DMPs

In this experiment, vMCI was compared to other unsupervised segmentation meth-
ods on synthetic data with different parameter configurations to show the reduced
influence of the parameters due to the integration of the velocity into the segmenta-
tion process. The synthetic dataset consists of two consecutive dynamical movement
primitives (DMPs) [Ijspeert et al., 2013]. With this, the ground truth segmentation point
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Figure 4.4.: Two datasets of sequenced DMPs. (a) Trajectories of three demonstrations for each of
three possible subgoal positions (red points) with their corresponding velocities which
were varied at the subgoal positions. (b) Trajectories with corresponding velocities of
the second DMP dataset with added noise. Images extracted from [Senger et al., 2014],
Figure 1.

between the two DMPs is known which makes a comparison of the algorithms possi-
ble. DMPs are a popular representation of behavior building blocks in LfD domains.
They describe a movement using a dynamical point attractor system, from which
arbitrary shape-able, goal-directed movements can be generated.

Using DMPs, two datasets were generated, each consisting of 9 trajectories which
are concatenations of two DMPs. The first dataset contains 3 demonstrations for
each of 3 different subgoal positions between the two DMPs. In the second dataset,
Gaussian noise was added to simulate variance in the movement execution. The
DMP sequences have different velocities at the subgoal positions. To generate the
trajectories, the DMP representation by Mülling et al. [Mülling et al., 2013] was used
where the goal velocity can be modified to a desired value. In Figure 4.4 the generated
trajectories are shown with their corresponding velocity.

Using this dataset, vMCI was compared to MCI and to the BPARHMM algorithm.
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Table 4.1.: Mean segmentation results on sequenced DMP dataset (with noise).

F1-measure number true positives number false positives
(avg., optimal: 1) (avg., optimal: 0)

vMCI 0.97 (0.78) 1.00 (0.86) 0.06 (0.37)
MCI 0.34 (0.34) 0.57 (0.50) 1.17 (0.73)
BPARHMM 0.46 (0.33) 0.26 (0.17) 0.56 (0.52)

The BPARHMM uses the same data model as MCI and has a set of equal parameters.
This allows to compare the algorithm with the same set of parameter configurations.
An open-source implementation of BPARHMM is available1.

The three algorithms were compared on the two synthetic DMP datasets with dif-
ferent parameter configurations. The hyper-parameters D, S, and ν, influencing the
prior distributions of the model parameter β and the noise variance, of the three
segmentation algorithms were varied in the following ranges: D ∈ [1, 5, 10, 20],
S ∈ [0.1, 1, 10, 25], and ν ∈ [4, 6, 8]. This results in 4 · 4 · 3 = 48 different param-
eter configurations for each demonstration. The other parameters were chosen as
suggested in the original publications. Note that due to a more complex inference
method, the calculation time of BPARHMM segmenting the synthetic dataset is ap-
prox. 20 times larger than the calculation time of the same data with the proposed
vMCI.

In Figure 4.5, the position of the obtained segment borders of all parameter configu-
rations and 3 demonstrations are shown in a histogram for each of the segmentation
algorithms. The segmentation accuracy measured using the F1-measure and the num-
ber of true and false positives for each algorithm for the 9 noisy demonstrations are
listed in Table 4.1. The results show that vMCI detected the correct position of the
segment transition more accurately than MCI and BPARHMM. Although BPARHMM
outperformed the conventional MCI, it showed more false positives than vMCI if the
parameters were varied. This means that with the integration of the velocity profiles
into the MCI, the segmentation results became more robust with respect to parameter
selection. This holds true for different subgoal velocities as well as when adding noise.

1https://emilybfox.su.domains/wp-content/uploads/2021/12/BPARHMMtoolbox.zip
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Figure 4.5.: Distribution of detected segmentation points by different algorithms with different pa-
rameter configuration. The true segment border is marked with a solid horizontal line.
Segmentation points detected in a margin around this point (dashed lines) are treated as
correct. As a representative result just segmentation results of trajectories with subgoal
position (0.6, 0.7) are shown. (a) Results on DMP dataset. (b) Results on noisy DMP
data. Images extracted from [Senger et al., 2014], Figure 2.

4.4.2. Selection of hyper-parameters

In the experiments performed on real human movements, the hyper-parameter D,
which regulates the variance of the model parameters β along the data dimensions,
was set to the identity matrix. This is a good choice because an autoregressive basis
is chosen and the data is preprocessed to a variance of one. The hyper-parameters
S and ν influence the variance of the weights as well as the Gaussian noise of the
LRM along the time dimension. These parameters can directly be calculated from
the data to estimate the true variance by determining the variance of the first order
differences of the data along the time dimension. As shown in the previous experiment,
these hyper-parameters have only little influence on the segmentation result. In the
vMCI algorithm, the number of centers was fixed to 3 and the hyper-parameters were
calculated identically to the ones of the position LRM from the velocity data.

To run BPARHMM, next to the selection of the basis function and corresponding
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Table 4.2.: Mean segmentation results on step pattern movements.

F1-score num. TP num. FP
(opt.: 7) (opt.: 0)

vMCI 0.85 6.0 1.1
MCI 0.63 4.0 1.2
locMin 0.83 7.0 3.7
BPARHMM 0.81 6.9 3.1
ProbS 0.18 1.5 1.9

hyper-parameters, several other hyper-parameters had to be set in advance. The same
hyper-parameter configurations were used for all datasets based on the suggestions
made in [Fox et al., 2009]. The sampling algorithm was run 5 times, with 5000 iterations
each. To compare to ProbS, for which no open source implementation is available, the
algorithm was reimplemented based on the formulas given in [Lioutikov et al., 2017].
In ProbS, the data is represented using DMPs. Based on an initial over-segmentation
the algorithm infers the number and parameters of the DMPs needed to generate the
observed data. LocMin was used to generate the initial over-segmentation. Due to
the computationally intensive inference steps, the number of iterations was limited
to 50 and the algorithm was run separately for demonstrations of each subject. The
locMin approach detects a segmentation point at positions where a local minimum
occurs in the velocity in a predefined window [Senger et al., 2014]. This window had
been varied for each dataset and the margin with the best results was selected for the
final evaluation.

4.4.3. Segmentation of point-to-point movements

For the automatic segmentation of the point-to-point data, which contains in the man-
ually determined ground truth segmentation 1368 movement segments, the recorded
movements were down-sampled to 30 Hz. In the locMin approach, the window size
was set to 0.27 seconds and for pre-segmentation in ProbS the window size was set
to 0.13 seconds. All other parameters of the compared algorithms were selected as
described in the previous paragraph.

The results of the evaluated algorithms can be seen in Table 4.2, in which the mean
F1-score, TP, and FP are shown. The mean values were determined using all 171
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Figure 4.6.: Example demonstration of a movement through the step pattern, consisting of the
building block sequence right, up, right, up, down, left, down, left. Shown is the absolute
velocity (solid line) and the position (x,y,z - dashed/dotted lines) of the hand. The
top left plot shows the manual segmentation result. The other plots show the result of
vMCI, MCI, locMin, ProbS, and BPARHMM, in which the data which is used as basis
for segmentation is plotted (position and/or velocity). Images extracted from [Gutzeit
and Kirchner, 2022], Figure 6.
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demonstrations of going through the step pattern upwards and back, resulting in
an optimal segmentation into 8 building blocks which corresponds to an optimal
number of true positives of 7. A determined segmentation point was treated as
correct, when it lay within a margin around the ground truth segmentation point
of 0.2 seconds. Using the simple locMin approach, all segmentation points were
detected, but with a mean value of 3.7 FP. The lowest number of FP was achieved
using vMCI, which detected on average 6 segmentation points with 1 FP. With this,
the vMCI algorithm had the highest F1-score on this dataset and outperformed all
other approaches, whereby locMin and BPARHMM over-segmented the data. ProbS
was not able to detect the segmentation points at all, possibly because there was only
little variation in movement execution in the data, i.e., nearly the whole demonstration
can be represented by the same DMP. However, on movement examples with a noisy
velocity, ProbS over-segmented the data.

The dataset contained examples with very smooth velocity changes as well as
noisy velocity profiles. An example result of the segmentation using the different
approaches on a sample with noisy velocity is shown in Figure 4.6. For this example,
vMCI achieved a perfect segmentation despite the noise in the velocity. However, this
noise resulted in an over-segmentation using locMin, ProbS, and BPARHMM.

4.4.4. Segmentation of stick-throwing movements

In the stick-throwing dataset, 34 throwing demonstrations were recorded. The datasets
consists in the manually determined ground truth segmentation of 126 movement
segments. On this dataset, the same parameters configurations were used as for the
step data for vMCI, MCI, BPARHMM, and ProbS. The window for locMin was set to
0.2 seconds and 0.07 seconds for initial over-segmentation needed in ProbS.

The mean segmentation results for all algorithms can be seen in Table 4.3. For
this dataset, the optimal number of TP is 3.7, i.e., the throwing movements were on
average segmented into the three main building blocks strike out, throw, and swing out,
and some occurrences of additional segments. Again, the highest number of detected
TP was achieved using locMin and the lowest number of FP using vMCI, where both
algorithms had a similar F1-score of approximately 0.7. With that, vMCI and locMin
outperformed all other approaches. On this dataset, in which nearly no noise can be
observed, BPARHMM and locMin again detected some FP, but not as much as on the
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Figure 4.7.: Example demonstration of a stick-throwing movement, consisting of the building blocks
strike out, throw, and swing out. Shown is the absolute velocity (solid line) and the
position (x,y,z - dashed/dotted lines) of the hand. The top left plot shows the manual
segmentation result. The other plots show the result of vMCI, MCI, locMin, ProbS,
and BPARHMM, in which the data which is used as basis for segmentation is plotted
(position and/or velocity). Images extracted from [Gutzeit and Kirchner, 2022], Figure 7.
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Table 4.3.: Mean segmentation results on stick-throwing movements.

F1-score num. TP num. FP
(opt.: 3.7) (opt.: 0)

vMCI 0.70 1.9 0.9
MCI 0.58 1.5 0.9
locMin 0.71 2.0 1.8
BPARHMM 0.56 2.0 2.5
ProbS 0.23 0.6 1.0

step data. Again, ProbS did not perform well on this data. An example result can be
seen in Figure 4.7.

4.4.5. Segmentation of pick-and-place movements

To segment the pick-and-place dataset, the recorded data was down-sampled to
20 Hz, because in this dataset the movements were on average much slower (mean
segment length of (1.3) seconds) compared to step dataset (mean segment length of
0.82 seconds). The dataset contains in the manually determined ground truth 172
movement segments. The parameters for vMCI, MCI, BPARHMM, and ProbS were
identical to the ones in the previous evaluations. The range in which the minima
were detected in locMin was set to 0.2 seconds and 0.1 seconds for the initial over-
segmentation in ProbS. Due to the slower movement velocity, the margin in which a
detected segmentation point was still treated as correct was increased to 0.3 seconds.

This dataset has a bigger movement variability compared to the other two datasets
and the ground truth segmentation was more difficult to manually define. Due to
rather slow movements when the object was grasped or placed, the exact movement
start and end point were difficult to determine based on the position of the hand.
If the subject did not move or did a movement which was not part of the defined
movement classes, the segment borders were still added to the ground truth data. To
accomplish the pick-and-place tasks, the subject had to perform 6 basic movements:
approach forward, move object to table, move to rest right, approach right, move object to shelf,
move to rest down. In between there were idle phases. The average number of manually
defined segmentation points per demonstration was 8.1.

As can be seen in the results in Table 4.4, most TP were detected using BPARHMM
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Figure 4.8.: Example demonstration of the pick-and-place movement, consisting of the building blocks
approach forward, move object table, go to rest right, approach right, move object shelf,
move to rest, with small periods of no movement in between (building block idle). Shown
is the absolute velocity (solid line) and the position (x,y,z - dashed/dotted lines) of the
hand. The top left plot shows the manual segmentation result. The other plots show
the result of vMCI, MCI, locMin, ProbS, and BPARHMM, in which the data which is
used as basis for segmentation is plotted (position and/or velocity). Images extracted
from [Gutzeit and Kirchner, 2022], Figure 8.
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Table 4.4.: Mean segmentation results on pick-and-place movements.

F1-score num. TP num. FP
(opt.: 8.1) (opt.: 0)

vMCI 0.67 5.0 3
MCI 0.60 4.9 4.0
locMin 0.79 6.5 3.0
BPARHMM 0.52 6.3 10.7
ProbS 0.32 1.6 1.1

and locMin, but with a high number of FP using BPARHMM. On this data, vMCI
resulted in a higher number of FP compared to the other two datasets. If the results on
the individual demonstrations are examined more closely, one can observe that vMCI
detected most of the segments but with a very inaccurate position of the segment
boundaries, which lay often outside the margin of 0.3 seconds. This can also be seen in
the example result in Figure 4.8. Again, the segmentation points could not be reliably
detected using ProbS.

4.5. Discussion

In the comparison of several features in human point-to-point movements in sec-
tion 4.2, a bell-shaped curve in the absolute velocity of the hand was identified as
a feature which was identical for all movement segments, independent from the
movement direction. This observation could also be verified on the more complex
pick-and-place movements. In the experimental evaluations of vMCI run on the
point-to-point movements of the step reference setup (section 4.4.3) it could be seen
that vMCI was able to detect these segments with bell-shaped hand velocity. Also in
movement examples with a very noisy velocity, the majority of the true segmentation
points were detected using vMCI. Based on the velocity features, segmentation points
could also reliably be detected using locMin. In comparison to vMCI, the resulting
segment borders were more accurate, because they were located directly at time points
where the velocity was in a local minimum. However, the threshold in locMin needed
to be adapted to different datasets or even different movement examples of the same
tasks executed in different velocities. Furthermore, in data with a noisy velocity profile
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locMin over-segmented the data and detected a lot of false positives. By using vMCI
this over-segmentation can be prevented without an additional preprocessing, such
as smoothing. The performed experiments show that the algorithm is robust against
noise and can handle variations in the movement execution more effectively than
other methods for unsupervised segmentation. Furthermore, the influence of the
parameters can be reduced compared to MCI which makes the algorithm applicable
to different datasets where the required manual user input is reduced.

In the evaluation performed on the stick-throwing and pick-and-place data, vMCI
again yielded good results and detected the majority of the segmentation points cor-
rectly. The ground truth segmentation points were determined based on the recorded
marker positions and the vMCI approach detected these based on the position and
velocity of the hand marker. This supports the assumption that in these more complex
manipulation movements compared to the point-to-point movements, building blocks
can still be detected using a bell-shaped velocity of the hand.

In all analyzed movements, but especially in the pick-and-place data, vMCI detected
some segment points inaccurately, resulting in a lower number of TP with increasing
number of FP. However, the total number of detected segments was nearly the same
as the manually defined number of segments in all experiments. This indicates that
the data is not over-segmented using vMCI.

On all three datasets, vMCI performed better than the MCI algorithm which does
not model the velocity dimension of the data differently than the position. This also
applies to the comparison to BPRAHMM, which models the data in a very similar
way as vMCI and MCI but does not have the special look at the velocity. Using
BPARHMM, also good results could be achieved but the algorithm was more sensitive
to noise. Furthermore, it is a batch method which needs a lot more computation
time and cannot be run online. Possibly, this results from the design of the algorithm
which identifies a set of basic movement the analysed demonstrations are generated
from. In the experiments of Lioutikov et al, the algorithm was tested on movement
demonstrations which contain different combinations of a small number of basic
movements. In that data, ProbS successfully identified basic movements [Lioutikov
et al., 2017]. Our datasets, on the other hand, contain repetitive demonstrations of
the same manipulation movement without changes in the order of the concatenated
building blocks. Our results indicate, that ProbS is not suited to segment this kind of
data. In the performed experiments, it was not possible to achieve good results using
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the reimplementation of the ProbS algorithm. Although it was shown in [Lioutikov
et al., 2017] that the algorithm converges, this could not be achieved in a reasonable
time period in the evaluations presented in this chapter and calculations had to
be stopped after a fixed number of iterations. On all observed movements, only
unsatisfying results could be obtained using this method. However, BPARHMM and
ProbS give not only the segmentation points but also clustered segments that describe
which segments belong to the same movement. For vMCI, a successive step is needed
to obtain grouped or labeled segments. Due to the simple structure of the building
blocks detected using vMCI, it will be shown in chapter 5 that labeled segments can be
obtained using a simple k-Nearest Neighbor classifier with k = 1 and a small number
of training examples.
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5 Chapter 5.

Few-shot Recognition of
Building Blocks

In this chapter, methods to recognize building blocks in human manipulation move-
ments using a small number of training examples are compared. Repetitions of the
same movement building blocks detected using the vMCI algorithm introduced in
chapter 4 should be recognized, i.e., they should be annotated, to improve usability in
applications such as imitation learning. By assigning suitable annotations to the iden-
tified movement segments, the selection of the behavior of interest becomes intuitive
and easy to use in different interaction scenarios.

It is proposed in this chapter to use k-NN to classify movement building blocks
detected using vMCI, as depicted in Figure 5.1. This simple approach has only one
parameter, k, to tune. It is assumed that by choosing k = 1 in classification scenarios
where segments obtained by vMCI should be automatically annotated based on a
small training set size, reliable classification accuracies can be achieved. To verify this
assumption, several experiments were performed on datasets of different complexity
with a limited maximal number of examples per class in the training data. For this,
lever-pulling, pick-and-place, ball-throwing, and stick throwing movements recorded
using the Qualisys motion tracking as well as gestures recorded using the Xsens
motion suit were used. An overview of the datasets is given in table 3.1, with detailed
explanations about the data recording procedure given in chapter 3. In the presented
evaluations, the stick-throwing data without tracking of the stick (stick-throwing 1
in table 3.1) which contains a higher number of movement examples than the other
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Figure 5.1.: Data processing chain to detect and recognize movement building blocks in human
movement demonstrations.

stick-throwing set is used. The four manipulation movement datasets which were
recorded using the Qualisys system were segmented into building blocks using the
vMCI algorithm. The gesture data, which contains more complex movements that are
not segmented into building blocks, was used as an additional dataset to evaluate the
limits of simple 1-Nearest Neighbor (1-NN) classification.

