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AcroMonk: A Minimalist Underactuated

Brachiating Robot
Mahdi Javadi, Daniel Harnack, Paula Stocco, Shivesh Kumar, Shubham Vyas,

Daniel Pizzutilo, and Frank Kirchner

Abstract—Brachiation is a dynamic, coordinated swinging
maneuver of body and arms used by monkeys and apes to
move between branches. As a unique underactuated mode of
locomotion, it is interesting to study from a robotics perspective
since it can broaden the deployment scenarios for humanoids
and animaloids. While several brachiating robots of varying
complexity have been proposed in the past, this paper presents
the simplest possible prototype of a brachiation robot, using only
a single actuator and unactuated grippers. The novel passive
gripper design allows it to snap on and release from monkey bars,
while guaranteeing well defined start and end poses of the swing.
The brachiation behavior is realized in three different ways, using
trajectory optimization via direct collocation and stabilization by
a model-based time-varying linear quadratic regulator (TVLQR)
or model-free proportional derivative (PD) control, as well as
by a reinforcement learning (RL) based control policy. The
three control schemes are compared in terms of robustness to
disturbances, mass uncertainty, and energy consumption. The
system design and controllers have been open-sourced1. Due to
its minimal and open design, the system can serve as a canonical
underactuated platform for education and research.

Index Terms—Underactuated robots, biologically-inspired
robots, education robotics.

I. INTRODUCTION

BRACHIATION is a complex dynamic maneuver involv-

ing a continuous swing motion and a discontinuity when

switching the support arm. Apes brachiate with ease through

unstructured environments with flexible or rigid handholds
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Figure 1: Monkey inspired brachiation with AcroMonk

at variable distances, making this motion challenging and

interesting to study for roboticists. Brachiating robots can

be beneficial for inspection, agriculture, search and rescue

applications, etc., since they can perform agile movements

in hard to traverse terrains. Hence, there has been extensive

research on brachiation robots in the past three decades.

One of the first brachiating mobile robots, Brachiator I [1],

was introduced in 1991 by Fukuda et al., consisting of six

links and five joints. Many designs followed this seminal

work, ranging from simplified systems of two joints and

actuated grippers [2]–[5] that could traverse rigid bars and

flexible ropes, over more complex systems with a passive

tail [6] for stabilization and a conceptual seven link design [7],

to a full ape-like robot with 12 joints and active grippers

that allowed the system to perform realistic, monkey-like

swings [8]. Realizing different brachiation types, i.e. ladder,

rope brachiation or ricocheting, comprises different challenges

and enforces distinct demands for behavior generation and

control. Formulating the behavior generation as a trajectory

optimization problem provides flexibility to incorporate de-

sired demands in terms of costs and constraints. A desired

trajectory can thus be generated by employing mathematical

approaches using the robot’s physical parameters and the

grasping configuration [1] [9]. Furthermore, introducing the

system’s mechanical energy in the problem formulation allows

optimizing trajectories by using physical energy conservation.

These trajectories can be generated offline and be stabilized

during execution to achieve the desired behavior on the

robot [3] [6] [10]. Stabilization requires an online controller

taking state feedback into account. Among the various con-

trollers employed for this purpose, PD controllers are most

commonly used [11] [12] [9]. Machine learning and heuristic

https://github.com/dfki-ric-underactuated-lab/acromonk
https://github.com/dfki-ric-underactuated-lab/acromonk
https://youtu.be/FIcDNtJo9Jc
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methods are also popular, providing a model-free approach

to learn brachiation behavior [13] [12] [14]. Most recent

research however focuses on model-based and energy-optimal

control approaches, since energy-optimal formulations bring

the advantage of robustness against uncertainties and can be

incorporated in behavior generation [10] [3], behavior con-

trol [15], or both [5]. Table I summarizes the brachiation robot

literature in categories of system design, behavior generation,

and control approaches.

Table I: Overview of brachiation robots. (L, J, A, G) indicate

the number of links, joints and actuators, and type of grippers

respectively.

Category field Description Reference(s)

System Design (L, J, A, G)

(2, 1, 1, Active) [16] [13] [17]

(3, 2, 2, Active) [6]

(7, 6, 6, Active) [18] [19] [20]

(13, 12, 14, Active) [18] [7] [20]

(2, 2, 2, Passive) [9] [21]

Trajectory Generation

Heuristic Methods [13] [17] [2]

Harmonic Oscillator [17] [22]

Energy minimization [10] [5] [15] [3]

Posture-based [9] [21]

Behavior Control

Machine learning [23] [13] [12]

PD controller [13] [23] [3]

Model Predictive Control [24] [25] [26]

Input/output linearization [27] [28] [6]

Energy based controller [10] [5] [15]

While several brachiating robots of varying complexity,

along with a range of control strategies, have already been

proposed, most robots include active grippers which leads to a

complex system design prone to high maintenance and electro-

mechanical failure points. The only system with passive grip-

pers proposed so far [9] [21] is fully actuated with two motors

and was not able to execute more than two continuous brachi-

ation maneuvers. Thus, there is a lack of a robust minimalist

system which allows the study of underactuated brachiation.

To fill this gap, we propose AcroMonk, a novel underactuated

brachiation robot with a single motor (see Figure 1). A quasi-

direct drive (QDD) is chosen as the actuator with a gear ratio

of 6:1 which offers low friction and high backdriveability

essential for dynamic locomotion. Its unique passive grippers

feature a double grooved design, which results in a large region

of attraction for grasping a target bar and a well defined rota-

tion point for swing maneuvers. We show that AcroMonk is

able to robustly brachiate continuously over a horizontal ladder

with a wide range of controller types, using direct collocation

for trajectory optimization and trajectory stabilization, either

with model-based TVLQR or model-free PD control, or a RL-

based policy. All three control methods are compared in terms

of robustness against disturbances, modeling inaccuracies, and

energy consumption. The simplicity of the robot’s design, low

maintenance requirements, and ease of controllability makes

it a suitable platform for underactuated robotics education and

research. The platform has been open-sourced2 (in the spirit

of [29]–[31]), to encourage its use in research and education.

The performance of the AcroMonk in hardware tests is shown

in the accompanying video3.

2https://github.com/dfki-ric-underactuated-lab/acromonk
3https://youtu.be/FIcDNtJo9Jc
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Figure 2: Mechatronic system design of AcroMonk

Organization: Section II outlines the mechatronics sys-

tem design of the AcroMonk robot. Section III addresses

behavior generation methods using trajectory optimization and

RL. Section IV details the behavior controllers for the robot

and Section V the controller comparison results in hardware

experiments. Finally, Section VI concludes the paper and

addresses future research directions.

II. MECHATRONICS SYSTEM DESIGN

The motivation of the mechatronic system design of the

AcroMonk was to achieve a minimalist system to study

dynamic brachiation. Additionally, we aimed for a compact

design which fits in a backpack and can be operated as a self-

sustained system for classroom teaching.

A. Mechanical Design

The mechanical design choices were guided by using readily

available hardware for ease of reproducibility and achieving a

structure that is robust to falls and easy to repair. These goals

led to a modular design with one central motor connecting

two arms that can be 3D printed with readily available mate-

rials (BASF Ultrafuse PLA). Overall, the structure consists

of six unique 3D-printed parts highlighted with different

colors in Figure 2, connected by screw-nut fasteners for

easy assembly, with compartments for electronics, a battery,

counterweights, and cable guides. Computing and electrical

equipment are mounted on opposite arms to ensure an even

mass-inertia distribution between the arms. For continuous

brachiation, special deliberation was given to the gripper

design. The gripper should provide sufficient error tolerance

for grasping during the brachiating maneuvers while providing

a defined rotation point for the next swing once connected to

the bar.

This was realized by a relatively wide opening angle of the

hook, an incline towards a groove where the hook comes to

rest, and an off-center connection to the arm. As illustrated in

Figure 4, the intentional misalignment of the gripper’s stable

point aids in sliding towards the groove. The slope of the

inclined surface is chosen through empirical observations as

20 degrees for angle of attack with overall radius of 35 mm.

These values depend on the friction coefficient of the material

pairing of the gripper surface (PLA) and monkey bars (wood)

and normal force. A higher friction coefficient implies a

steeper angle to ensure slipping into the groove with minimal

wobbling. Consequently, within the expected deviations from

an ideal movement, the hook comes to rest in the groove,

providing a defined rotation point for next brachiation.

https://github.com/dfki-ric-underactuated-lab/acromonk
https://youtu.be/FIcDNtJo9Jc
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B. Electrical and Processing Architecture