A schematic overview of the performed experiments is given in Figure 5.2. In the
first experiment, the 1-NN classification is compared to a classification using HMMs,
which are widely used in the literature to recognize human movements, see section 5.1.
This evaluation is done without hyper-parameter tuning on lever-pulling, pick-and-
place, and ball-throwing movements to get a first impression of the performance of
the algorithm on datasets of different complexity. In the second experiment, the first
evaluation is extended with a hyper-parameter tuning of the classification approaches.
In this experiment, k-NN and HMMs are compared to LSTM based-classification on
stick-throwing demonstrations and gestures. These datasets are used for the hyper-
parameter evaluation because they contain a higher number of movement examples
and thus give a better representation of possible movement variations. In the third
experiment, the same datasets were used to evaluate the generalization of k-NN,
HMM, and LSTM to the movements of subjects whose demonstrations were not part
of the training data.

This chapter is structured as follows: In section 5.1 related work is described and the
compared algorithms are presented in section 5.2. The proposed data preprocessing
and feature extraction mechanisms, including a discussion about the complexity of the
datasets, is presented in section 5.3. The three conducted experiments and the results
are presented in section 5.4. At the end of this chapter the results are discussed.

Most of the texts, figures, and tables in this chapter are taken or adapted from [Gutzeit
and Kirchner, 2016], [Gutzeit et al., 2016], and [Gutzeit, 2021]. First preliminary work
regarding online classification of movements using HMMs is presented in [Schreiter
et al., 2014] and [Schreiter et al., 2015].
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Figure 5.2.: Schematic overview of the approach to evaluate different classification methods using
small training data set sizes and five different datasets. Details about the experiments are
described in section 5.4. Parts of the diagram are taken from [Gutzeit, 2021], Figure 1.

5.1. Related Work

Human action recognition is an active research area with a lot of different applications
and methods. In this section, an overview of the most important and widely used
methods is given. Most approaches in the literature are based on the analysis of
video or RGB-D data in applications such as the detection of tackles in soccer games,
support of elderly in their homes, or gesture recognition in video games [Poppe,
2010]. In these approaches, large efforts have to be put into the detection of the
human and its posture in the measured data streams. Afterwards, the observed
actions are classified with algorithms such as Support Vector Machines, or their
probabilistic variant the Relevance Vector Machines, HMMs, k-NN or neural network-
based approaches, see [Poppe, 2010] and [Zhang et al., 2019] for a detailed overview.
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In the last decades, HMMs were widely used to classify human actions and gestures.
For example, in [Stefanov et al., 2010] and [Aarno and Kragic, 2008], HMMs were
used to recognize human intentions in teleoperation scenarios. Borghi et al. proposed
an online double-stage Multiple Stream Discrete HMM to classify gestures from 3D
joint positions acquired with a Kinect [Borghi et al., 2016]. With this approach, high
classification accuracies could be achieved on three public and a new recorded data
set containing different actions created for human computer interaction. On the other
hand, Corbonera Luvizon et al. performed an extensive preprocessing to extract sets
of spatial and temporal local features of skeleton data recorded with a Kinect and
combined them using a metric learning approach [Carbonera Luvizon et al., 2017].
With this method the classification accuracy of a k-NN classifier could be improved
on three different public data sets.

Recently, neural network-based approaches became popular in all pattern recog-
nition domains. Patsadu et al. compared a neural network with a Support Vector
Machine, a decision tree, and Naive Bayes to distinguish the movement patterns
stand, sit down, and lie down recorded with a Kinect camera [Patsadu et al., 2012].
In the huge data set with more than 10.000 recordings, the best performance was
reached with the neural network approach. Long-term motions in video sequences
were detected in [Shi et al., 2017] using a method based on a Convolutional Neural
Network (CNN)-Recurrent Neural Network (RNN) network. To handle unreliable
data, Liu et al. introduced a new gating algorithm for LSTMs [Liu et al., 2017]. Spatial
and temporal dependencies between joints are learned to recognize human actions
in skeleton data. Unreliable data, which can result from noisy data or occlusions, are
handled with a newly introduced trust gate added to the LSTM.

An approach which combines movement segmentation and clustering in time series
data is presented in [Fod et al., 2002]. In their work, human arm movements were seg-
mented into so-called movement primitives at time points where the angular velocity
of a certain number of degrees of freedom crosses zero. After a Principal Component
Analysis (PCA)-based dimensionality reduction, the detected movements were clus-
tered using k-Means. Gong et al., on the other hand, proposed Kernelized Temporal
Cut to segment full body motions, which is based on Hilbert space embedding of
distributions [Gong et al., 2014]. In their work, different actions were recognized using
Dynamic Manifold Warping as similarity measure.

However, most of the approaches in the literature were applied to precisely specified
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movements. The performance with respect to naturally and intuitively performed
movements has not been analyzed. Furthermore, many approaches rely on huge sets
of labeled data. If these are not available for a certain application, the training datasets
have to be manually generated, which requires a large human effort. To reduce this
effort, algorithms which give reliable results on small dataset sizes are beneficial. This
new research area is known as Few-shot learning, a survey is presented in [Wang
et al., 2020]. Usually, few-shot learning algorithms combine limited labeled training
examples with pre-trained models which contain prior knowledge of the tasks, e.g.,
by including labeled data from other domains [Wang et al., 2020]. In contrast to this,
standard machine learning approaches are evaluated in this chapter with respect to
their performance on classifying manipulation movements of different complexity
which were segmented into building blocks using limited training data.

5.2. Evaluated Recognition Algorithms

In this chapter, the performance of k-NN to recognize human movements recorded
using motion tracking is evaluated. It is compared to widely used recognition methods
based on HMMs and LSTMs. The usage of these three algorithms for movement
classification is briefly described in this section.

5.2.1. k-Nearest Neighbor

In the k-NN classification, an observed movement sequence is assigned to the move-
ment class, which is the most common among its k closest neighbors of the training
examples. To determine the closest neighbors, the standard Euclidean distance metric
is used in this thesis. For this, all segments are interpolated to the same segment length.
Alternatively, Dynamic Time Warping (DTW) could be used as a distance measure.
However, in a preliminary analysis of k-NN classification on manipulation behaviors
the presented approach outperformed a DTW-based k-NN. The k-NN algorithm does
not need much parameter tuning, as it has just one hyper-parameter k. To classify
the recorded data sequences with k-NN, the feature trajectories for each movement
recording are transformed into a single feature vector.
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5.2.2. Hidden Markov Model

HMMs are very common probabilistic models for time series data. In the model it is
assumed that a data sequence is generated by a Markov process with states that are
not directly observable. The observable output is influenced by the transition proba-
bilities between states and their emission probabilities. A detailed introduction is, e.g.,
given in [Bishop, 2006]. In the experiments in this chapter, one HMM with Gaussian
emissions is trained for each class in the data using the Baum-Welch algorithm. A
new data sample is assigned to the label of the HMM from which it is most likely
generated. For each HMM, the number of hidden states h must be set.

5.2.3. Long Short-Term Memory Network

LSTMs are artificial RNNs especially designed to process time series data. They were
firstly presented in [Hochreiter and Schmidhuber, 1997]. Standard RNNs connect the
output of previous time steps to the current input in order that sequences of data can
be processed. In extension to this, a LSTM contains an input gate, an output gate
and a forget gate which regulate which information goes into and out of the LSTM
cell. With this, data points over long time intervals can be saved and weighted so that
information that is no longer important can be forgotten.

In this thesis, a simple structure with one LSTM layer is used. The input layer
contains one neuron for each feature, which is fully connected to the LSTM layer. As
output, a Dense layer with softmax activation function is used, which has a single
neuron for each class. During training, the categorical cross entropy is used as error
function. To prevent over-fitting, early stopping is applied and training is stopped if
the accuracy on a validation dataset did not increase in the last p epochs, where p is
called patience value. For this architecture, different numbers of cells c, different batch
sizes b, and patience values p are compared.

5.3. Data Preprocessing and Feature Extraction

Before classification, the motion tracking data needs to be preprocessed. The applied
data processing chain is depicted in Figure 5.1 and is described in detail in this section.
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5.3.1. Preprocessing

The recorded data trajectories contain several repetitions of the performed task and
need to be segmented into individual movements to evaluate the classification ap-
proaches. For some datasets (see table 3.1) this was done manually using the trajectory
visualization tool as described in section 3.8. Because this is very time consuming,
especially for datasets with a high number of recorded movements, some of the
datasets were segmented automatically using the vMCI algorithm. To create datasets
for evaluation, a reliable ground truth should be generated in which each segment is
verified by a human. For this reason, all detected segments were manually labeled.
However, some of the automatically obtained segments could not be assigned to
one of the expected classes because the movement was only partly covered. This
could result from errors in the segmentation as well as from demonstrations where a
movement was slowed down before the movement class ends. A case would be when
the subject thought about the exact position to grasp the object and thus slows move-
ment speed before reaching the object. An example can be seen in Figure 5.4b. The
concatenation of the first two detected segments belong to the class approach forward.
Nonetheless, the vMCI algorithm detected two segments, both with a bell-shaped
velocity curve, because the subject slowed down the movement right before reaching
the object. These incomplete movement segments were discarded for the evaluation of
the classification approaches. Furthermore, some of the detected movement segments
did not belong to one of the predefined movement classes of the experiment. Usually,
these non-assignable segments belonged to small extra movements, that were not part
of the main movement task and thus were not considered in the defined movement
classes. These movement segments were also excluded from the evaluation of the
classification.

The segmented time series contain raw marker positions recorded in Cartesian
coordinates in the global coordinate system of the motion capture system. This results
in different time series if the same movement is executed at a different position. Thus,
the data is transposed into a coordinate system which is not global but relative to
the human demonstrator. For movements recorded with the Qualisys system the
coordinate system spanned by the marker cluster placed on the back of the subject
(see Figure 3.1) is used as reference point. For Xsens recordings the reference system is
defined by the anatomical landmarks RightShoulder, LeftShoulder, and T8, which
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is a position at the spinal cord of the internal model of the human as described in
the user manual of the AVN Avinda sensor suit2. Each data point of a segment is
transformed into this reference coordinate frame recorded at the first time point of this
segment.

5.3.2. Feature extraction

For each recorded movement segment, different features can be calculated. Depending
on the tracking system, these are directly measured or can be calculated easily from
the raw data. The following features were determined from the recorded data:

1. transformed, human-relative 3D positions of the markers placed on the body of
the human,

2. absolute velocity of these marker positions,

3. orientation of the hand,

4. elbow joint position determined by calculating the angle between lower and
upper arm,

5. elbow joint velocity calculated using the temporal derivative of the elbow joint
position,

6. shoulder joint position determined by calculating the angle between upper arm
and upper body,

7. shoulder joint velocity calculated using the temporal derivative of the shoulder
joint position,

8. distance between hand and object,

9. object velocity.

To compare 1-NN to HMMs on the lever-pulling, pick-and-place, and ball-throwing
data, only the transformed positions of the hand, elbow, and shoulder marker were
used as well as the distance of the human hand to the manipulated object and the
object velocity for the pick-and-place movements. All segments were interpolated
to the mean segment length of the current data set using Spline interpolation. In
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the other experiments, k-NN, HMMs, and LSTMs were evaluated on gesture and
stick-throwing data using features 1-7 with an interpolation to a length of 25 time
points using spline interpolation. Since the range of the individual features varies, all
features were normalized to values in the range [0, 1].

5.3.3. Data complexity

The five datasets used for the evaluation in this chapter contain data of different
complexity. The lever-pulling movements are rather simple because the movement
direction is predetermined by the lever during pulling which only allows for little
variations between movement executions. In contrast to this, the pick-and-place data
show more variations because the subjects moved their arms free towards the box and
the table. However, the box was always grasped from or placed to approximately the
same position and only 26 movement examples were recorded. For the ball-throwing
data, more movement demonstrations of more subjects were recorded. Although
the throwing movements were restricted, because the ball had to be thrown always
“from top”, higher inter-subject variability can be observed in the data due to different
throwing skills of the subjects.

The gesture and stick-throwing data were compared in more detail by transferring
the determined features of all recordings into a two-dimensional manifold using t-
distributed Stochastic Neighbor Embedding (t-SNE) [van der Maaten and Hinton,
2008]. The result, in which samples with a low feature distance are close, is shown in
Figure 5.3. The manifold transformation of the gesture data can be seen in Figure 5.3a.
Although clusters for the different movement classes can be observed, the clusters of
the 11 classes clearly overlap, i.e., the classes are not clearly separated. On the other
hand, movement trajectories of different subjects of the same gesture can be separated
in this visualization, as the subject samples show clusters within one gesture class.
Thus, the generalization to new subjects is a challenging task for this heterogeneous
dataset.

The movement classes of stick-throwing data are separated more clearly, see Fig-
ure 5.3b. Although samples of the same class performed by different subjects can also
be distinguished in this data, the distances to the other classes are larger compared
to the gesture data. Only the two classes idle and strike out overlap in the manifold.
This shows the much lower complexity of this data compared to the gesture data. This
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(a) gesture data

t-SNE Manifold

come closer
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move backwards

move downwards

move upwards

next slide

previous slide

rally

stop

thumbs down

thumbs up

(b) stick-throwing data

t-SNE Manifold

idle

strike out

swing out throw

Figure 5.3.: T-SNE manifolds of the gesture data (a) and the stick-throwing data (b). Each movement
class can be identified by a different color, samples of the different subjects have different
markers. Images extracted from [Gutzeit, 2021], Figure 4.

has several reasons. First, the gesture data contains more classes and some of them
are very similar in their execution. For example, the movement classes thumbs up and
thumbs down differ only in the orientation of the hand. In the stick-throwing dataset
the task is to throw a stick to a certain position. This is in contrast to the movements
in the gesture data a goal-directed behavior, in which less variations can be assumed.
Furthermore, the stick-throwing data was segmented into its main movement blocks
characterized by a bell-shaped velocity profile using the vMCI algorithm which fur-
ther reduces complexity whereas the gesture data contains gestures which consist of
several building blocks. For example, the gesture hello contains several repetitions of
waving the hand and their concatenation forms one example of the movement class (a
detailed description of the performed gestures is given in section 3.6). That means,
one movement class in the gesture dataset can contain a concatenation of bell-shaped
velocity profiles whereas the stick-throwing movement classes always have a single
bell-shaped velocity per movement example. This results, next to the different number
of movement classes in the two datasets, in a lower complexity of the stick-throwing
data compared to the gesture data.
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movement classes num. examples

le
ve

r-
pu

ll
in

g move lever 62
approach forward 76
move to rest 72
idle 72

pi
ck

-a
nd

-p
la

ce

approach forward 20
move obj table 26
move to rest right 25
approach right 23
move obj shelf 26
move to rest down 24
idle 11

ba
ll

-t
hr

ow
in

g strike out 221
throw 227
swing out 339
idle 208

Table 5.1.: Occurrences of each class in the lever-pulling, pick-and-place, and ball-throwing data.

5.4. Experiments and Results

5.4.1. Experiment 1: Evaluation of 1-NN in comparison to HMMs

1-NN and HMMs based classification were compared using a stratified cross-validation
with a fixed number of examples per class in the training data on the lever-pulling,
pick-and-place, and ball-throwing data. The training set sizes were varied from 1
example per class to 20 randomly selected examples per class and the remaining data
was used for testing. Since the performance of the classification with small training
set sizes should be evaluated, the maximal number of training examples per class
was kept low. For each number of examples per class in the training data, the cross-
validation was performed with 100 iterations. The number of states in the HMMs was
determined with a stratified 2-fold cross-validation repeated 50 times with equally
sized training and validation sets. As a result, each HMM was trained with one hidden
state.
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(a) lever-pulling example
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(b) pick-and-place example
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(c) ball-throwing example
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Figure 5.4.: Example segmentation and classification results of (a) lever-pulling, (b) pick-and-place,
and (c) ball-throwing movements. On the left side, the segmentation results are shown.
The x-, y-, and z-position of the hand are visualized with black lines. The blue line
corresponds to its velocity and the red vertical lines are the segment borders determined
by the vMCI algorithm. On the right side, the classification results of the same movement
demonstrations are shown. The data was classified separately for each datasets using 1-NN,
with only one example per class in the training data for the lever-pulling demonstration,
and five examples per class in the training data for the classification of the pick-and-place
and ball-throwing movement examples.
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Segmentation and recognition of lever-pulling movements Although the demonstra-
tions of the lever-pulling movements showed not always smooth bell-shaped curves,
the vMCI algorithm successfully segmented the trajectories without any adaptations
of hyper-parameters or an additional preprocessing of the data. An example of the
segmentation results can be seen in Figure 5.4a. The resulting movement segments
were manually labeled into one of the 4 movement classes approach forwards, move
lever, move to rest, and idle, that are present in the lever-pulling task. The occurrences
of each class can be found in Table 5.1. Figure 5.4a shows the classification result of
the movement example using 1-NN and only one example per class in the training
data. The four movement segments were correctly classified into one of the predefined
classes.

The results of the cross-validation comparing 1-NN with HMM-based classification
are visualized in Figure 5.5a. 1-NN outperforms HMM-based classification in the case
of small training set sizes, especially for a very small (<5) number of examples per
class in the training data. Indeed, very high accuracy can already be achieved with
one training example for each class with a mean accuracy of 95.3% using 1-NN but
only 42.1% by using HMM-based classification. Using 1-NN, a mean classification
accuracy of 99.0% is accomplished using 4 examples per class during training. In
contrast to this, the same accuracy is not reached using HMM-based classification in
this evaluation.

Segmentation and recognition of pick-and-place movements The demonstrations
of the pick-and-place task could be successfully segmented into movement parts
with a bell-shaped velocity profile using the vMCI algorithm. Two examples of the
segmentation results can be seen in Figure 5.4b. The resulting movement segments
were manually labeled into one of the 7 movement classes described in section 3.8.
This resulted in 155 labeled movement segments with different occurrences of each
class, as summarized in Table 5.1.

As described in Section 5.3, the distance of the hand to the object and the object
velocity were calculated as additional features in this experiment next to the positions
of the markers attached to the subject. An example result of the classification using
1-NN is shown in Figure 5.4b. For this example, demonstration of the pick-and-place
task, all segments were labeled with the correct annotation using a training set with 5
examples for each class.

87



5. Few-shot Recognition of Building Blocks

(a) lever-pulling
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Figure 5.5.: Comparison of the accuracy of the classification of lever-pulling, pick-and-place, and
ball-throwing movement segments using 1-NN and HMM-based classification. Images
extracted from [Gutzeit et al., 2016], Figure 6, 7 (c) and 8 (c).

The results of the cross-validation using 1-NN and HMM-based classification are
shown in Figure 5.5b. Because the data contains 7 different classes, an accuracy of
about 14% can be achieved by guessing. Because the movement class idle contains only
11 movement examples, it was only part of the validation with maximal 10 examples
per class in the training data. The 1-NN classification clearly outperforms the HMM-
based classification using training sets with occurrences of each class smaller or equal
to 20. Already with one example per class a mean accuracy of nearly 80% can be
achieved using 1-NN. With 10 examples per class, the mean accuracy is 97.5% and
with 20 examples per class 99.2%. In contrast, 14 examples per class are needed in
the HMM-based classification to achieve an accuracy of 90% in this evaluation. With
not more than 10 examples per class, the accuracy of the HMM-based classification is

88



5.4. Experiments and Results

considerably below the achieved accuracy using 1-NN.

Segmentation and recognition of ball-throwing movements Also in the ball-throwing
data, meaningful segments could be detected using vMCI. A representative example
of the segmentation result is shown in Figure 5.4c. Segment borders were correctly
detected at positions were bell-shaped curves of the velocity profile end. The resulting
segments of all 240 ball-throw demonstration were manually assigned to one of the
four movement classes to evaluate the classification. Again, each class had a different
number of occurrences in the available data, as summarized in Table 5.1. Figure 5.4c
shows an example classification result using 1-NN and 5 examples per class in the
training data. The 5 movement segments were correctly classified into one of the
predefined classes.

The results of the cross-validation comparing 1-NN with HMM-based classification
are visualized in Figure 5.5c. Like in the lever-pulling and pick-and-place experiments,
1-NN outperforms HMM-based classification in the case of small training set sizes.
This experiment contains considerably more demonstrated movements and higher
variability along demonstrations compared to the pick-and-place task. In here, the
difference between classification algorithms is more contrasting. With one example per
class in the training data, an accuracy of 62.9% using 1-NN can be achieved and only
33.8% by using HMM-based classification. This experiment contains 4 different classes,
i.e., an accuracy of 25% can be achieved by guessing. Using 1-NN, a classification
accuracy of 80% is accomplished using 4 examples per class during training. In
contrast to this, the same accuracy is not reached using HMM-based classification in
this evaluation. For comparison, the evaluation was additionally conducted using
100 examples per class during training. This resulted in a mean accuracy of 91.5%
using 1-NN, and 77.8% using HMM-based classification. That means that even if
more training data is available, the 1-NN classification outperforms the HMM-based
approach.

5.4.2. Experiment 2: Evaluation of different hyper-parameters for k-NN,
HMM, and LSTM

In this experiment, k-NN was compared to HMM and LSTM based classification with
respect to classification accuracy and computation times. In extension to experiment
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1, different hyper-parameter settings were evaluated. For this, the largest datasets
that were acquired for this thesis were used: the stick-throwing data consisting of 697
movement samples from seven different subjects and the gesture data containing 1045
samples of 11 gestures performed by six subjects. Additionally, the stick-throwing
dataset contains building block movements detected using vMCI and the gesture
datasets contains movements which were not split into individual building blocks and
thus are more complex. These datasets were selected to evaluate the limits of 1-NN
classification.

On the two datasets, the classification accuracy on small training sizes was evaluated.
For this, i samples of each class were randomly selected and used to train the classifiers.
The remaining samples were used for testing. This was repeated 10 times for each
i ∈ 1, 2, ..., 10, 15, 20. The final models were tested on a test set which was not part of
the cross-validation data, consisting of 10% of the original dataset. The cross-validation
was done for each classifier with different hyper-parameter values.

Recognition of stick-throwing movements The validations on the stick-throwing
data were performed with hyper-parameters set to k ∈ [1, 3, 5, 7, 10] for k-NN, number
of hidden states h ∈ [2, 5, 10, 15, 20] for HMM, and number of cells c ∈ [2, 5, 10, 15, 25]
for LSTM with batch size b ∈ [8, 16, 32, 128] and patience value p ∈ [5, 10, 15]. With a
maximum of 10 examples per class in the training data, the best result was achieved
with the LSTM classifier with c = 25, b = 16, and p = 10, leading to a mean accuracy
of 94%. k-NN with k = 1 reaches a mean accuracy of 88% and the HMM classifier had
a mean accuracy of 70% with h = 2.

With these hyper-parameter settings, the classification accuracies reached with the
number of examples per class in the training data limited to values between 1 and 20
are visualized in Figure 5.6a. LSTM and k-NN classification can deal well with very
small training sets on this data. With these two classifiers, an accuracy above 80% was
reached with only 3-4 examples per class in the training data. With more examples per
class, only small improvements can be observed. In comparison, the HMM classifier
needed a minimum of 15 examples per class to achieve the same result.

Recognition of gestures Because of the higher complexity of the gesture data,
the validation on this dataset was performed with hyper-parameters set to k ∈
[1, 3, 5, 7, 10, 15, 20] for k-NN, number of hidden states h ∈ [5, 10, 15, 20, 25] for HMM,
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Figure 5.6.: Classification accuracy with best hyper-parameter setting of k-NN, HMM, and LSTM
with limited number of training examples per class. The mean accuracies on the test
data are shown as solid lines, with surrounding colored area highlighting the standard
deviation. Images extracted from [Gutzeit, 2021], Figure 6 (a) and 7 (a).

and number of cells c ∈ [5, 10, 15, 25, 30, 40, 50, 70] for LSTM with batch size b ∈
[8, 16, 32, 128] and patience value p ∈ [5, 10, 15]. The results with limit i = 10 are
shown in Figure 5.7. The hyper-parameters b and p of the LSTM classifier are fixed
to b = 16 and p = 10, which gave the highest accuracies. With a maximum of 10
examples per class in the training data, the best result was achieved with the LSTM
classifier with c = 50 cells, leading to a mean accuracy of 68%. k-NN with k = 1 had a
similar mean accuracy (67%). HMM based classification did not achieve an accuracy
above 60% with this small training size. For this dataset, the calculation times are also
visualized in Figure 5.7. k-NN had the fastest calculation times because no model
needs to be leaned and the method had short prediction times on the analyzed small
datasets. The training time of the best LSTM network was around 1000 times slower,
but after training the prediction time is similar to 1-NN classification. With HMM,
training and prediction takes even longer.

In Figure 5.6b, the classification results with a number of examples per class in the
training data between values from 1 to 20 are visualized. Hyper-parameters were set
to k = 1 for k-NN, c = 50 for LSTM, and h = 5 for HMM classification. With these
configurations, the highest accuracies could be achieved. The 1-NN classifier slightly
outperformed LSTM classification in this experiment. With HMM classification accu-
racies dropped by 10 − 20% in comparison to the other two methods. Especially with
very small number of examples per class in the training set (≤ 10), HMM was clearly
outperformed.
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Figure 5.7.: Classification results for different hyper-parameter settings with limited training examples
of the gesture data (experiment 2). Visualized is the classification with 10 examples
per class. The top row shows the mean accuracy on the test data with different hyper-
parameters of each classifier. Standard deviations are marked as colored areas. In the
middle row, the training times are visualized, the bottom row shows the prediction times.
All computations were run on a single core 3.7 GHz CPU without parallelization. Note
the different axis scaling in the visualization of the computation times. Images adapted
from [Gutzeit, 2021], Figure 5.

5.4.3. Experiment 3: Generalization to new subjects

In this experiment, the generalization to a new subject was evaluated on the stick-
throwing and gesture data. For this, the k-NN, HMMs, and LSTMs were validated on
the data of all subjects except one, using a limited training set containing i randomly
selected examples of each class for each of the remaining subjects. In the validation
data, the number of examples per class was fixed to 10 to avoid unbalanced classes.
Final models were tested on the samples of the excluded subject which movements
were left out for training. This was repeated 10 times for each subject and each limit i.

Stick-throwing data The results of the generalization capabilities of the classifiers
on the stick-throwing data are shown in Figure 5.8a. In this evaluation, the hyper-
parameter were set to k ∈ [1, 3, 5, 10] for k-NN, h ∈ [5, 10, 20] for HMM, and c ∈
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Figure 5.8.: Results of the leave-one-subject-out cross-validation comparing k-NN, HMM, and LSTM
with limited number of training examples per class. The mean accuracy values are shown
as solid lines, with surrounding colored area highlighting the standard deviation. Images
extracted from [Gutzeit, 2021], Figure 6 (b) and 7 (b).

[5, 10, 25, 40, 50] with b = 16 and p = 10 for LSTM. The best results were achieved
with the LSTM classifier which generalized to new subjects with a mean accuracy
above 80%, also with just 6 examples per class in the training data. The k-NN classifier
also reached good accuracies despite the simpler model structure compared to LSTMs.
The k-NN results are below the results of LSTM but still above 80%. A clearer drop in
the accuracy can be observed in the HMM classification, with mean results below 80%
for all training set sizes.

Gesture data The generalization to different subjects on the gesture data was eval-
uated with the same hyper-parameter settings as for the experiments with the stick-
throwing dataset. The best results achieved with k = 1 for k-NN, h = 5 for HMM, and
c = 25 for LSTM are shown in Figure 5.8b. The LSTM network was the only approach
that classified the samples of subjects which are not part of the training data at a high
mean accuracy around 90% if more than 4 examples of each class and each subject are
used for training on this dataset. The mean accuracy of 1-NN and HMM were below
50% in this experiment. That means, on the gesture data, in which the movement
examples do not correspond to building blocks movements, and which contains more
variety in the movement demonstration between subjects, the simple k-NN model
does cannot classify the movement data reliably in this experiment. This is discussed
in more detail in the next section.
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5.5. Discussion

In this chapter, it was proposed to use simple 1-NN classification with Euclidean
distance measure to recognize human manipulation building blocks using a small
number of training examples. This approach was evaluated in three different experi-
ments on motion tracking data of different complexity. In the first experiment, 1-NN
was compared to HMM based classification on lever-pulling, pick-and-place, and
ball-throwing movements, which were segmented into building blocks using vMCI
during preprocessing. All these manipulation movements of different complexity
could be successfully classified with very limited training data. Although a supervised
classification method like 1-NN always needs manually labeled training data, it was
shown that the recognition of the movements can be done using a small set of training
data, which considerably minimizes manual efforts. For the lever-pulling task, which
is the simplest of the considered movements, a high classification accuracy of 95%
could be achieved with just one training example per class. In comparison to widely
used HMM-based movement classification, the accuracy was considerably higher
using 1-NN on the three datasets of experiment 1.

In the two other experiments, these first results were verified on two further datasets
which contain a higher number of movement examples: the stick-throwing 1 and the
gesture data. The sick-throwing movements were again simplified by segmenting the
movement recordings into building blocks, whereas the gesture data was manually
labeled into individual gestures which may contain several building blocks. Addition-
ally, the complexity of the gesture data is higher because examples of the same gesture
show a high variance between subjects and the clusters of the classes are more difficult
to separate (see section 5.3.3). This makes generalization to new subjects difficult.

In experiment 2, k-NN was compared to HMMs and LSTMs with different hyper-
parameter settings with respect to classification with small training data sizes. In this
experiment, best accuracies were achieved with LSTM and 1-NN classification. On the
more heterogeneous gesture dataset an accuracy of 80% was reached with 20 examples
per class in the training data, on the simpler stick-throwing data 10 examples per class
sufficed for an accuracy of around 90% for both algorithms.

In the third experiment, the generalization to new subjects was evaluated. Here,
LSTM classification was better than the two other approaches on both datasets. Espe-
cially on the gesture data, LSTM was the only approach which was able to generalize
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to new subjects. However, on the simpler stick-throwing data, the accuracy of the
1-NN classification was still above 80%. The complexity of this dataset was reduced
by using automatic segmentation into building blocks. Compared to the gesture
data, the examples of different subjects of the same movement class are more similar
and the movement classes are separated more clearly. That means that simple 1-NN
classification achieved good classification results on data which is segmented into its
building blocks but cannot generalize well to more complex movements in the case of
small training set sizes. This is because using a small number of examples per class
in the training data, not all movement variations are available and the determination
of the movement class by the closest neighbor in the training data is highly influ-
enced by the selected training examples. In the case of a small number of randomly
selected training examples, not every movement variation is covered. This reduced
the classification accuracy in the prediction of the movement classes of subjects whose
movements where not part of the training data. On the other hand, in LSTM clas-
sification a model is learned that can better generalize to movement variations of
different subjects in the performed experiments. However, 1-NN had fast calculation
times, which makes 1-NN classification a clear alternative to the widely used neural
network-based approaches. Additionally, no architecture has to be defined in k-NN
and no model needs to be learned. In the presented case of small training set sizes,
also the required memory to save the training data for the selection of the nearest
neighbor during prediction is low. On both datasets, HMM required more examples to
model the demonstrations well enough for a good classification result and had higher
computation times.

In summary, the results of the performed experiments indicate that movement
trajectories which are segmented into building blocks can be classified with a small
number of training examples without using algorithms that are especially designed
for few-shot recognition. Possibly due to the simplicity of these movement building
blocks, simple 1-NN classification achieves good results in recognizing building blocks
of a certain manipulation movement. With increasing movement complexity with
respect to the number of movement classes and the variations within each movement
class, the usage of a neural network model such as LSTM can improve recognition
accuracy. This comes with the cost of increasing calculation times and the necessity to
select an appropriate model architecture and to tune hyper-parameters.
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6 Chapter 6.

Hierarchical Movement
Segmentation

In chapter 4, the vMCI algorithm to split observed human manipulation movements
into building blocks was introduced and evaluated. The algorithm is able to detect
movement sequences with a bell-shaped velocity profile which can be related to
primitives of human movements on the level of movement execution, as summarized
and discussed in chapter 2. The studies discussed in that chapter indicate, that the
generation of human movement is hierarchically organized: On different levels of
movement generation, movement building blocks are combined to generate a wide
range of behaviors. However, by segmenting human movements using vMCI, building
blocks in these movement can be detected but it remains open how these are combined
to execute different actions. By detecting the performed actions as well as the building
blocks these actions are composed of, a deeper understanding of the human behavior
can be achieved. From this, not only LfD applications can benefit, but also other
applications such as human-computer interaction or assistance of sick or disabled
persons.

In this chapter, methods to automatically split human movement data in a hierarchi-
cal manner into meaningful segments are presented. With this, building blocks as
well as their combinations to more complex movement actions should be detected.
For this, the vMCI algorithm is extended to a hierarchical approach, which detects
building blocks with a bell-shaped velocity and additionally determines the actions
consisting of several building blocks by using supervised machine learning methods.
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Whereas the vMCI algorithm detects building block movements, such as approach
object, other approaches in the literature directly detect actions, such as pour water
into cup, which were defined as movements consisting of several building blocks in
section 1.2. Both categories of algorithms detect movements on a single hierarchy
level: either building blocks or actions. In contrast to this, the proposed hierarchical
approach detects actions and at the same time the building blocks these actions are
composed of. An example of an action that should be detected is shown in Figure 3.10,
which depicts an asynchronous dual arm movement, in which several single arm
building block movements are combined in two different ways to turn a rectangular
frame. By detecting both, the building blocks of the movement for each hand, as well
has the performed action, not only the single movements’ identities are known but
also how they can be combined to perform the action of rotating the object. This could,
e.g., be used to identify movement parts which a robotic system is already able to
perform, teach the system new building blocks, and to provide an execution plan
from human example to combine these to execute the rotation task. This approach
enables to automatize the analysis of dual arm human movement demonstrations,
which is not possible using most of the other segmentation approaches presented in
the literature, as summarized in section 6.1.

Two variants of the automated hierarchical segmentation approach are introduced
in section 6.2, one based on a small set of labeled training data, and the other one based
on clustering approaches. Afterwards an evaluation of the presented approaches on
simple, one-handed point-to-point movements executed in a restricted environment
is performed as well as an evaluation on several examples of the dual arm rotation
movement shown in Figure 3.10, which contains more movement variations. Both
datasets were recorded with a marker-based motion tracking system. The work
presented in this chapter was published in [Gutzeit, 2022]. Text, figures, tables, and
pseudo-code descriptions of the algorithms in the following sections are taken or
adapted from that publication.

6.1. Related Work

In the computer vision area, a wide range of algorithms to recognize human actions
recorded using different modalities, such as video, RGB or RGB-D data or marker-
based approaches have been proposed. A short overview is given in section 5.1. All
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these approaches aim to detect movements or actions of a predefined complexity,
e.g., whole body movements or postures such as running, walking or jumping [Gong
et al., 2014, Kulić et al., 2012] or arm movements, e.g., gestures [Mitra and Acharya,
2007]. Whereas most approaches are based on manual segmentation, e.g., to generate
training data, there are several works in which automatic segmentation methods are
considered, see the related work of chapter 4 in section 4.1.

An approach which also considers the hierarchical structure of human movements
is presented in [Wächter and Asfour, 2015]. They performed a two-level segmentation
of 6D pose trajectories of daily activities. First, they semantically segmented the
data based on the relation between the human hand and objects with a subsequent
sub-division based on the acceleration into so called motion primitives. Also in task
planning for robotics, hierarchical approaches based on human movement examples
are considered. Agostini et al. presented a hierarchical task planning approach
based on schemata, which decomposes robotic movements recorded using kinesthetic
teaching [Agostini et al., 2020]. A new movement or task is assumed if the robot enters
or leaves a predefined area of the manipulated object or if the gripper is opened or
closed. Whereas basic movements, such as picking an object, were learned directly
from human demonstration and represented as dynamical movement primitives, the
higher-level movements were defined by a human expert. Other approaches, which
are based on kinesthetic teaching of basic movement are presented in [Zöllner et al.,
2005] and [Caccavale et al., 2019]. However, except from [Wächter and Asfour, 2015], a
thorough search of the relevant literature yielded no other work that analysed human
movement directly to obtain hierarchically structured movement examples.

6.2. Velocity-based Hierarchical Movement Segmentation

In this section, the extension of the vMCI algorithm to a hierarchical approach which
enables the detection of building blocks in human manipulation movements as well
as their concatenation to more complex actions is presented. The algorithm, which is
named velocity-based Hierarchical Movement Segmentation (vHMS), combines the
unsupervised segmentation using the vMCI algorithm with a supervised classification
into labeled building blocks and actions.