For the actuator, the mjbots qdd100 Quasi-Direct Drive

with a gear ratio of 6:1, a maximum speed of 40 rad/s,

maximum continuous torque of 6 Nm, and a peak torque of 16

Nm was used. A Raspberry Pi 4 mounted in the computing

compartment was selected as an on-board control computer

due to its small form factor. The add-on board pi3hat for

Raspberry Pi from mjbots was used to communicate with the

motor via the Controller Area Network (CAN) bus. It includes

an Inertial Measurement Unit (IMU) for state estimation. Due

to the single motor design, only the relative angle between the

links can be directly measured. The angle and angular velocity

of the support arm with respect to the vertical axis were

computed using the IMU, resulting in a full state feedback of

the system. The computing setup allows for real-time position,

velocity, and torque control at a maximum frequency of 300

Hz with Python3. All electronics are powered by a 6S 1200

mAh LiPo battery. For safety, a wireless emergency stop

was implemented using a hobby-grade radio control (RC)

remote and receiver combined with a direct current (DC)-DC

converter and a relay switch.

III. BEHAVIOR GENERATION

Assuming that one support arm is always in contact with

a bar, AcroMonk has two independent degrees of freedom

(DOF) with one passive DOF at the shoulder (q1) and one

active DOF at the elbow (q2). Let q = [q1, q2]
T

∈ R
2, q̇ =

[q̇1, q̇2]
T

∈ R
2, q̈ = [q̈1, q̈2]

T
∈ R

2 denote the generalized

positions, velocities and accelerations. Its system dynamics is

similar to acrobot [32] and is given by:

M(q)q̈+C(q, q̇)q̇ = τg(q) +Bu (1)

where M(q) denotes the mass-inertia matrix, C(q, q̇) denotes

the Coriolis and centrifugal matrix, τg(q) comprises the grav-

ity effects, the actuation matrix is B = [0 1]T , and u ∈ R

is the motor torque. The AcroMonk’s schematic with the base

and end-effector points is depicted in Figure 4.

Different colors are used to distinguish the support arm

(blue) and the swing arm (green).

Inspired by the typical brachiation of a monkey depicted in

Figure 1, we define four atomic sub-behaviors, the sequential

composition of which can give rise to robust bidirectional

brachiation over horizontal bars. In the following, we discuss

the behavior state machine and methods to generate atomic

behaviors including releases, swings, and grasps. For a better

understanding, also refer to corresponding sections of the

accompanying video.

ZB ZF FBBF

BR FRFCBC

Figure 3: Visualization of the behavior state machine

A. Behavior State Machine

Considering a system that comprises the robot and bars,

we denote three fixed points as Z (single support, hanging),

B (double support with swing arm on backward bar), and

F (double support with swing arm on forward bar). The

four atomic sub-behaviors are transitions between these fixed

points, i.e. Zero-to-Back (ZB), Zero-to-Front (ZF), Front-to-

Back (FB), and Back-to-Front (BF). Because of the passive

gripper choice, additional behaviors have to be considered to

release the swing arm from a bar, which is denoted as Back

Release (BR) and Front Release (FR) to initiate a BF or FB

atomic behavior, respectively. To ensure that the hook rests

in the groove before changing the support arm, Front Catch

(FC) and Back Catch (BC) are necessary for grasping the bar

from above and below. Schematic evolutions of the BR and FR

motions are depicted in Figure 3, where the arrows illustrate

the frame progression. Forward and backward brachiations re-

sult from a given sequence of the described swing and gripper

behaviors. Finally, ZF and ZB transitions can either serve as

the starting or recovery phase. As an example, consider the

sequence ZB → BC → BR → BF → FC → BR → BF → FC

resulting in two forward brachiation (not to be confused with

FB) maneuvers starting from zero configuration of the robot,

which includes switching of the swing and support arm and

the motor’s axis of rotation. If the system experiences a

disturbance such that it cannot reach the desired fixed point

F or B, it will eventually come to rest in the Z configuration.

Here, it can perform a ZB or ZF behavior to continue the

forward brachiation via BF.

B. Realization of Release & Catch Behaviors

The passive gripper design was empirically optimized such

that the gripper’s interactions with the monkey bars can be

achieved with a control heuristic on the elbow motor, which

depends on contact friction but is largely invariant to distance

between the bars (0.22−0.58m). The anti-clockwise rotation

of the motor is referenced as positive as depicted in Figure 4.

1) Release: To simplify the control, BF and FB controllers

are only engaged once the swing arm releases the bar. For

BR, a constant positive torque of 2.5 Nm is applied for

at least 0.05 seconds. After this, if the elbow velocity sur-

passes 1.45 rad/s, the controller switches to BF brachiation.