The basic idea of the vHMS algorithm is to first detect movement building blocks
in a data sequence using the vMCI algorithm and subsequently classify these build-
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Figure 6.1.: Results for each step of the vHMS algorithm on artificial data. In step 1 and 2, the data
is segmented into building blocks with a bell-shaped velocity using vMCI and afterwards
classified, resulting in three segments with different classes. In step 3, four possible
segmentations are determined, from which the fitness values of six possible segments can
be calculated (step 4). The best fitting segmentation is C1 = {c0, c2, c3}, consisting of
two different actions. Image extracted from [Gutzeit, 2022], Figure 2.

ing blocks with an appropriate movement recognition algorithm. Afterwards, the
algorithm successively merges segments if their concatenation belongs to a known
movement class. These movements, which consist of several building blocks, are re-
ferred to as movement actions. These actions can be further merged to more complex
actions, until a desired level of complexity is reached. For example, in the movement
depicted in Figure 3.10 several building blocks for both hands should be detected
using vMCI, e.g., re-grasp upwards or hold. By combining several of these building
blocks of the right and the left hand, the more complex dual arm action rotate clockwise
should be detected. In this task, different combinations of building blocks can be used
to accomplish the same action. In the vHMS algorithm, level 0 refers to a level of low
complexity, in which the movement building blocks are detected. With higher levels,
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Algorithm 1 Classification-based Hierarchical Segmentation

INPUT movement trajectory y = (y1, .., yT) of length T; training data for each level
1. determine building blocks with segmentation points C0 = {c0, ..., c|C0|}, ci ∈
{0, ..., T}
2. determine segment labels of yci :ci+1 , ∀i ∈ {1, .., |C0| − 1}
for all l ∈ {1, ..., max_number_o f _levels} do

3. determine all possible segmentations D of Cl−1

4. classify all possible segments A and calculate uncertainty estimate
5. find best fitting segmentation Cl ∈ D

end for

the complexity of the detected movements increases.
The pseudocode of the vHMS algorithm is given in Algorithm 1. The algorithm is

explained using simple artificial data depicted in Figure 6.1. The input for vHMS is
a movement data sequence y = (y1, ..., yT) of length T, with yi = (ypos

i , yvel
i ) ∈ Rd+dv

and labeled training data for each level of movement complexity that should be
considered in a certain application. In the simple example, the position and velocity
are one dimensional. In step 1, the movement trajectory y is segmented using vMCI,
resulting in movement sequences with segmentation points C0 = {c0, ..., c|C0|}, with
ci ∈ {0, ..., T}. In Figure 6.1, this results in building block segmentation points C0 =

{c0, c1, c2, c3}. The labels of the resulting segments yci :ci+1 , ∀i ∈ {1, ..., |C0| − 1}, are
determined using the training data of level 0. After this step vHMS detected labeled
building blocks.

To determine the segments and actions of level 1, the movement segments with
segmentation points C0 are merged into more complex actions in step 3-5. First,
all possible segmentations D are determined for the currently detected segmen-
tation points C0. For the example in Figure 6.1, four different segmentations are
possible, i.e., D1 = {C0, {c0, c2, c3}, {c0, c1, c3}, {c0, c3}}. For this set of possible
segmentations all possible segments A1 can be extracted. In the simple example
A1 = {yc0:c1 , yc1:c2 , yc2:c3 , yc0:c2 , yc0:c3 , yc1:c3}. Using the training data for level 1, labels
are assigned to all segments in A1 and an uncertainty estimate for each segments’
classification is calculated. The fitness value of a segmentation is the negative mean
value of its segments’ classification uncertainty. A segmentation has a high fitness
if it is composed of segments, for which the classification has low uncertainty. The
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Algorithm 2 Clustering-based Hierarchical Segmentation

INPUT movement trajectories y1, ..., yn with yj = (yj
1, .., yj

Ti) of length T j; training
data for levels 1, ..., max_number_o f _levels
1. determine building blocks with segmentation points Cj

0 = {c0, ..., c|C0|}, ci ∈
{0, ..., T j}, ∀yj, j ∈ {1, ..., n}
2. cluster all segments yci :ci+1 , ∀i ∈ {1, .., |C0| − 1}
for all l ∈ {1, ..., max_number_o f _levels} do

3. determine all possible segmentations Dj of Cj
l−1∀yj, j ∈ {1, ..., n}

4. classify or cluster all possible segments Aj and calculate uncertainty estimate
5. find best fitting segmentation Cj

l ∈ Dj∀yj, j ∈ {1, ..., n}
end for

best fitting segmentation C1 ∈ D1 defines the segmentation points in level 1. In the
example, this results in two actions. If desired, step 3-5 can be repeated to generate
the segmentation points and labels for actions of a higher level.

6.2.1. Hierarchical segmentation based on clustering

There are applications in which it is not intuitive to select annotations for detected
building block segments. For example in some reaching movements, in which the
hand of a participant moves towards an object to grasp it and slows down right before
grasping, e.g., because the person thinks about the grasping position. This would
result in two movement building blocks with no clear class names, because only their
concatenation belongs to the class approach object. Additionally, using the classification-
based vHMS algorithm requires a set of labeled training data for each building block
segment and action that should be detected. By using unsupervised approaches in
some levels, the manual effort in generating these training data can be reduced. In
this section, the clustering variant of vHMS, shortened cl-vHMS, is introduced. For
which levels of movement complexity a clustering approach should be used, should
be decided depending on the application.

The pseudocode of the clustered vHMS algorithm is given in Algorithm 2. As
an input for cl-vHMS, multiple examples of each movement are needed for good
clustering results. That means in cl-vHMS n different motion trajectories y1, ...yn, yj ∈
Rd+dv

are given as input. In Step 1 of Algorithm 2, each trajectory is segmented
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individually into its building blocks. Step 2 is replaced by the determination of the
clusters compared to step 2 in Algorithm 1, which is done for all building block
segments detected in the n movement trajectories. Afterwards, the algorithm is
continued in step 3-5 in a similar way as Algorithm 1 by determining the possible
segmentations, classifying or clustering of the possible segments and determination of
the segmentation which best fits with respect to the uncertainty estimates.

In the experiments, a clustering approach is used in step 2, i.e., steps 3-5 are run
on each trajectory individually like in Algorithm 1 using supervised methods. In this
way the algorithm still results in labeled actions, but gives only clustered movement
building blocks.

6.2.2. Classification and clustering approaches

Different classification or clustering algorithms and uncertainty estimation approaches
can be used in the presented hierarchical segmentation algorithms. To minimize the
process of parameter tuning, use simple approaches with a small number of parame-
ters should be used. Although in the last years the focus was on deep learning based
methods for action recognition, the experiments presented in chapter 5 showed that
the simple 1-NN classification is a good alternative for the classification of move-
ment segments detected using the vMCI algorithm, already with a small number of
labeled training data. Thus, a simple 1-NN with Euclidean distance is used for the
classification of building blocks in step 2 of Algorithm 1. Especially for the few-shot
classification of simple movement segments detected by the vMCI algorithm, 1-NN
performed better than classification based on HMMs and similar to Long Short-Term
Memory networks in the experiments performed in chapter 5. However, by using
1-NN, no hyper-parameters need to be tuned. For the action detection higher levels,
the classification algorithm should be selected with respect to the complexity of the
actions that should be detected. In the experiments conducted in this chapter, 1-NN is
used on both levels. The uncertainty is estimated using the distance of the data sample
to its nearest neighbor.

Because of the good results which could be achieved using Euclidean distance based
k-NN to classify building blocks, k-means is evaluated for clustering, which clusters a
data point to the cluster center which is nearest to it based on the Euclidean distance.
The number of clusters k has to be set in advance. To circumvent the selection of k in
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k-means, the Gaussian means (g-means) algorithm was proposed [Hamerly and Elkan,
2004]. In the g-means algorithm, the data is incrementally clustered using k-means
with k = 2 until the clusters are Gaussian. The Anderson-Darling statistic test is used
to determine if the resulting clusters are Gaussian or not. If a cluster is not Gaussian,
its again clustered into two clusters using k-means. This is done until all clusters
are Gaussian or a predefined maximal number of iterations is reached. An adapted
version an open source g-means implementation1 is used to evaluate the clustering of
building blocks using g-means in comparison to k-means.

6.3. Experiments and Results

The presented hierarchical segmentation approach as well as its clustering variant were
tested on two datasets, the simple one-handed point-to-point movement introduced
in section 3.2 and the more complex dual arm object rotation task introduced in
section 3.7. The recorded raw marker positions where down-sampled to 30 Hz for
movement segmentation. To segment the data using the vMCI algorithm, the 3D
positions of the hands were used as input as well as their absolute velocity calculated
from these positions. The 3D positions were further preprocessed so that the first
order differences are one, as proposed in section 4.3. For classification and clustering,
the position of the hand, elbow, and shoulder marker, which were transformed into
a coordinate system located at the back of the participants, are used as features. All
features were interpolated to the same length and normalized to values between 0 and
1.

In the evaluations, a determined segmentation point within a margin of 0.2 sec-
onds around the true segmentation point was considered as TP. To determine the
classification accuracy of the clustering approaches, the unlabeled clusters have to be
mapped in an optimal way to the labeled ground truth data. This is a fundamental
combinatorial optimization problem called assignment problem, which can be solved
using Munkres algorithm [Munkres, 1957]. The Munkres algorithm, also known as
Hungarian method or Kuhn-Munkres algorithm, is a method to solve the assignment
problem in polynomial time. The Munkres algorithm was implemented in Python
based on the matlab implementation available within the BPARHMM toolbox2.

1https://github.com/flylo/g-means
2https://emilybfox.su.domains/wp-content/uploads/2021/12/BPARHMMtoolbox.zip
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6.3. Experiments and Results

Table 6.1.: Mean segmentation results of hierarchical segmentation of reference point-to-point move-
ments.

building block detection action detection
F1-measure ACC F1-measure ACC

(seg.) (class.) (seg.) (class.)
vHMS 0.85 0.79

0.77 0.97cl-vHMS (g-means) 0.85 0.72
cl-vHMS (k-means) 0.85 0.75

6.3.1. Hierarchical segmentation of point-to-point movements

In the first evaluation of the proposed methods, the simple point-to-point movements
recording in the reference setup were used (see section 3.2). In this testbed, the
participants had to move a stick through a step pattern with only little space to vary
the position, see the right image in Figure 3.4. There are two ways to go through the
pattern: starting at the bottom left going to the top right (action 1: step up) and going
backwards from the upper right to bottom left (action 2: step down). The action step up
consists of two point-to-point movements left and up, and the action step down consists
of the two movements down and right. That means, the movements performed in this
simple reference testbed consist of four building blocks (right, left, up, down) which
can be combined to two different actions (step up, step down). The movements of all 6
participants, each performing the two actions one after another for roughly 3 minutes,
with a short break after each minute, were used for evaluation. In total, 171 examples
of each action were available. The whole dataset was manually labeled by the same
person by visual analysis of the stick position to obtain a ground truth segmentation
as described in section 3.8.

To run the vHMS algorithm a training data set with 4 labeled examples of each
action and its building blocks was generated. The examples were randomly selected.
The vHMS algorithm was run on the remaining 167 examples. In each example, which
consists of the actions step up and step down, 8 building blocks and 2 actions should
be detected, i.e., the correct number of segmentation points is 7 and 1 respectively.
The F1-measure of the segmentation and classification accuracy for each algorithm
are shown in Table 6.1. The vHMS algorithm detected the building blocks in the test
examples with a mean F1-measure of 0.85 with 6 TP and 1.1 FP. The two actions were
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Figure 6.2.: Example segmentation result of the step movement. The hand positions during the
movement are shown in colored lines, where the colors indicate the detected building
block. The starting position is marked with a big point. The movement in the first row
is recognized as action step up, the second row as action step down. The result of the
manual segmentation is compared to vHMS, cl-vHMS using k-means, and cl-vHMS using
g-means. Image extracted form [Gutzeit, 2022], Figure 4.

detected with a F1-measure of 0.77, with 0.8 TP and 0.3 FP. The movement labels for
each data point were detected with an accuracy of 79% and 97% respectively. That
means, that nearly 80% of the data points were assigned to the correct building block,
and nearly all these data points were assigned to the correct action.

For the cl-vHMS algorithm, in which 4 examples were clustered at once (n = 4
in Algorithm 2), the building blocks were assigned with an accuracy of 72% to the
correct class using k-means and 75% with g-means. In the k-means algorithm, k is set
to k = 5, which is the number of expected building block classes +1 to account for
movement parts that cannot be assigned to one of the expected movement classes. To
determine the accuracy for the clustering approaches, Munkres algorithm was used
to map the cluster number to the true labels. An example results of all three variants
of the hierarchical segmentation compared to a manual segmentation is shown in
Figure 6.2. In this evaluation the approaches obtain good results based on a small
number of movement examples also if no labeled training data is used for the detection
of building blocks.
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6.3.2. Hierarchical segmentation of of two-handed object rotation
movements

The second evaluation was done on a dual arm rotation task introduced in section 3.7.
The participants were instructed to grasp a rectangular frame with both hands, lift it to
a horizontal position, turn it to vertical position and back to horizontal position, and
finally placing it back on the table. The recorded movements consist of four different
dual arm actions lift, turn clockwise, turn counterclockwise, and place, with 7 building
block segments for each hand: lift, re-grasp down, re-grasp up, hold, turn clockwise, turn
counterclockwise, and place. All movements recorded, in total 33 examples for each
action, were used for evaluation. This dataset is well suited for the evaluation of the
hierarchical segmentation because it contains dual arm movements with synchronous
as well as asynchronous movements of the hand. Additionally, the turning actions
were executed with different compositions of building blocks, see for example the two
variants of turn clockwise visualized in Figure 3.10.

To run the vHMS algorithms on the dual arm data, training data consisting of 8
randomly selected examples of each movement was generated. Each training example
contained the labeled building blocks for the right and left hand respectively, as well
as the data belonging to the whole action with the dedicated label. To segment the
dual arm data hierarchically, step 1 and 2 of Algorithm 1 and 2 were run for each
hand separately, so that the resulting building blocks could clearly be assigned to the
correct hand. In the vMCI algorithm, it is also possible to evaluate the data of both
hands at once. However, this would result in building block segments which end at
positions where both hands finish a sequence with a bell-shaped velocity at the same
time, which is not always the case for the asynchronous dual arm movement analyzed
in this experiment. In the cl-vHMS algorithm using k-means, the parameter k was set
to 8, which is again the number of expected building blocks +1. For both clustering
variants 8 examples were clustered at once.

For this data, the true number of segmentation points can differ between movement
examples because of the different possibilities to fulfill the task. On average, the
movement examples contain 16.4 building blocks and 5.6 actions. The results of the au-
tomatic segmentation and classification can be seen in Table 6.2. The segment borders
of the building blocks could be detected with a mean F1-measure of 0.74, whereas the
F1-measure for the result on one example was determined by summing up the mean of
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Table 6.2.: Mean segmentation results of hierarchical segmentation of dual arm rotation movements.

building block detection action detection
F1-measure ACC F1-measure ACC

(seg.) (class.) (seg.) (class.)
vHMS 0.74 0.62

0.72 0.80cl-vHMS (g-means) 0.74 0.70
cl-vHMS (k-means) 0.74 0.65

the results of the individual hands. The mean number of TP was 10.4 and the number
of FP was 3.6. Using vHMS, the building block segments were assigned to the correct
class with an accuracy of 62%. Using cl-vHMS, the point-wise accuracy was 70% for
the g-means approach and 65% for the k-means approach. An example result can be
seen in Figure 6.3. For this dataset, the clustering approaches, which do not require
a set of labeled examples of the building block movements for training, performed
better than vHMS. This is, because the dataset contains unlabeled movement parts
which cannot be assigned to one of the expected movement classes. Using vHMS with
1-NN, these parts were mapped to a known class which automatically results in a
miss-classification. Using unsupervised methods, these movements can be grouped to
a new cluster, which is mapped using Munkres algorithm to the ground truth class
with no label. With these methods, nearly 3/4 of the data could be assigned to the
correct building block movement using g-means based cl-vHMS, despite the clear
drop of segmentation accuracy compared to the results in section 6.3.1. The segment
borders of the dual arm actions were detected with a F1-measure of 0.72, with 2.6 TP
and 0.3 FP, and a point-wise accuracy of 80%.

6.4. Discussion

The vHMS approach for hierarchical segmentation of human manipulation move-
ments was presented in this chapter. The algorithm automatically detects movement
building blocks with a bell-shaped velocity profile which are assumed to be char-
acteristic for human manipulation movements as well as movement actions which
are composed of several building blocks. The experiments, performed on simple
one-handed point-to-point movements and a more complex object rotation task which
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Figure 6.3.: Hiearachical segmentations of a rotation movement in comparison to manual segmentation.
Example segmentation result of a rotation movement. Shown are the actions turn
clockwise (first row) and turn counterclockwise (second row). The lines between hand,
elbow, and shoulder marker are shown in grey to visualize the arm position. The hand
positions are shown in colored lines, where the colors indicate the detected building block
of each hand. The results of the manual segmentation are compared to vHMS, cl-vHMS
using k-means, and cl-vHMS using g-means. Parts of these plots were originally published
in [Gutzeit, 2022], Figure 5.

consists of synchronous as well as asynchronous dual arm movements, show that
the algorithm reliably detects building blocks and actions in movement examples of
several subjects using a small number of labeled training examples.

Furthermore, a variant of the hierarchical segmentation was presented, cl-vHMS,
in which the supervised classification of building blocks movements is replaced by
unsupervised approaches which do not require a manual generation of training data.
For the dual arm movements, which contain small extra movements that cannot be
clearly assigned to one of the defined movement classes, the cluster-based method
using g-means outperformed the supervised vHMS approach by approximately 10%.

The proposed hierarchical algorithm is designed in a way that the classification and
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clustering methods can easily be replaced. Using for example neural network based
approaches may improve action detection accuracy, also if more complex actions are
analyzed. For the building block detection, simple approaches such as the proposed
1-NN classification achieve good results, because the building blocks are by definition
simple movement identities.
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7 Chapter 7.

Application in Robotic Learning
from Demonstration

In this chapter, a framework to transfer human movement examples to robotic systems
using imitation learning is introduced. By using the segmentation and recognition
approaches described in the previous chapters, movement building blocks can be
detected in human demonstrations and directly be used to generate robotic behavior
using this framework. Using this, a robotic system can learn solutions of tasks that
were not foreseen during design without robotic expert knowledge. This is required if
the system should be deployed in unknown or unpredictable, dynamic environments,
e.g., in space, search and rescue, and underwater scenarios.