Empirical state data x = [q, q̇]T was collected over 20

trials at the point of controller transition. The state standard

deviations σ
BR
0 = [0.03, 0.03, 0.08, 0.11]T were found to

be relatively low, thus the trial mean values of the state

xBR
0 = [−0.63,−1.87,−0.63, 1.45]T at this transition point

were used as a reliable initial condition for controller gener-

ation for BF. For FB swing, which starts with FR, a constant

torque approach was insufficient due to the different contact

angles of the hook on the bar. In order to clear the front

bar, an initial high negative torque and a subsequent lower

sustained positive torque is applied to lift the hook groove

off the bar. Similar to BR, state data was collected at this

transition point, analyzed, and used as the initial condition

xFR
0 = [0.51, 2.21,−0.63, 4.68]T for the FB controllers with

σ
FR
0 = [0.03, 0.002, 0.42, 0.72]T .
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Figure 4: Schematic of the symmetric AcroMonk system with

physical parameters l = 0.31, lc = 0.16 m and m = 0.63 kg

2) Catch: The catch behavior is executed at the end of

each atomic sub-behavior during continuous brachiation to

provide a defined rotation point for the next brachiation. This

is realized by applying a negative torque for 0.1 seconds with

a magnitude of 0.8 Nm. Duration and magnitude were chosen

empirically such that the bar slides into the groove if the hook

is slightly misplaced, but no movement is caused if the bar is

already resting in the groove.

C. Swing Behavior Generation

To complete the prerequisites for continuous brachiation,

the atomic swing behaviors are generated using two different

methods, namely trajectory optimization and RL.

1) Trajectory Optimization: Finding the four atomic swing

behaviors (ZF, ZB, FB, BF) for the AcroMonk system can be

casted as a trajectory optimization problem:

min
x,u

WT +

∫ T

0

(

xTQx+ uTRu
)

dt

subject to :

(2a)

ẋ = f(x, u) (2b)

|x| ≤ xlim, |u| ≤ ulim (2c)

x(0) = x0, x(T ) = xf (2d)

||p− pF
bar|| > rbar, ||p− pB

bar|| > rbar (2e)

where the final cost term includes minimization of total

trajectory time T with weight W , and the running costs include

a state regularization cost xTQx with Q = QT � 0 and an

effort regularization cost uTRu with R = RT ≻ 0. The set

of constraints include first order ODE (2b) form of system dy-

namics given by (1), state and effort limits (2c), initial and final

values of the state (2d), and collision avoidance constraints

(2e) where p is the current position of the end-effector (EE)

obtained via forward kinematics and pB
bar,p

F
bar, rbar denote the

space-fixed position of the left and right bars and their radii

as shown in Figure 4. Direct Collocation [33] was used to

find the optimal trajectories for the atomic behaviors using

the Drake framework [34] with SNOPT [35] as the backend

solver. The input trajectories are represented using a first-order

hold trajectory while state trajectories are represented using a

cubic spline interpolation.

The hyperparameters of the running cost evaluated over

N = 20 knot points were empirically selected as Q =
diag(0, 0, 1, 1), R = 100 for all behaviors. The state

and effort limits were conservatively chosen as xlim =
(2.09 rad, 2.88 rad, 10 rad/s, 10 rad/s)T and ulim = 3 Nm

to limit the search space of decision variables (x, u). The

remaining hyperparameters are summarized in Table II for

the four atomic behaviors. The final state xf for reaching the

backward bar (valid for ZB and FB movements) is chosen via

the (position and velocity level) inverse kinematics map such

that the EE reaches the cartesian point pB
f with velocity ṗB

f ,

following which the passive dynamics of the system brings

the bar into gripper’s region of attraction (shown in orange

in Figure 4) and settles the system to its stable fixed point.

A similar argument holds for choosing xf for reaching the

front bar in case of ZF and BF movements. It is crucial to

minimize time in case of ZF and BF movements so that the

EE reaches the point pF
f (with velocity ṗF

f ) above the front

bar with minimum number of swings.

Table II: Hyperparameters for trajectory optimization

Behavior x0 xf Wt

ZB 04×1 (-0.55, -1.97, -0.5, -3.0) 0

ZF 04×1 (0.73, 1.92, -3.0, -2.5) 50

FB x
FR
0 (-0.55, -1.97, -0.5, -3.0) 0

BF x
BR
0 (0.73, 1.92, -3.0, -2.5) 50

Figure 5: Reward visualization in task space (left) and joint

space (right), excluding dynamic rewards r−u , r−vel, and r−u̇ ,

and assuming q̇ = 0. Highly negative rewards correspond to

configurations in collision. The black line shows a trajectory

generated by the torque controller after training.

2) Reinforcement Learning: A BF controller was realized

with model free RL, generating a policy π which maps the

observation x = [q, q̇]T to the torque u directly applied to

the motor, such that a reward function r is maximized. The

full reward r is the sum of the terms detailed in Table III.

To define reward terms in task space (r−c , r
−
sb, r

−
cb, r

−
tb, r

+
tb), the

following functions are used

g(p,pbar, dmax) = H(dmax − d)

(

d

dmax
− 1

)2

h(p,pbar, dmax,n) = H(〈d,n〉)g(p,pbar, dmax)

(3)

where H denotes the Heaviside function, p are coordinates

of the swing arm end effector, 〈〉 denotes the scalar product,
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n defines a linear separatrix trough pbar, d = ||p − pbar||,
and dmax controls the region of influence of the term. In

addition, reward terms are used in configuration space (r+tc),

and dynamics penalties on the torque, velocity, and first

derivative of effort (r−u , r
−
vel, r

−
u̇ ) to generate controllers that

can be safely executed on the hardware. Finally, reaching the

target configuration qF with an error smaller than ∆q = 0.05
was rewarded (r+tar).

Table III: Reward (+) and penalty (-) terms

Description Reward/Penalty term

Collision term r−c = −20 if collision occurred

Close approximation of back bar r
−

sb
= g(p,pB

bar, 10rbar)

Close approximation of support bar r
−

cb
= g(p, [0, 0]T , 17rbar)

Approaching the target bar from below r
−

tb
= −5h(p,pF

bar, 15rbar, [1.7,−1]T )

Approaching the target bar from above
r
+

tb
=

∑
k h(p,pF

bar, dk, [−1.7, 1]T )

with d = [30rbar, 15rbar, 10rbar]

Configuration space r
+
tc = 0.2 exp(−0.5

∑
i(qi − qF

i)
2)

Hardware torque limit r−u = −H(|u| − ulim)(|u| − ulim)
2

Hardware velocity limit r
−

vel
= −H(|q̇2| − 6)(|q̇2| − 6)2

Smooth torque r
−

u̇
= −0.001|ut − ut−1|

Reach final configuration r
+
tar = 30H(||q − q

F|| − ∆q)

Whereas calculating the reward requires information about

the task space position p of the end effector, the observation

of the policy only includes joint configurations and velocities.

The reward function is visualized in Figure 5.

An episode was terminated if a collision occurred, or the

maximal episode length of 2s or the target configuration with

an error less than ∆q was reached. The system dynamics

were simulated with MuJoCo [36] for training, at a simulation

and control frequency of 250 Hz. Proximal Policy Optimiza-

tion [37] was used in the stable baselines [38] implementation

with default parameters. To account for realistic measurement

noise, normally distributed noise with σ = 0.025 was added

to the state observations. Similar reward setups can be used

to train controllers for all other atomic behaviors.

IV. BEHAVIOR CONTROL

Having generated optimal trajectories, these have to be

tracked and stabilized during execution. In the case of RL,

some deliberation is usually needed in tuning the simulation

parameters for the policy to perform well on the real system.

The following section details the steps taken to realize the

atomic swing behaviors and enable continuous and robust

brachiation on the real robot.

A. Trajectory Tracking with PD

As a first method, we consider tracking the generated

trajectories from Section III-C1 with PD control for all atomic

behaviors. The commanded torque from the state feedback for

the actuated joint is computed using:

τ(t) = Kp(q2(t)− q∗2(t)) +Kd(q̇2(t)− q̇∗2(t)) + u∗(t) (4)

Here, ∗ denotes the nominal trajectories. We chose the

controller gains Kp = 100 and Kd = 2 empirically at a control

frequency of 300 Hz. An idling time of 0.1 seconds was used

before engaging any Catch behavior to leave enough time for

the catching hook to make contact with the target bar.