The imitation learning framework is called the BesMan Learning Platform. It is
a modular framework that incorporates all steps needed to generate robotic behav-
ior from demonstration using imitation and reinforcement learning, including the
automated approaches to segment and annotate human movement demonstrations.
Complete descriptions of robot skill learning frameworks are hardly present in the
literature. A thorough search of the relevant literature yielded only one related article
published by [Peters et al., 2012] that gives a complete overview of a learning archi-
tecture and is comparable to learning platform presented in this chapter. Their work
includes imitation learning and reinforcement learning methods to learn so-called
motor primitives as well as generalization methods for these motor primitives and
even describes methods to learn operational space control. However, in their work as
well as in the majority of similar works the relevant behaviors are directly presented by
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kinesthetic teaching so that there are no kinematic and dynamic differences between
the demonstrator and the target system. In addition, only the relevant behavior is
presented or it is not discussed how the relevant part that should be transferred is
extracted. In contrast to that, the goal of the imitation learning framework presented
in this chapter is that a human can demonstrate the behavior as naturally as possi-
ble. By integrating unsupervised segmentation methods, the relevant movements in
the demonstrated behavior can be detected automatically. In the BesMan learning
platform, the vMCI algorithm is used to detect the movement parts in the human
demonstration which should be transferred to the robotic system. As described in
chapter 4, the vMCI algorithm detects building blocks in human manipulation move-
ments. By transferring these building blocks to a robotic system, central entities for
manipulation tasks are provided to the system, which can be combined to solve also
similar tasks which were not directly demonstrated by the human.

In section 7.1, the individual modules of the behavior learning framework are
explained. Afterwards, the framework is evaluated with respect to automation level
and time requirements needed to teach a robotic arm to throw a ball. Additionally,
two applications on other learning tasks are presented. In a further experiment,
the generalization ability of the framework is shown by transferring a large set of
stick-throwing demonstration to four different robotic systems.

The texts, figures, and tables in this chapter are taken or adapted from [Gutzeit
et al., 2018a] and [Gutzeit et al., 2019]. The general concept of the learning was first
published in [Metzen et al., 2013].

7.1. BesMan Learning Platform

The framework for robotic movement generation using human demonstrations was
developed within the project BesMan1. The contribution of this thesis to this frame-
work is the acquisition of the human movement demonstrations and the integration
of processes to automatically segment and annotate the recorded movements to detect
the relevant parts which should be transferred to the robotic system. In this section,
the whole learning platform is presented, including a short overview of the learning
algorithms needed to generate robotic behavior from the acquired human movement
demonstrations.

1For more details, see http://robotik.dfki-bremen.de/en/research/projects/besman.html
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7.1. BesMan Learning Platform

Figure 7.1.: Dataflow diagram of the BesMan Learning Platform. A behavior is demonstrated and
segmented into smaller behavioral building blocks. Motion plans corresponding to these
building blocks are imitated and refined using reinforcement learning and/or transfer
learning. Acquired motion plans are specific for a task but can be generalized to more
generic behavior templates. Once a new specific task is encountered, the behavior
template is instantiated and yields a task-specific motion plan. The modules which
are presented in detail in this thesis are highlighted in red and blue. Image adapted
from [Gutzeit et al., 2018a], Figure 1.

An overview of the BesMan learning platform can be seen in Figure 7.1. It consists
of several modules needed to generate so-called motion plans from human movement
demonstrations which can be executed on a robotic system. Motion plans represent
solutions to generate specific behaviors. Furthermore, more generic behavior templates
can be generated. Behavior templates represent generic movements to generate a
flexible behavior able to, e.g., reach different points in space and to be executed on
different systems with different morphology.

To generate robotic behavior from detected movement segments, the human motion
needs to be mapped to the robot morphology with a subsequent motion refinement,
which ensures that the desired goal is reached. The three main modules of the learning
platform consist of the acquisition and selection of appropriate human movement
examples, the imitation of these and the refinement of the imitated movement. They
are described in more detail in the following paragraphs.

7.1.1. Acquisition of human movement examples

Motion tracking data, such as the datasets described in section 3, can directly be
used as input to generate robotic movements using the learning platform. In the
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framework, the vMCI algorithm for automated movement segmentation as well
as 1-NN for segment classification are directly integrated. As evaluated in detail in
chapter 4, vMCI reliably identifies building blocks in human manipulation movements
without manual user input. To generate labels for the detected segments, the 1-NN
classification is a suitable method which only requires a small number of labeled
training examples, as evaluated in detail in chapter 5. Using this, the segments that
should be learned and transferred to the robot can be automatically selected from the
recorded movement data.

To run the automatic segmentation and recognition, it is important that the recorded
maker positions can be transferred into a coordinate system which is local to the
demonstrator. Using the Qualisys system for data recording, as described in detail in
section 3.1.1, this is realized by placing three markers at the back of the subject, from
which the local coordinate system can be determined. After the data is down-sampled,
it can directly be used as input for the vMCI movement segmentation with a successive
movement classification. The same applies for movement demonstration recorded
using the Xsens motion suit, for which reference positions at the back of the subjects
can be used to transfer the data into a local coordinate system. For each recording
modality, at least the position and the velocity of the hand of the demonstrator needs
to be recorded, because the vMCI algorithm uses this information to detect movement
building blocks, as described in detail in chapter 4.

7.1.2. Imitation learning

Each relevant segment that was detected using vMCI segmentation and 1-NN classifi-
cation is represented as a motion plan using imitation learning. Motion plans describe
trajectories that can be executed by the robot and mimic the trajectories presented by
the human demonstrator during a single behavioral building block.

Due to the different morphology of humans and systems, human behaviors cannot
be directly transferred. Instead, the correspondence problem has to be solved, i.e.,
the problem on how human body positions can be mapped to parts of the robotic
system to generate executable motions [Nehaniv and Dautenhahn, 2002]. To solve the
correspondence problem, a record mapping is needed which maps marker trajectories
of human demonstrations to a sequence of actions or system states, as well as an
embodiment mapping, which maps the recorded sequence to a trajectory that can
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be executed on the target system [Argall et al., 2009]. As human joint angles cannot
be directly measured using motion tracking the record mapping extracts the human
hand pose trajectories from the recorded marker positions and represents them in a
coordinate frame local to the human subject. The embodiment mapping makes the
trajectory executable on the target system, despite possible difference in the workspace,
kinematic structures and dynamic capabilities between human teacher and system.
In the learning platform the embodiment mapping is defined automatically by using
black box optimization in which reachability of the desired poses are optimized, while
minimizing the risk of getting too close to singularities, avoiding self-collisions, and
maximizing exploitation of the robot’s workspace. For the optimization, any black box
optimizer can be used. A detailed description of the record and embodiment mapping
can be found in [Gutzeit et al., 2018a] and [Gutzeit et al., 2019].

After the recorded trajectory is mapped to the robot’s workspace, a suitable repre-
sentation that can be used for further adaptation and refinement is needed. A popular
class of policy representations that has been used to learn movement primitives for
robotic manipulation are DMPs [Ijspeert et al., 2013, Pastor et al., 2009]. With a DMP
the robotic movement is represented as a nonlinear dynamical system which converges
to a given target. By adjusting the weights of the forcing term in the DMP formulation
to the measured movement demonstration, the shape of the trajectory can be regulated
to achieve the desired behavior.

There are numerous advantages of DMPs in comparison to other policy representa-
tions for imitation learning, among them: 1. They are stable trajectory representations.
Slight errors in execution of the trajectory will not result in error accumulation like
in general function approximators. 2. To reproduce a demonstrated movement, a
one-shot learning algorithm can be used that determines the weights of the forcing
term. Hence, imitation learning with DMPs is much simpler than it is for more general
function approximators. 3. Movements can be easily adapted (even during execution):
the goal of the movement can be changed and obstacles can be avoided.

7.1.3. Motion refinement

Although the record and embodiment mapping described in the previous section
ensure that the movement is executable on the target system, the generated motion
plans might not produce the same result as the human demonstration. For example, a

117



7. Application in Robotic Learning from Demonstration

ball thrown using an imitated throwing building bock that is executed on the target
system might not hit the same position like in the human demonstration. This results
from considerably different kinematic and dynamic properties between human and
robot. To account for this, reinforcement learning methods are used to refine the
imitated motion plan. There are several policy search methods integrated in the
learning platform, such as Covariance Matrix Adaption Evolution Strategy (CMA-ES;
[Hansen and Ostermeier, 2001]), Relative Entropy Policy Search (REPS; [Peters et al.,
2010]), and Path Integral Policy Improvement (PI2; [Theodorou et al., 2010]). All
integrated algorithms require an interaction with the real or simulated target system
and the specification of a reward function which tells the learning algorithm how well
a motion plan solves the task.

Alternatively or in conjunction with reinforcement learning, transfer learning can be
used to adapt motion plans. Using this, differences in the execution of motion plans in
simulation and on the real system are considered during motion plan refinement. To
account for this so-called simulation-to-reality-gap, the transferability approach [Koos
et al., 2013] is integrated into the learning platform. The approach minimizes the
number of tests on the real system by finding motion plans which are maximizing the
reward in simulation as well as the transferability of these motion plans to the real
world.

The resulting motion plans are solution for the specific setting the human demon-
strated the movement in. The learning platform also includes contextual policy search
methods [Deisenroth et al., 2013] in the behavior template learning module, to gener-
ate more general representations of these motion plans, so-called behavior templates,
which can be executed in different but similar settings. More details about the methods
for motion refinement and behavior template learning can be found in [Gutzeit and
Kirchner, 2016] and the references contained therein.

7.2. Experiments and Results

The learning platform was tested and evaluated on different tasks and robotic systems,
which are presented in this section. In 7.2.1, the learning platform is evaluated with
respect to time requirements and level of automation on ball-throwing movements
which were transferred to the robotic arm COMPI [Bargsten and de Gea Fernández,
2015]. The transfer of grasping movements to the Kuka iiwa lightweight robot and
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Figure 7.2.: Robotic arm COMPI with a spoon mounted as end effector. The ball that should be
thrown was placed into the spoon. Image adapted from [Gutzeit et al., 2018a], Figure 3.

lever-pulling movements to the robotic system Mantis [Bartsch et al., 2016] are pre-
sented in section 7.2.2. Both of these experiments were originally presented in [Gutzeit
et al., 2018a] and are summarized in this section. Afterwards, the generalization
ability of the learning platform to different systems is presented by transferring stick-
throwing movements to different robotic system, an evaluation which was originally
published in [Gutzeit et al., 2019].

7.2.1. Transfer of ball-throwing movements to COMPI

In this section, the learning platform is evaluated as a whole in a ball-throwing scenario.
Human demonstration of ball-throwing movements are transferred to the robotic arm
COMPI, which is displayed in Figure 7.2. A scoop that can hold a ball is mounted as
COMPI’s end effector.

The ball-throwing movements described in section 3.5 are used as demonstrations
for this evaluation. The datasets consist of throwing demonstrations of 10 differed
subjects, each performing 24 throws. Due to a high number of occlusions during
movement recording, the marker positions were not continuously tracked. An auto-
matic labeling approach, which assigns labels to trajectories of the passive markers
of the Qualisys system based on the relative positions of the markers to each other,
is tested on this dataset. In the evaluation this approach is evaluated with respect to
time requirements to manual marker labeling.

The recorded data was automatically segmented using vMCI with successive an-
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notation using 1-NN into the classes strike out, throw, swing out, and idle. To train
the 1-NN classifier, a training set of 40 throwing demonstration from subjects 1-5 (8
throwing examples from each subject) was generated. The throwing movements of
subjects 1-5 that were not used for training and all the throwing movements of the
subjects 6-10 were used to evaluate the classifier. On the test set consisting of the
remaining demonstrations of subjects 1-5, an accuracy of 93.2% could be achieved. The
important movement class throw, which should be transferred to the robotic system,
was detected with an accuracy of 98.6% on this test set. The second test set consisted
of demonstrations of subjects 6-10, i.e., no throwing movements of these subjects were
used to train the classifier. On this data, the accuracy was 89.1% and the class throw
was detected with 93.9% accuracy. As a conclusion, different movement classes can be
successfully identified using vMCI segmentation and 1-NN classification.

To transfer an identified throwing building block to the system, the trajectory is
translated and rotated so that it fits into the workspace of COMPI. The end effector
trajectories are transformed into joint trajectories via inverse kinematics. In addition,
the joint trajectories are scaled to respect the joint velocity limits of the target system.
In a last step, the motion plan in generated by representing the throwing movement
building block as a joint space DMP via imitation learning. Moreover, a minimum
execution time of 0.95 seconds is set to reduce the velocity and accelerations, which
are penalized during the subsequently performed optimization of the motion plan.

Due to kinematic and dynamic differences between the human demonstrators and
the robotic system COMPI, an imitated throwing movement has not the same effect
on the ball as the human movement. For this reason, the motion plans are adapted
using the transferability approach, as described in detail in [Gutzeit et al., 2018a].
Several parameters including the initial position, the goal position, DMP weights, and
execution time are optimized to generated throwing-motion plans which result in a
touchdown position of maximal 10 cm around the target position. The target distance
of the touchdown position of the ball is optimized in simulation, with intermediate
execution of promising throws on the real system.

Results An overview of the time required for each step needed to transfer the throw-
ing movements can be found in Table 7.1. The required time for successful automatic
marker labeling is much faster than manual labeling even though the automatic la-
beling is slow because of the high number of gaps in the recorded marker trajectories.
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Table 7.1.: Required time (per experiment, 8 throws) for each stage of the learning platform. Table
adapted from [Gutzeit et al., 2018a], Table 1.

Step Time Auto- Required knowledge
(min) mated

Attaching markers 0:55 ✗

Motion capture 1:08 ✗

Automatic marker labeling 4:58 ✓ Neighboring markers,
initial pose

Manual marker labeling 9:19 ✗

Behavior segmentation 0:44 ✓

Manual movement labeling2 50 ✗

Movement classification 0:02 ✓

Imitation learning 4:20 ✓ Robot description
Policy search 10 ✓ Reward function, simulation
Transferability approach 75 (✓) Reward function, simulation
2 training data sets contains 40 throws

If the markers were always visible the automatic labeling would have taken only
about some seconds. The manual movement labeling, which is needed to generate
the training dataset consisting of 40 example throwing demonstration, is very time
intensive but has to be done only once. In the transfer of further throwing movements,
the same training set can be used. Furthermore, the experiments in section 5.4 showed
that good classification accuracies can be achieved if this training dataset is reduced
to less than 20 throwing examples, which would also reduce the time required to
generate the training dataset. The longest part in the whole process is the refinement
for the target platform (imitation, policy search, transfer), which is a difficult problem
that involves interaction with the real world.

Although, the process of acquiring new behaviors is automated, still some human
intervention is required either through knowledge that has to be given to the system
or by interacting physically with the system. An overview can be found in Table 7.1.
Of course it is necessary that a human demonstrates the movement. The labeling
of the markers can be completely automated with more cameras. However, the
maximum possible level of automation was not achieved in the presented experiments.
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Movement classification requires a dataset that is labeled manually but this effort
can be minimized by using a classifier which recognizes the movements at a high
accuracy with small training data sets. When the learning platform is set up for a new
target system and type of manipulation behavior, the components that are combined
for embodiment mapping has to be selected. However, the imitation learning is
completely automated. The motion plan refinement with the transferability approach
requires human assistance because the robot has to try throwing movements in the real
world and is not able to get the ball back on its own. The process itself is automated
so that no knowledge about the system or the task is required from the human at this
step. In addition, a reward function has to be defined that describes how a solution of
a task should look like and a simulation has to be prepared to minimize the interaction
with the real world. These are manual processes at the movement.

7.2.2. Application of the learning platform on different movements

Next to the transfer of ball-throwing movements to the COMPI, the learning platform
was used to transfer a grasping movement and a lever-pulling movement to a Kuka
iiwa lightweight robot and the robotic system Mantis [Bartsch et al., 2016] respectively.
The systems can be seen in Figure 7.3 and videos of both applications can be found
online.3

In the transfer of a grasping movement, the Kuka robotic arm should grasp a
box from a shelf. The grasping movement was imitated from the human pick-and-
place demonstrations described in section 3.4, in which a box is grasped from a shelf,
placed on a table, and put back afterwards. After successful detection of a grasping
movement building block using vMCI segmentation and 1-NN classification, it was
imitated using a Cartesian space DMP and adapted to be executed on a Kuka robot
equipped with a 3-finger gripper from Robotiq. Only one demonstration was required
to learn the grasping movement. Cartesian DMPs were used for easy integration with
the used whole-body control and perception. In this scenario the refinement was done
using the CMA-ES algorithm in simulation. After 50-100 iterations, the movement
could be successfully transferred to the robotic system.

3Grasp box: https://robotik.dfki-bremen.de/de/mediathek/videoarchiv/besman-zweite-demo.
html; pull lever: https://robotik.dfki-bremen.de/de/mediathek/videoarchiv/
besman-dritte-demo.html
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(a)

(b)

Figure 7.3.: Excerpts from two movement executions which were taught to the systems using the
BesMan learning platform. (a) Kuka iiwa lightweight robot grasping a box from a shelf.
(b) Mantis robot executing a lever-pulling movement.

In another scenario, the learning platform was used to teach the robotic system
Mantis to pull a lever. For this, the movement demonstrations presented in section 3.3
were used. Again, the recorded movements could be successfully segmented. Due to
the fixed lever position in this experiment, the movement execution of the human was
strongly predetermined leading to good classification results with only one training
example per class, see section 5.4. Like in the pick-and-place scenario, reinforcement
learning techniques implemented in the learning platform were used to adapt the
demonstrated movement to the robotic system. REPS and CMA-ES gave good results.
After several hundred episodes in simulation, a successful movement could be gener-
ated. Learning could be done in parallel from multiple demonstrations with each RL
learning process being initialized with a single demonstration.
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As in the ball-throwing scenario, the transfer of the demonstrated movements was
partially automated in the transfer of grasping and lever-pulling movements. To
recognize the important movement segment, only a few manually labeled training
examples are needed. To imitate and adapt the demonstrations to the system, the
embodiment mapping and a reward function have to be selected with regards to the
robotic system and the task goal. Besides this, the transfer of the movement to the
system is completely automated.

7.2.3. Transfer of stick-throwing movements to different systems

In the experiments described in this section, stick-throwing movements were trans-
ferred to four different robotic systems in simulation and one of these systems in
real world without refinement of the imitated trajectories. For this evaluation, mo-
tion plans for these systems are generated using human movement demonstration
of the two stick-throwing datasets described in section 3.5, consisting of 697 and 34
movement examples respectively. The imitation of the movements was performed
with a configurable version of the learning platform, which allows to easily adapt the
learning for different robotic system by optimizing a generalized goal function in the
embodiment mapping, as described in more detail in [Gutzeit et al., 2019].

Transfer in simulation The generality of the movement segmentation and classifi-
cation as well as the transfer to different robotic systems, namely Universal Robots’
UR5 and UR10, KUKA iiwa lightweight robot, and COMPI, was evaluated on the
stick-throwing dataset 1, containing 697 movement demonstrations. To evaluate the
movement classification, a stratified cross-validation repeated 100 times was per-
formed with a fixed number of examples per class in the training data. Furthermore,
the number of successfully transferred movements as well as the difference between
the position of the hand in the demonstrations and the end effector position of the
systems are analyzed.

The automatic segmentation of 697 demonstrated throws resulted in 2913 detected
segments with a bell-shaped velocity profile. Although some throwing demonstrations
showed just a small decrease of the velocity of the hand between throw and swing out
phase of the movement, most of the throwing segments were successfully segmented.
As an example result, a demonstration of one subject containing 41 throws is visualized
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Figure 7.4.: Throwing trajectories of subject 5. The position of the hand is shown for one set
consisting of 41 stick-throwing movements. Green dots mark the result of the vMCI
segmentation. The resulting segment trajectories were labeled with 1-NN classification.
Different line styles mark the different classes. Throwing segments are visualized as
straight lines with a different color for each throw. Image extracted from [Gutzeit et al.,
2019], Figure 3.

in 7.4.

2233 of the detected movement segments could clearly be assigned to one of the
movement classes strike out, throw, swing out, and idle and were used to evaluate the
annotation. The number of training examples per class was varied between 1 and 20.
With 4 examples per class a mean classification accuracy of 90% could be achieved.
95% could be achieved with 9 examples per class. Thus, a training data set with 9
examples per class was created, which contains the first three throwing demonstration
of three different subjects. Using this training data, the segments of all recorded
demonstration were classified. The movement class throw could be detected with an
accuracy of 99%, with 623 correctly detected throwing movements, 13 false negatives
and 2 false positives. In 7.4, different line styles indicate the resulting labels in the
movement demonstrations of subject 5. The segments of this subject were classified
with an accuracy of 98%, with 24 segments that could not be clearly assigned to one of
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the four movement classes and was thus removed from evaluation. This result shows
that the approach to detect the relevant parts in the demonstrations also generalizes to
large datasets. A small number of labeled training data was sufficient to annotate the
automatically derived segments.

The throwing trajectories mapped into the workspace of the robotic system UR5,
UR10, KUKA LBR iiwa, and COMPI, are shown in Figure 7.5 (a). 682 trajectories
were transferred to the workspaces of all target systems. Most of the trajectories
easily fit in the workspace of UR10 (arm radius: 1300mm) and KUKA LBR iiwa 7 (arm
radius: 1266mm), while many trajectories are distorted or are close to the borders
of the workspace of UR5 (arm radius: 850mm) and COMPI (arm radius: 940mm).
Throwing movements often tend to be close to the borders of the human’s workspace.
Hence, the selected skill is quite challenging for smaller robots. Figure 7.5 (b) shows
the demonstration of subject 5 visualized in 7.4 transferred to the robotic arms. The
different colors match the colors of the throwing segments in 7.4. Figure 7.5 (c)
shows the ground contact points of sticks for the presented throwing trajectories from
simulation. It can be seen that on average the UR10 has the widest distribution as it
has the largest workspace. In the next section, it is quantified how well the throwing
trajectories can be transferred to the real UR5 robot, as it is one of the more challenging
robotic systems due to the more restricted workspace.

Transfer to a real system The quality of the transferred movements is evaluated
by comparing the trajectory and goal position of the stick thrown by humans to the
one thrown by a real UR5 robot. For this, the stick-throwing set 2 was used, in which
also the position of the stick during the movement was tracked. Additionally, the
movement of the robotic arm UR5 is captured by placing a marker at the end effector,
see Figure 7.6.

The 34 demonstrations were transferred to the real UR5 robotic arm. The num-
ber of successful throws was analysed, the stick position during the throw, and its
goal position. The transferability of the demonstrated throws on the UR5 robot is
evaluated with respect to the following aspects: Does the robot inadvertently collide
with anything including the stick? Does the stick fall out of the stick holder while the
robot approaches the starting pose of the trajectory? Does the stick leave the holder
during the throwing movement? If any of these aspects are evaluated negatively, the
trajectory is considered not transferable. To evaluate the quality of the transferred
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(a) All recognized throwing movements transferred to the workspace of the four robots. Trajectories from
the same subject are shown in the same color

(b) All throwing movements of subject 5. Colors indicate the indices of the throws and correspond to the
colors in. The frames of the robots’ base links are shown.

(c) Throwing results in simulation. The distribution of ground contact points of the sticks is displayed.
Colors of the points indicate the index of the transferred throwing trajectory
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Figure 7.5.: End effector trajectories of throwing movements in robots’ workspaces and corresponding
ground contact points of the sticks. Image extracted from [Gutzeit et al., 2019], Figure 4.
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Figure 7.6.: Movement recording setup. To record the stick position, a marker is attached to the tip
of the stick. The movement of the robotic arm UR5 is tracked with a marker attached
to the end effector. Image extracted from [Gutzeit et al., 2019], Figure 2 (b).

throws, the stick trajectories of the demonstrated throws and the recordings of the
throws transferred to the UR5 were compared. Since the motion capture system
sometimes returned noisy stick position measurements, the trajectories had to be
interpolated. A quadratic model was used for interpolation. The same model was
used to extrapolate both the demonstrated and the reproduced stick trajectory until
the stick hit the ground. Before this, the demonstrated trajectory was aligned to the
start position of the transferred one. Thus, the distance between ground contact points
as well as the similarity of the the stick trajectories can be determined. To compare
the trajectories, the average DTW [Sakoe and Chiba, 1978] distance was used, i.e., the
DTW distance divided by the maximum number of steps of the two time series.

In this experiment, the throwing movements were detected with an accuracy of
97%, using the same training data as in the first experiment. 33 throws were correctly
detected and one was wrongly assigned to another class by the 1-NN classification. 27
out of these segments could be transferred to the real UR5. The executed movements
showed useful throws. However, the goal positions of the demonstrated throws are
not reached by the system. The biggest difference between demonstrated goal position
and goal position of the imitated movement was nearly 1.2m. The mean goal distance
was 0.72m (standard deviation: 0.31m). The mean average DTW distance between
the demonstrated and executed trajectories were 0.15m (standard deviation: 0.1m).
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7.3. Discussion

The results show that it is possible to automatically imitate demonstrated throws and
that most of these throws are executable on the real system but the goal position of
the demonstrated movement could not be reached by solely using imitation learning
without motion refinement.

7.3. Discussion

The results show that it is possible to learn new skills for robots without specifying
the solution directly. The learning platform leverages intuitive knowledge from
humans that do not know anything about the target system to automatically transfer
skills to robots. By integrating automatic movement segmentation and recognition
approaches as introduced in chapter 4 and 5, building blocks can be identified in
human movement demonstration and used as a basis to learn new robotic behavior.
The main impediments that can be overcome by the learning platform in this setting
are the kinematic and dynamic differences of the demonstrator and the target system.

In the transfer of ball-throwing movement, is was shown that new robotic behav-
ior can be learned with only minimal user interference in a reasonable time period.
Additionally, a reaching and lever-pulling movement building block could be used
as movement example for imitation and resulted in successful movement executions
on a robotic system. Especially the successful transfer of the reaching movement is
interesting because this movement building blocks is part of the pick-and-place move-
ments on which the vMCI algorithm showed the lowest segmentation performance in
the evaluations of section 4.4 resulting from inaccurate segment borders. Nonetheless,
a successful reaching movement could be learned using the learning platform.

In a third experiment, stick-throwing trajectories were automatically extracted
from human demonstrations and transferred to four robotic target systems. The
experiment showed that the embodiment mapping, which is needed to map human
movement trajectories into the robot workspace, can be automatized for a dataset
of 697 throws. Throwing is a challenging skill for these robots because it has high
acceleration and velocities and is close to the border of the workspace of humans.
Nonetheless, most of the demonstrated throws could be transferred to the systems
using the proposed framework. Furthermore, the difference of stick trajectories and
ground contact points between demonstrated throws and reproductions of those on
a real UR5 were evaluated. Although the demonstrated throwing movements could
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7. Application in Robotic Learning from Demonstration

be successfully executed on different systems, there is still a significant gap between
the outcome of demonstrated throws and their reproductions. This could be solved
by using reinforcement or transfer learning to refine the movements, as done in the
transfer of ball-throwing movement in the first experiment.

The presented approach still has some limitations: some prior knowledge has to
be defined in form of reward functions, simulations, and preparation of markers for
motion capture. For complex problems with complex reward functions, learning
the reward function would be better than defining it manually. Promising fields of
research are active reward learning [Daniel et al., 2015] and inverse reinforcement
learning [Ng and Russell, 2000]. Simulations ideally would be created automatically
from sensor data, experience, and active exploration in the real world. At the moment,
however, this is still a manual step. For automated behavior recording, marker free
approaches could be tested and compared with respect to accuracy and achievable
automation level. Also some prior knowledge is implicitly integrated in the design
of the learning platform. There is not one combination of methods that works for all
applications. For example, simulation-reality-transfer is only required in challenging
applications like ball-throwing.

130



8 Chapter 8.

Automatic Segmentation of
Teleoperated Movements

In the previous chapters, it was shown that the developed segmentation algorithms
can automatically segment human movement data obtained using motion capture
systems such as Qualisys and that the vMCI algorithm can detect meaningful building
blocks from which successful robotic behavior can be learned. However, in human-
robot interaction, such or similar motion capture systems are not always available.
Instead, there are applications in which the human directly controls a robotic system
using teleoperation. Teleoperation can be useful in medical environments, handling
of nuclear materials, or space and underwater exploration [Lichiardopol, 2007]. Also
robotic systems which are able to run autonomously in certain situations may face
tasks were their movement repertoire is not sufficient. In these situations, teleoperation
is one possibility to execute the desired movements on a system. To teleoperate a
system, a haptic interface is needed such as an exoskeleton as proposed in [Mallwitz
et al., 2015].

In this chapter, it is shown on several exemplary teleoperated movements that the
developed segmentation approaches can also be run on this kind of data. With this,
the central movements which are important to fulfill a certain task may be identified
during teleoperation. This could, e.g., be used to imitate these movements in order
that they are available to the system after teleoperation. An example scenario was
developed in the project TransFIT1, in which a humanoid robotic system is teleoperated

1https://robotik.dfki-bremen.de/en/research/projects/transfit/
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8. Automatic Segmentation of Teleoperated Movements

Figure 8.1.: Recupera Exoskeleton. Image extracted from [Kumar et al., 2019], Figure 1 (a).

in a solar panel rotation task. This panel rotation movement should be imitated in
order that the system can execute the movement again autonomously. For this, data
acquired during teleoperation should be used. A video of this scenario can be found
online at: https://youtu.be/Uwl3XeXvAjo.

The biggest difference in the automated segmentation of teleoperated movements
compared to data acquired using motion tracking is the restriction in movement
execution the human operator is confronted with. Whereas the marker-based motion
tracking techniques described in chapter 3 do not limit the movement space of the
human, an exoskeleton can hinder the operator to move naturally. This is due to
kinematic constraints that can be induced by the exoskeleton. These restrictions may
result in different movement features compared to naturally performed movements.
For example, the velocity of the hand may show different patterns.

In this chapter, it is tested if human movement demonstration obtained during
teleoperation can be automatically segmented using vMCI and vHMS, despite the
restriction of the movement space of the human. For this, several movements were
recorded during teleoperation with an exoskeleton, ranging from a simple one-handed
point-to-point movement to a more complex dual arm movement. At the end of this
chapter, the results are discussed. The analysis of the point-to-point movement was
presented in [Gutzeit et al., 2018b].
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8.1. Data Acquisition

8.1. Data Acquisition

Several movements performed with the Recupera exoskeleton [Kumar et al., 2019],
which is shown in Figure 8.1, were recorded. The subjects either performed certain
movements while wearing the exoskeleton or solved certain teleoperation tasks. Dur-
ing teleoperation, the subjects controlled a simulated version of the RH5 robotic system
developed at DFKI RIC2. The performed teleoperation movements were recorded by
logging the joint positions of the exoskeleton. From these joint positions the Carte-
sian coordinates of the endeffector and position of the limps were obtained using
forward kinematics. Thus, the position of the lower arm, upper arm, and shoulder
of the exoskeleton were calculated which roughly correspond to the position of the
human wrist, elbow, and shoulder which were also recorded using motion tracking as
described in chapter 3. The recorded data was logged at 100 Hz.

8.2. Experiments and Results

Three experiments were performed to test the segmentation approaches on exoskeleton
data. First, one-handed point-to-point movement were segmented using vMCI. Af-
terwards, the hierarchical vHMS segmentation is tested on two dual arm movements,
a circle drawing movement, and a dual arm object rotation task. The segmentation
algorithms were run on the position and the velocity of the lower arm, whereas the
velocity was directly obtained from the position. For this the data was down-sampled
to 25 Hz.

8.2.1. Segmentation of point-to-point movements

To obtain a first impression on the applicability of the developed segmentation algo-
rithms on data obtained via an exoskeleton, simple three-dimensional point-to-point
movements were recorded from one subject. The subject moved the right arm while
wearing the exoskeleton to different positions in space and back. A representative
part of the resulting trajectory of the end effector with corresponding velocity can be
seen in Figure 8.2. The vMCI algorithm was run on this data to obtain the individual

2https://robotik.dfki-bremen.de/en/research/robot-systems/rh5/
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8. Automatic Segmentation of Teleoperated Movements

Figure 8.2.: Results obtained by vMCI on point-to-point movements demonstrated by a subject
wearing an exoskeleton. The right arm was moved from a rest position to 3 different
positions (right side). Image extracted from [Gutzeit et al., 2018b], Figure 1.

building blocks movements of the tasks, i.e., the individual point-to-point movements.
The resulting segmentation points are visualized in Figure 8.2.

The algorithm successfully found movement segments with a bell-shaped velocity
profile in the recorded data. The segments were found without need for data pre-
processing and without any parameter tuning. However, some of the movements
corresponding to a single point-to-point movement were segmented into two seg-
ments instead of one, mainly caused by decelerated movements likely induced by a
movement restriction through the exoskeleton.

8.2.2. Segmentation of dual arm circle drawing

In a second experiment, dual arm circle drawing movements were recorded and
automatically segmented using the hierarchical segmentation approach vHMS. One
subject teleoperated the simulated RH5 system in a way, that the system draws a
circle into the air. To segment the resulting end effector position trajectories of the
exoskeleton using vHMS, training data needed to be acquired. For this, the same
movement performed without the exoskeleton was tracked using the Qualisys motion
capture system. This was done to obtain training data at high resolution that is not
influenced by possible noise or movement restrictions induced by the exoskeleton.
The Qualisys data was manually labeled as described in section 3.8 to generate labeled
movement examples for the two dual arm movement actions circle up and circle down.
Additionally, the movements to the starting position (class move to start) and the
movements of the arms back beside to human body (class move to rest) were recorded.
The setup for training data recording can be seen in Figure 8.3.
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8.2. Experiments and Results

Figure 8.3.: Recording of dual arm movements with action classes circle up and circle down using
the Qualisys system to obtain training data for vHMS segmentation of teleoperated
movements.

Using the generated training data, the movement obtained during teleoperation
was hierarchically segmented using vHMS. The same training data, containing the
classes move to start, circle up, circle down, and move to rest, was used for building block
detection as well as action detection. The labels were assigned to each individual hand
on the building blocks level and to both hands on the action level. This was done
because the arms move synchronous in this task. The result of one representative
movement demonstration can be seen in Figure 8.4. In the detection of building blocks
(Figure 8.4(a)), the data is over-segmented, i.e., several false positive segmentation
points were detected which were assigned in the most cases to wrong movement
classed. Most likely this results from the noisy velocity profile. However, the dual-
arm actions circle up and circle down were correctly detected in level 1 of the vHMS
algorithm, which can be seen in the three-dimensional visualization of the movement
in Figure 8.4(b).

8.2.3. Segmentation of dual arm rotation movements

An additional dataset was recorded using the exoskeleton where a subject controlled
the simulated RH5 to turn a rectangular frame with both hands. The movements
are similar to the movement demonstrations described in section 3.7 and shown in
Figure 3.10, but without re-grasping, i.e., a synchronous dual arm movement was
performed where both end effectors stay connected to the frame. Due to restrictions in
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Figure 8.4.: Result of vHMS on circle drawing movements. On the left side, the velocity of both end
effectors are shown (blue: right hand, green: left hand) with vertical red lines indicating the
detected segment border. On the right side, the three-dimensional movement trajectories
are shown, where different colors indicate different detected movement actions. Green
dots indicate the detected segment borders. (a) shows the intermediate result of vHMS
on level 0, (b) the final segmentation into movement actions.

the workspace of the exoskeleton and the RH5, the frame was turned by approximately
30 degrees. The recorded data contains several repetitions of the rotation movement
consisting of the actions turn clockwise and turn counterclockwise.

All recorded movements were manually segmented and labeled to obtain a ground
truth using the labeling software described in section 3.8. To run vHMS, a training
dataset was generated from this manually labeled ground truth, consisting of two
movement examples for each of the two actions. The remaining demonstrations (one
example per action) were used to test the hierarchical segmentation algorithm vHMS.

Although the segmentation into building blocks showed not that many false pos-
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Figure 8.5.: Results of vHMS on teleoperated dual arm rotation movements. Ground truth (a),
automatically obtained results on level 0 (b), and final result (c) are shown. On the
left side, the velocity of both end effectors is shown (blue: right hand, green: left
hand), with vertical red lines indicating the detected segment border. On the right side,
the three-dimensional movement trajectories are shown, where different colors indicate
different detected movement actions. Green dots indicate the detected segment borders.
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8. Automatic Segmentation of Teleoperated Movements

itives compared to the result of the segmentation of the circle drawing movements
presented in the previous section, most parts of the trajectories were not assigned
to the correct movement class in this intermediate step of vHMS. This can be seen
in the example shown in Figure 8.5(b). This intermediate result corresponds to a
vMCI segmentation with successive 1-NN classification which is on this dataset not
sufficient to correctly determine the segmentation points and movement classes. The
final result of the vHMS segmentation in shown in Figure 8.5(c). In the visualized
movement demonstration, the movement class turn clockwise was assigned to the
correct action label. However, the start of the movement does not correspond to the
manually selected start in the ground truth segmentation shown in Figure 8.5(a). The
first second of the movement demonstration, which was not assigned to a certain
movement class and remained unlabeled in the ground truth, was assigned to the
class turn clockwise by vHMS. Similar results could be observed if the other movement
demonstrations were used as test data.

8.3. Discussion

The results of the experiments described in the previous sections show that the seg-
mentation approaches developed within this thesis can also be used to automatically
segment human demonstrations performed while wearing an exoskeleton during tele-
operation. For simple point-to-point movements, which were not performed during
teleoperation but only by wearing the exoskeleton, the vMCI segmentation method
achieved good results and detected single point-to-point movements. In the circle
drawing and object rotation task, dual arm movements were recorded during teleop-
eration of a simulated humanoid robotic system. These movement demonstrations
contain more noise in the movement velocity and the movement trajectories are not
always direct due to movement constraint origin from the robotic systems. This causes
intermediate segments which cannot be mapped to building blocks with a single
bell-shaped velocity profile and results in an over-segmentation if the vMCI method
is applied. By using the hierarchical vHMS segmentation approach and a small set of
manually labeled training data, the performed dual arm actions could be successfully
segmented and classified.

However, the presented results only give a first impression of the performance of
vHMS on exoskeleton data because of the small number of movement examples that
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were evaluated in the performed experiments. Additionally, an evaluation of the
algorithms on demonstrations with longer sequences of clearly definable building
blocks or actions is needed to deduce a more sophisticated validation of the approaches
regarding accuracy in the detection of segment borders.
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9 Chapter 9.

Summary and Conclusion

In this thesis, several methods were developed which automatically analyze human
manipulation movements to infer building blocks, their movement labels as well as
their combination during the execution of different actions. To evaluate these, several
types of human movements were recorded from different subjects such as simple point-
to-point movements, throwing movements, as well as more complex dual arm rotation
movements. Based on several behavioral and neurobiological studies in the literature
and own observations, a bell-shaped velocity profile was identified as a characteristic
feature of manipulation building blocks in this thesis. Using this, the vMCI algorithm
was developed for unsupervised segmentation of human behavior into building blocks
with a bell-shaped velocity profile. To obtain labels for the detected building blocks, a
1-NN classification is suggested, because with 1-NN, building blocks can be classified
with a reasonable accuracy by using only a small number of labeled training data. To
automatically determine the concatenation of multiple building blocks to movement
actions, the vHMS method was developed, in which vMCI and 1-NN are combined
into a hierarchical approach that enables to detect building blocks as well as movement
actions in one-handed as well as dual arm manipulation movements.

The developed algorithms were applied to learn robotic behavior from human
examples as well as to automatically segment data obtained during teleoperation
with an exoskeleton. To transfer the detected and labeled building blocks to a robotic
system, the BesMan learning platform was developed which is a modular framework
for LfD. By using methods for imitation learning, reinforcement learning and transfer
learning, identified throwing movements were transferred to different robotic systems
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9. Summary and Conclusion

and successful throws were executed. Additionally, it was shown that the vMCI and
vHMS algorithm can also be applied to exoskeleton data. In different one-arm and
dual arm teleoperated movements, multiple building blocks or movement actions
could be detected, despite the higher noise and variance in the movement compared
to marker-based motion tracking.

A conclusion for each part of the thesis is given in the following paragraphs. At the
end of this chapter, the overall work is concluded before an outlook to future work is
given in the next chapter.

Segmentation into Building Blocks In chapter 4, experiments conducted in related
publications [Morasso, 1981, Morasso and Mussa-Ivaldi, 1982] were complemented
and it was shown that the velocity of the hand is a relevant feature to characterize
building blocks in human manipulation movements. The vMCI algorithm was pre-
sented in which this knowledge about characteristics of manipulation movements is
directly integrated into the segmentation process. VMCI detects building blocks with
a bell-shaped profile in the hand velocity in an unsupervised and online manner. The
implementation of the algorithm was made public on GitHub. Several experiments
were conducted to evaluate vMCI with respect to parameter influence and to compare
it to other state-of-the-art methods for unsupervised segmentation. The evaluations
were performed on artificial data consisting of two successive DMPs and on real hu-
man demonstrations of point-to-point, stick-throwing, and pick-and-place movements,
demonstrated by different subjects. The experiments showed that building blocks can
reliably be detected using vMCI, also in movement examples with a noisy velocity
on which other state-of-the-art segmentation methods decrease in performance. In
contrast to these other methods, segmentation points can be determined fast and
online, and the algorithm can be applied to different movements without parameter
tuning.

Because the bell-shaped velocity is a movement feature that can mainly be observed
in manipulation movements, the vMCI approach works best on this kind of data. In
other movements, such as gestures or generative movements such as walking, building
blocks may show different reoccurring patterns. To detect building blocks in these
movements, other approaches may be needed. However, the conducted experiments
show that automatic approaches for manipulation movement segmentation can benefit
from taking regularities in human movements into account.
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Few-shot Recognition To classify building blocks obtained using vMCI, k-NN,
HMMs, and LSTMs were compared in chapter 5. Each of the algorithms was evaluated
with respect to classification accuracy and time requirements with limited training
data on segments detected by vMCI in lever-pulling, pick-and-place, ball-throwing,
and stick-throwing movement demonstrations. Additionally, the algorithms were
evaluated on gesture data which consist of more complex movements which were
manually labeled. The generalization of the classification methods to data of new
subjects was evaluated on the stick-throwing and gesture data.

LSTM-based classification gave good results in the recognition of different types
of arm movements if the training was performed on very small training set sizes. It
also generalized to new subjects in the performed experiments. However, this has
to be interpreted with caution, as this is highly dependent on the variations in the
examples seen in the training data. If the data is simpler, such as the stick-throwing
data analyzed, 1-NN is a clear alternative to LSTM. It requires no hyper-parameter
tuning and has faster calculation times on small datasets. Also on the other datasets
which were segmented using vMCI, 1-NN showed very good results. While the
LSTM network performs better on data with higher inter-subject variations in the
experimental evaluation of the generalization abilities, this approach as well as HMM-
based classification could not express their superior capabilities on sequenced data in
the classification of building blocks of human arm movements.

For the development of embedded multimodal interfaces [Kirchner et al., 2018],
simple approaches allow to use miniaturized processing units with relatively low
processing power and energy consumption. This is, e.g., relevant in robotics, since
the number of interfaces that can be integrated into a robotic system as well as the
available computing resources are limited. But also wearable assisting devices have
limitations regarding size, energy, and computing power. For these applications not
only accurate but also simple methods are needed. With the evaluation performed
in chapter 5 it is shown that both, accuracy and simplicity, can be achieved by using
vMCI in conjunction with 1-NN classification.

Hierarchical Movement Segmentation In chapter 6, the vHMS algorithm was pre-
sented which is a hierarchical movement segmentation method that detects building
blocks as well as their concatenation to movement actions in human manipulation
movements. Two variants of the algorithm were introduced, one based on classifica-
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tion and the other one based on clustering where different methods for classification or
clustering can be integrated. vHMS with 1-NN classification to obtain labeled building
blocks and movement actions was evaluated in comparison to vHMS with a clustering
approach to group building blocks. For the clustering-based variant, k-means and
g-means were compared to group the building blocks obtained using vMCI. With
both variants, building blocks as well as their concatenations to movement actions
could be detected in one-handed point-to-point movements as well as in a dual arm
object rotations task.

A hierarchical segmentation can be especially beneficial for data consisting of syn-
chronous and asynchronous dual arm movements, such as the dual arm object rotation
dataset. It contains dual arm movements where both hands move synchronously as
well as movements where the hands move asynchronously to turn the object. On this
data, segmentation points of building blocks were difficult to determine manually to
generate a ground truth for evaluation. However, the manual labeling into dual arm
movement actions was easier. In the automated detection of building blocks, only 70%
of the trajectory points could be assigned to the correct building block using vMCI
with g-means clustering. Nonetheless, 80% of the trajectory points could be assigned
to the correct dual arm movement action by applying the hierarchical vHMS approach
on this complex movement data. Thus, errors in the segmentation into building blocks
using vMCI could be corrected during the determination of the movement actions by
using vHMS.

Using the presented hierarchical segmentation approach, especially robotic applica-
tions which are based on human movement examples can benefit. This is, because not
only movement building blocks can be recognized using this method, but also their
combination to different movement actions. In this way, e.g., complex movements such
as dual arm manipulations could be directly learned from human demonstrations.

Application in robotic Learning from Demonstration In chapter 7, the BesMan
learning platform was introduced, which is a framework to learn new robotic behavior
from human movement demonstrations. Using the vMCI algorithm with successive
1-NN classification, the building blocks of two different throwing movements could
be identified in human demonstrations to use them as movement examples to teach
a robotic system to throw. After adapting the movement trajectories in a way that
they are executable on the robotic system and optimizing them using reinforcement

146



or transfer learning, throwing building blocks as well as an approaching and lever-
pulling movement could be transferred and successfully executed on a robotic system.
This shows that meaningful robotic behavior can be generated from the movement
building blocks obtained using vMCI.

Because vMCI is an approach which can be run online and unsupervised and 1-NN
needs just a small number of examples for training, most processes needed to learn
robotic behavior from human demonstrations could be automated in the learning
platform. Furthermore, due to the use of vMCI, building block movements are learned
and transferred to the robotic system. Additionally, DMPs are used as movement
representation within the learning platform, which are a movement representation
that can easily be adapted to slightly changed start or goal positions and which can
be optimized for different robotic systems using reinforcement or transfer learning.
The recognition of human building blocks in combination with the usage of DMPs as
movement representation allows to generate robotic movement building blocks using
the presented learning platform.

Segmentation of Teleoperated Movements A further application of the presented
segmentation algorithm was given in chapter 8, where movements obtained during
teleoperation with an exoskeleton were automatically segmented. In contrast to move-
ment demonstration obtained using marker-based motion tracking, an exoskeleton
restricts the demonstrator in its movement execution. Furthermore, the acquired
data contains more noise and more movement variations. Nonetheless, it was shown
that meaningful segment borders can be detected in the three movement examples
acquired with an exoskeleton using vMCI and vHMS. Although a full evaluation
on bigger datasets of teleoperated movements is needed to clearly determine the
segmentation accuracy of the algorithms on this kind of movements, these first results
are promising. Mainly on the dual arm rotation task, in which segment borders are
hard to determine even for a human observer, vHMS was able to dissect the data into
known actions.

Overall results Several algorithms for automated segmentation and annotation
of human manipulation movements were presented in this thesis. The developed
algorithms can be used to gain deeper knowledge about observed human movements
through the detection and recognition of building blocks in manipulation movements.
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9. Summary and Conclusion

As shown in chapter 7, this can directly be used to generate robotic movements by
demonstration. Beyond that, the developed methods can be used to gain further
insights about movement sequencing in humans, which at the end may help to
understand human movement generation better in order that robotic movement
may be designed in a similar way. The presented approaches form a basis for new
applications in robotics, from which some are discussed in the following chapter.
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10 Chapter 10.

Outlook

In this chapter, several ideas to improve the presented segmentation and recognition
algorithm are presented. The presented approaches can be used to infer building
blocks in human movements and their concatenations to movement actions in ob-
served behavior. Future applications of these in LfD applications as well as other
human-robot interaction tasks, such as the inference of the intention of the human
during a collaboration with a robotic system, will be discussed.

Segmentation and recognition methods There are several ways the segmentation ac-
curacy of vMCI may be improved. Currently, no preprocessing of the data is required
in order to run vMCI except for a down-sampling. Without down-sampling, vMCI
tends to over-segment the data. To circumvent this, the influence of the algorithms’
hyper-parameter on the segmentation accuracy should be evaluated with respect to
different frequencies of the data. Possibly, the over-segmentation at high frequencies
could be improved by initializing some hyper-parameter, such as the expected seg-
ment length p in relation to the frequency of the data. Additionally, vMCI detects
segmentation points only correctly within a margin around the true velocity minima.
This could be improved by combining the approach with a method that detects local
minima exactly, such as the locMin approach vMCI is compared to in the performed
experiments. By combining the determination of exact segmentation points of locMin
with the generally applicable vMCI approach which does not require hyper-parameter
adaption for different datasets, segmentation accuracy could be improved.

In vMCI, segment borders are determined at positions where the underlying auto-
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regressive LRM for the marker positions change and bell-shaped velocity curve ends.
To account for superimposed movement building blocks which result in overlapping
velocity curves, as shown in Figure 2.5, different positions of the velocity peaks and
different start and end velocities are already modeled within vMCI. An alternative
would be to adapt the algorithm to an approach which internally uses building blocks
with a bell-shaped velocity curve and directly models their overlap. This could be
done by assuming that the velocity is modeled as a weighted sum of single radial
basis functions to model also overlapping building blocks. By determining points
where single basis functions overlap, the segmentation points may be detected. A
comparison with the proposed vMCI approach would be of interest, not only in terms
of segmentation accuracy but also with respect to computation time.

To annotate building blocks detected using vMCI, good results were achieved by
using simple 1-NN classification, possibly because vMCI reduced the complexity of the
data. For future work, a more detailed analysis of this influence of vMCI segmentation
on the recognition accuracy of 1-NN would be of interest, also in comparison to other
movement recognition approaches. Additionally, a combined approach of movement
segmentation and recognition, in which not only the building blocks but also their
labels are detected online should be developed. From this, especially applications in
human-robot collaboration, where the current behavior should be understood by the
system, might benefit. With an online detection and recognition of building blocks,
also the vHMS algorithm for automated detection of labeled building blocks and
their combination to movement actions can be improved. Due to the computational
complexity of vHMS, which is exponential with respect to the number of detected
building blocks, the method works best on movement demonstrations consisting
of a limited number of building blocks. If building blocks and their labels can be
determined online, also the vHMS approach can be extended to an online approach
which is less computationally expensive and might be run in long-term applications
to infer the current building blocks and actions of the human.

Applications of proposed approaches In part III of this thesis, already two ap-
plications of the presented segmentation and recognition methods were proposed.
Especially for robot learning from demonstration, the detection of building blocks in
human movements could be important to learn basic and generally applicable robotic
movements. For this, the presented approaches to detect building blocks in human
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movements which can serve as movement examples for the generation of robotic
behavior are just the first step. In future work, it should be evaluated if the robotic
movements learned based on the human examples can be used and recombined to
generate different behaviors. If this is the case, robots may solve complex manipu-
lation tasks similar to humans by sequentially learning individual building blocks
and combining them to solve different goals. This probably will be more effective in
terms of computational resources compared to monolithic approaches. Thus, there
would be more resources left for other computations. To achieve this, one of the next
steps based on the work presented within this thesis is the usage of the hierarchical
segmentation to hierarchically learn robotic movements based on human examples.
A comparison of this to other hierarchical approaches, which learn new behavior
from scratch without human demonstration, such as approaches based on hierarchical
reinforcement learning, would be of interest.

Furthermore, other applications in human-robot interaction might benefit from the
proposed approaches. As described in section 1.1, a detailed knowledge of the current
human behavior as well as the intentions of the human are needed to realize a best
possible assistance of a system during a collaboration with a human. For this, the
developed algorithms can be used to determine the currently observed building block
and infer the next most likely building blocks the human may execute. On this topic,
there is already conducted research in the project HaLeR1, where new methods for
movement prediction are developed based on the methods presented in this thesis.

The methods presented in this thesis are restricted to the pure analyses of the
movement trajectories, without considering other sensory input, such as gaze, body
postures or changes in the environment, resulting, e.g., from changing positions of
the object which should be manipulated. However, as described in chapter 2, human
movement generation is not restricted to the execution of a desired trajectory. Instead,
motor command generation, state transition, and the generation of sensory feedback
are closely connected to generate the movements required to fulfill certain tasks. If a
robotic system should react as intuitively as humans in different situations despite a
continuously changing environment, more sensory input should be taken into account.
This is not only important on the level of behavior analysis as treated in this thesis but
also during movement execution. Integrating all these different aspects of human-like
generation of robotic behavior is one of the big challenges in the future.

1https://robotik.dfki-bremen.de/en/research/projects/haler/
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A Appendix A.

Derivation of the model
evidence

A.1. Calculation of the model evidence in vMCI

The likelihood of the observed data sequence p(yi+1:j|m, mv) given the model m of
order q and velocity model mv, also called model evidence, will be derived in this
section. By marginalizing out the model parameters β and α as given in equation (4.4)
the model evidence can be solved directly if conjugate priors are chosen for the LRMs
the data is modeled with. To derive the result given in equation (4.5), the likelihood of
the position data p(yp

i+1:j|m) is derived first.

A.1.1. Calculation of p(yp
i+1:j|m)

The likelihood of the position data, p(yp
i+1:j|m), is defined as

p(yp
i+1:j|m) =

∫︂
p(yp

i+1:j|β, m)p(β) dβ. (A.1)

In this equation, the parameters β are assumed to be matrix normal distributed with
zero mean and covariances D and Σ, i.e.,

β ∼ MN (0, D, Σ). (A.2)

As a conjugate prior, the covariance Σ is inverse Wishart distributed, i.e.,

Σ ∼ IW(ν, S). (A.3)
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A. Derivation of the model evidence

With these prior distributions, the parameters β in (A.1) can be marginalized out, which
leads to the following equation (which is identical to the first part in equation (4.4)):

p(yp
i+1:j|m) =

∫︂ ∫︂
p(yp

i+1:j|β, Σ) · p(β|D, Σ) · p(Σ|ν, S) dΣ dβ. (A.4)

To simplify, y is written instead of yp
i+1:j during the determination of the model

evidence and solve the integrals in (A.4) using the precision Λ = Σ−1, which leads to

p(y|m) =
∫︂ ∫︂

p(y|β, Λ) · p(β|D, Λ) · p(Λ|ν, S) dΛ dβ

p(y|m) =
∫︂

p(Λ|ν, S)
(︃∫︂

p(y|β, Λ) · p(β|D, Λ) · dβ

)︃
dΛ. (A.5)

In order to determine the model evidence, the probability density functions of
the matrix normal distribution and the Wishart distribution is needed. A random
matrix X(n × d) that is matrix normal distributed, i.e., X ∼ MN (MX, V, W), with
MX(n × d), V(n × n) and W(d × d), has the probability density function:

P(X) = (2π)−
nd
2 |V|− d

2 |W|− n
2 exp

{︃
−1

2
tr
(︂
(X − MX)

TV−1(X − MX)W−1
)︂}︃

, (A.6)

which can be reformulated to:

P(X) = (2π)−
nd
2 |V|− d

2 |W|− n
2 exp

{︃
−1

2
tr
(︂
(XTV−1X − XTV−1MX)W−1

)︂}︃
. (A.7)

And a random matrix A(d × d) that is Wishart distributed, i.e., A ∼ W(ν, S−1), with
scalar ν and S(d × d), has the probability density function:

P(A) =
|S| ν

2

Γd(
ν
2 )2

νd
2
|A| ν−d−1

2 exp
{︃
−1

2
tr (SA)

}︃
, (A.8)

where Γd(n) is the multivariate Gamma function defined as:

Γd(n) =
∫︂

exp{−tr(S)}|S|n− p+1
2 . (A.9)

Using these definitions, the integral in (A.5) can be solved step by step as follows:

1. determination of the posterior probability of the model parameters p(β|y, D, Λ),
which is due to Bayes rule proportional to the first two factors in the integral in
equation (A.5), i.e.: p(β|y, D, Λ) ∝ p(y|β, Λ) · p(β|D, Λ)

2. solving the integral over parameters β in (A.5)

3. solving the integral over precision Λ in (A.5)

All these steps are described in detail in the following paragraphs.
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A.1. Calculation of the model evidence in vMCI

1. Determination of posterior probability p(β|y, D, Λ): From the representation
of the data sequence as a linear regression model as defined in (4.1), follows that
the observed data is matrix-normal distributed with mean Hβ and covariances I
and Σ, with H defines as the matrix of basis functions, i.e., H = (ϕ1, ..., ϕq) of shape
n × q, and I is the identity matrix. By using this, the distribution of β given in (A.2),
the probability density function of the matrix normal distribution and by using the
precision Λ instead of Σ, the posterior probability of β can be derived as follows:

p(β|y, D, Λ) ∝ p(y|β, Λ) · p(β|D, Λ)

= MN (y|Hβ, I, Λ) ·MN (β|D, Λ)

= (2π)−
nd
2 |I|− d

2 |Λ| n
2 exp

{︃
−1

2
tr
(︂
(y − Hβ)T I−1(y − Hβ)Λ

)︂}︃
· (2π)−

qd
2 |D|− d

2 |Λ| q
2 exp

{︃
−1

2
tr
(︂

βTD−1βΛ
)︂}︃

= (2π)−
nd
2 − qd

2 |D|− d
2 |Λ| n

2 +
q
2

· exp
{︃
−1

2
tr
[︂(︂

(y − Hβ)T(y − Hβ) + βTD−1β
)︂

Λ
]︂}︃

⏞ ⏟⏟ ⏞
⋆

. (A.10)

Because a conjugate Gaussian prior is used to model the data, the posterior of the
model parameter will again be matrix normal distributed. From this follows, that the
exponent ⋆ can be reformulated to derive the mean and covariances of the posterior
distribution. As suggested in [Bishop, 2006], a technique called “completing the
square” is applied by reformulating and sorting ⋆ to derive all summands that are
squared in β, linear in β and constant in order that ⋆ can be mapped to the matrix
normal distribution given in (A.7):

⋆ =
(︂
(y − Hβ)T(y − Hβ) + βTD−1β

)︂
Λ

=
(︂

yTy − yT Hβ − (Hβ)Ty + (Hβ)T Hβ + βTD−1β
)︂

Λ

=
(︂
(Hβ)T Hβ + βTD−1β − yT Hβ − (Hβ)Ty + yTy

)︂
Λ

=
(︂

βT HT Hβ + βTD−1β − βT HTy − βT HTy + yTy
)︂

Λ

=
(︂

βT(HT H + D−1)β − 2βT HTy + yTy
)︂

Λ.
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The first summand of ⋆ has now the same form as in equation (A.7). Thus, the
covariance of the matrix normal distribution of β ca be defined as:

M = (HT H + D−1)−1. (A.11)

To derive the mean µ, the second summand in ⋆ is needed, which should according to
equation (A.7) be equal to βT M−1µ leading to:

βT M−1µ = βT HTy

⇔ M−1µ = HTy

⇔ µ = MHTy.

By inserting these definitions of M and µ in(A.10) one gets:

p(y|β, Λ) · p(β|D, Λ) = (2π)−
nd
2 − qd

2 |D|− d
2 |Λ| n

2 +
q
2

· exp
{︃
−1

2
tr
[︂(︂

βT M−1β − 2βT M−1µ + yTy
)︂

Λ
]︂}︃

(A.12)
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2. Solving integral over β: By using equation (A.12), the integral over β in equa-
tion (A.5) can be solved:

∫︂
p(y|β, Λ)p(β|D, Λ) dβ =

∫︂
(2π)−

nd
2 − qd

2 |D|− d
2 |Λ| n

2 +
q
2 · exp

{︃
−1

2
tr
[︂(︂

βT M−1β

−2βT M−1µ + yTy
)︂

Λ
]︂}︂

dβ

= (2π)−
nd
2 − qd

2 |D|− d
2 |Λ| n

2 +
q
2 ·

∫︂
exp

{︃
−1

2
tr
[︂(︂

βT M−1β

−2βT M−1µ + µT M−1µ − µT M−1µ + yTy
)︂

Λ
]︂}︂

dβ

= (2π)−
nd
2 − qd

2 |D|− d
2 |Λ| n

2 +
q
2 ·

∫︂
exp

{︃
−1

2
tr
[︂(︂

(β − µ)T M−1

·(β − µ)− µT M−1µ + yTy
)︂

Λ
]︂}︂

dβ

= (2π)−
nd
2 − qd

2 |D|− d
2 |Λ| n

2 +
q
2 · exp

{︃
−1

2
tr
[︂(︂

−µT M−1µ + yTy
)︂

Λ
]︂}︃

·
∫︂

exp
{︃
−1

2
tr
[︂(︂

(β − µ)T M−1(β − µ)
)︂

Λ
]︂}︃

dβ

= (2π)−
nd
2 − qd

2 |D|− d
2 |Λ| n

2 +
q
2 · exp

⎧⎪⎪⎨⎪⎪⎩−1
2

tr

⎡⎢⎢⎣(︂−µT M−1µ + yTy
)︂

⏞ ⏟⏟ ⏞
B̂

Λ

⎤⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭

· (2π)
qd
2 |Λ|− q

2 |M| d
2

= (2π)−
nd
2 |D|− d

2 |Λ| n
2 |M| d

2 exp
{︃
−1

2
tr
[︁
B̂Λ

]︁}︃
(A.13)

3. Solving integral over Λ: Due to the chosen conjugate priors, Σ is inverse Wishart
distributed as defined in equation (A.3). From this follows that Λ, which is defined
as the inverse of Σ is Wishart distributed, Λ ∼ W(ν, S−1), with probability density
function given in (A.8). Using this and the solution of the integral over β given in
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equation (A.13), the integral over Λ in equation (A.5) ca be solved:

p(y|m) =
∫︂

p(Λ|ν, S)
(︃∫︂

p(y|β, Λ) · p(β|D, Λ) · dβ

)︃
dΛ

=
∫︂ |S| ν

2

Γd(
ν
2 )2

νd
2
|Λ| ν−d−1

2 exp
{︃
−1

2
tr (SΛ)

}︃
· (2π)−

nd
2 |D|− d

2 |Λ| n
2 |M| d

2 exp
{︃
−1

2
tr
[︁
B̂Λ

]︁}︃
dΛ

= (2π)−
nd
2 |D|− d

2 |M| d
2 |S| ν

2
1

Γd(
ν
2 )2

νd
2

·
∫︂

|Λ| n+ν
2 − d+1

2 exp

⎧⎨⎩−1
2

tr

⎛⎝(S + B̂)⏞ ⏟⏟ ⏞
B

Λ

⎞⎠⎫⎬⎭ dΛ. (A.14)

To solve the integral in (A.14), BΛ is substituted by Z, i.e. Z = BΛ ⇒ Λ = B−1Z and
|Λ| = |B−1||Z|. By using the definition of the Gamma function given in (A.9) which
leads to:

p(y|m) = (2π)−
nd
2 |D|− d

2 |M| d
2 |S| ν

2
1

Γd(
ν
2 )2

νd
2

·
∫︂

|B|− n+ν
2 + d+1

2 |Z| n+ν
2 − d+1

2 exp
{︃
−1

2
tr (Z)

}︃
|B| d+1

2 dZ

= (2π)−
nd
2 |D|− d

2 |M| d
2 |S| ν

2
1

Γd(
ν
2 )2

νd
2
|B|− n+ν

2 Γd(
n + ν

2
)

= (2π)−
nd
2
|M| d

2

|D| d
2

|S| ν
2

|B| n+ν
2

Γd(
n+ν

2 )

Γd(
ν
2 )2

νd
2

(A.15)

With M = (HT H + D−1)−1 and µ = MHty, B simplifies to:

B = S + B̂

= S + yTy − µT M−1µ

= S + yty − yt(MHT)T M−1MHTy

= S + yty − ytHMHtY

= S + yt (I − HMHt)⏞ ⏟⏟ ⏞
P

y.
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With this, the model evidence for the position given in (A.15) is equal to:

p(y|m) = (2π)−
nd
2
|M| d

2

|D| d
2

|S| ν
2

|yTPy + S| n+ν
2

Γd(
n+ν

2 )

Γd(
ν
2 )2

νd
2

, (A.16)

A.1.2. Calculation of p(yi+1:j|m, mv)

In the previous section, the calculation of the likelihood of the position data given
model m, p(yp

i+1:j|m), was derived. The result is given in equation (A.16). Because the
velocity data yv

i+1:j is also modeled with the linear regression model mv and conjugate
prior, see (4.3), the model evidence p(yv

i+1:j|mv) can be derived in the same way as
p(yp

i+1:j|m) leading to:

p(yv
i+1:j|mv) = (2π)−

ndv
2
|Mv|

dv
2

|Dv|
dv
2

|Sv|
νv
2

|(yv)TPvyv + Sv|
n+νv

2

Γdv(
n+νv

2 )

Γdv(
νv
2 )2

νvdv/2 . (A.17)

With (A.16) and (A.17) the model evidence of the whole data yi+1:j becomes:

p(yi+1:j|m, mv) = (2π)−
nd
2
|M| d

2

|D| d
2

|S| ν
2

|(yp)TPyp + S| n+ν
2

Γd(
n+ν

2 )

Γd(
ν
2 )2

νd/2

· (2π)−
ndv

2
|Mv|

dv
2

|Dv|
dv
2

|Sv|
νv
2

|(yv)TPvyv + Sv|
n+νv

2

Γdv(
n+νv

2 )

Γdv(
νv
2 )2

νvdv/2 ,

as written down in equation (4.5).
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B Appendix B.

Contribution to Publications

Most parts of thesis were already published in international journals, bookchapters
or international and national conferences. In this section, all publications are listed
including a description of my contributions. The listed publications are sorted by date
in ascending order. Please note that earlier publications were published under the
name Lisa Senger.

B.1. International Journals and Bookchapters

[Metzen et al., 2013] Metzen, J. H., Fabisch, A., Senger, L., Gea Fernández, J., and
Kirchner, E. A. “Towards learning of generic skills for robotic manipulation”. KI -
Künstliche Intelligenz, 28(1), pages 15–20, 2013.

• Contributions of Lisa Gutzeit: Contributed to the description of the BesMan
learning platform with focus on the “Behavior Segmentation” module and
reviewed the paper.

[Gutzeit et al., 2016] Gutzeit, L., Otto, M., and Kirchner, E. A. “Simple and robust
automatic detection and recognition of human movement patterns in tasks of different
complexity”. In Physiological Computing Systems, pages 39–57, Springer, 2016.

• Contributions of Lisa Gutzeit: Wrote most parts of the paper, including introduc-
tion, related work, description of methods, and experiments. Implemented the
approaches for movement segmentation and recognition. Recorded or assisted
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in the recording of the movement data, evaluated the presented approaches on
two of the datasets and assisted in the evaluation on the third dataset.

[Gutzeit et al., 2018a] Gutzeit, L., Fabisch, A., Otto, M., Metzen, J. H., Hansen, J.,
Kirchner, F., and Kirchner, E. A. “The BesMan Learning Platform for Automated Robot
Skill Learning”. Frontiers in Robotics and AI, 5, 2018.

• Contributions of Lisa Gutzeit: Wrote sections about data acquisition, move-
ment segmentation, application of the learning platform in different scenarios
and parts of the introduction, methods, and discussion sections. Wrote ethics
proposal, presented it to ethics commission, and organized the data acquisi-
tion. Implemented and evaluated the methods for behavior segmentation and
recognition.

[Gutzeit and Kirchner, 2022] Gutzeit, L. and Kirchner, F. “Unsupervised Segmenta-
tion of Human Manipulation Movements into Building Blocks”. IEEE Access, 2022.

• Contributions of Lisa Gutzeit: Wrote and revised most parts of the paper. Im-
plemented and evaluated segmentation approach. Recorded the movement
data.

B.2. International Conferences

[Senger et al., 2014] Senger, L., Schröer, M., Metzen, J. H., and Kirchner, E. A.
“Velocity-based Multiple Change-point Inference for Unsupervised Segmentation of
Human Movement Behavior”. In Proceedings of the 22th International Conference on
Pattern Recognition (ICPR2014), pages 4564–4569, 2014.

• Contributions of Lisa Gutzeit: Wrote and revised most parts of the paper. Imple-
mented and evaluated segmentation approach.

[Gutzeit and Kirchner, 2016] Gutzeit, L. and Kirchner, E. A. “Automatic detection
and recognition of human movement patterns in manipulation tasks.” In Proceedings
of the 3rd International Conference on Physiological Computing Systems., 2016.
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B.3. National Conferences

• Contributions of Lisa Gutzeit: Wrote and revised most parts of the paper. Im-
plemented and evaluated segmentation approach. Recorded or assisted in the
recording of the movement data.

[Gutzeit et al., 2018b] (abstract + poster) Gutzeit, L., Tabie, M., and Kirchner, E. A.
“Automatic movement segmentation of exoskeleton data‘”. In Conference Proceedings of
the 3rd International Mobile Brain/Body Imaging Conference, (MoBI-2018), 2018.

• Contributions of Lisa Gutzeit: Wrote parts of the abstract. Implemented and
evaluated the segmentation of the exoskeleton-data.

[Gutzeit, 2021] Gutzeit, L.. “A Comparison of Few-shot Classification of Human
Movement Trajectories”. In Proceedings of the 10th International Conference on Pattern
Recognition Applications and Methods - Volume 1: ICPRAM, pages 243–250, INSTICC,
SciTePress, 2021.

• Contributions of Lisa Gutzeit: wrote whole paper, recorded the movement data
or assisted in the recording, implemented methods, and evaluated the results.

[Gutzeit, 2022] Gutzeit, L.. “Hierarchical Segmentation of Human Manipulation
Movements”. In Proceedings of the 26th International Conference on Pattern Recognition
(ICPR2022), 2022.

• Contributions of Lisa Gutzeit: Wrote whole paper, recorded the movement data,
implemented methods, and evaluated the results.

B.3. National Conferences

[Schreiter et al., 2014] Schreiter, L., Senger, L., Beyl, T., Berghöfer, E., Raczkowsky, J.,
and Woern, H. “Probabilistische Echtzeit-Situationserkennung im Operationssaal am
Beispiel von OP:Sense”. In Tagungsband der 13. Jahrestagung der Deutschen Gesellschaft
für Computer- und Roboterassistierte Chirurgie e.V., (CURAC-2014), pages 177–180, 2014.

• Contributions of Lisa Gutzeit: Contributed to the implementation of the move-
ment recognition and revised the paper.
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[Schreiter et al., 2015] Schreiter, L., Berghöfer, E., Beyl, T., Senger, L., Raczkowsky,
J., Kirchner, F., and Woern, H. “Probabilistic Situation Detection for Human- Robot
Interaction in an OP Lab Environment”. In Tagungsband der 14. Jahrestagung der
Deutschen Gesellschaft für Computer- und Roboterassistierte Chirurgie e.V, (CURAC-15),
pages 99–104, 2015.

• Contributions of Lisa Gutzeit: Contributed to the implementation of the move-
ment recognition and revised the paper.

[Gutzeit et al., 2019] Gutzeit, L., Fabisch, A., Petzoldt, C., Wiese, H., and Kirchner, F.
“Automated Robot Skill Learning from Demonstration for Various Robot Systems”. In
Benzmüller, C. and Stuckenschmidt, H., editors, KI 2019: Advances in Artificial Intelligence,
Conference Proc., volume LNAI 11793, pages 168–181, Springer, 2019.

• Contributions of Lisa Gutzeit: Wrote section about movement segmentation and
parts of introduction, experiments, results, and conclusion. Contributed to the
development of evaluation approaches for the learning platform and assisted in
recording of the movement data.
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Abbreviations

1-NN 1-Nearest Neighbor

BPARHMM Beta-process auto-regressive Hidden Markov Model

CNN Convolutional Neural Network

CNS central nervous system

DMP Dynamical Movement Primitive

DTW Dynamic Time Warping

FP false positives

HMM Hidden Markov Model

IMU inertial measurement unit

k-NN k-Nearest Neighbor

LfD Learning from Demonstration

locMin local minima segmentation

LRM linear regression model

LSTM Long-short Term Memory-Network

MCI Multiple Change-point Inference

167



C. Abbreviations

PCA Principal Component Analysis

ProbS Probabilistic Segmentation

RNN Recurrent Neural Network

TP true positives

t-SNE t-distributed Stochastic Neighbor Embedding

vHMS velocity-based Hierarchical Movement Segmentation

vMCI velocity-based Multiple Change-point Inference
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