B. Trajectory Tracking with TVLQR

As an alternative, Time-Varying Linear Quadratic Regulator

(TVLQR) [39] control was also used to stabilize the nominal

trajectories. TVLQR aims to minimize the error coordinates

x̄ = (x − x∗) and ū = (u − u∗) , where ∗ denote states of

the nominal trajectory. For this, a time-varying linearization

using a Taylor series approximation is performed, resulting in

a time-varying linear system in the error coordinates:

ẋ = A(t)x̄(t)−B(t)ū(t) (5)

The quadratic cost function is defined as:

J = x̄T (t)Qf x̄(t) +

∫ tf

0

(

x̄T (t)Qx̄(t) + ūT (t)Rū(t)
)

dt

where Q = QT � 0, Qf = QT
f � 0 and R = RT ≻ 0. The

optimal cost-to-go can be written as a time-varying quadratic

term and the controller gain K(t) be found by solving the

differential Riccati Equation [40]. The final control law is then

of the form:

τ(t) = u(t) = u∗(t)−K(t)(x− x∗). (6)

The hyperparameters for the TVLQR-stabilized BF behavior

were empirically selected as Q = [0.01, 5, 0.01, 0.1], Qf =
[0.04, 20, 0.04, 0.4], and R = 5. These parameters worked for

both swing arms. TVLQR stabilization was run at 260 Hz,

slightly slower than PD, due to the extra computational step to

find the closest point of the current state to the target trajectory.

For continuous brachiation, in addition to the 0.1 second idling

time before each catch, an additional 0.1 s pause between

successive BF behaviors was introduced, since the method was

more susceptible to deviations in the initial condition after BR.

All other atomic behaviors can be stabilized by TVLQR, but

we focus here on BF without loss of generality.

C. Model Free RL Control

In contrast to the previous methods, RL trains the mapping

of observations to torque control directly in simulation, not

following a precomputed target trajectory. For direct torque

control, there is a high demand on simulation accuracy for

successful simulation to reality transfer. To ensure realistic

damping losses, trajectories of q, q̇, τ from a BF swing via

trajectory tracking with PD were recorded. Simulated trajecto-

ries qsim, q̇sim were obtained by replaying the recorded torques

in simulation. The damping parameters of the support hook

contact on the bar and the motor were optimized such that the

deviations q − qsim, q̇ − q̇sim are minimized, following [41].

The SHGO global optimizer (SciPy) yielded damping values

of ≈ 0.044 for the hook contact and ≈ 0.06 for the motor.

Furthermore, the BF controller was trained only for the swing

arm connected to the motor housing. For BF with the other

arm, the torque commands were scaled empirically by a

factor of 0.92. The trained policy network was converted to

a numpy function for deployment on the on-board computer.

The controller was run at 80 Hz on the real system. Although

capable to run faster, higher frequencies made the policy less

stable, probably due to a higher impact of sensor noise. For

continuous brachiation, the idling time before Catch was set

to 0.2 s and the pause between subsequent BF behaviors to

0.5 s, both to the same end of giving the system enough time

to settle and ensure low deviations from the expected initial

condition after hook release.
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Figure 6: Snapshots of executions of the atomic behaviors ZB (top), ZF (second row), BF (third row), and FB (bottom)

V. RESULTS & DISCUSSION

The four atomic behaviors BF, FB, ZB, and ZF were

realized on the hardware demonstrator with Trajectory op-

timization (Traj Opt) + PD. Figure 6 shows snapshots of

the successful execution of these behaviors. This allows for

continuous, bidirectional brachiation including recovery from

disturbances, as shown in the supplementary video.

Whereas in principle all behaviors can be achieved by

different control methods (see Section III), we use the example

of BF to benchmark the performance of Traj Opt + PD, Traj

Opt + TVLQR, and RL policy-based control. All methods

achieved high repeatability of the single BF behavior with a

100% success rate over five different trials. To simulate instan-

taneous disturbances due to collisions with the environment,

a cardboard box (with dimensions 13× 8× 28 cm and weight

160 g) was placed on the ground in the swing path of the

arm, roughly below the target bar. Here, only Traj Opt + PD

could reliably recover with a success rate of 100%. Traj Opt

+ TVLQR recovered in 4/5 cases and the RL controller in

1/5 cases. Robustness to mass uncertainty was assessed by

attaching a 200 g weight to the swing arm. The Traj Opt +

PD controller compensated for this mismatch reliably, whereas

both Traj Opt + TVLQR and RL failed in 5/5 tests.

To assess continuous brachiation performance, we bench-

mark timing and energy expenditure of five consecutive for-

ward brachiations with all three control methods. Figure 7

shows the full maneuver’s positions, velocity, and torque

trajectories. Table IV summarizes benchmark values for max-

imum torque usage, trajectory tracking performance, overall

energy consumption, and duration. The root-mean-square error

of trajectory tracking is low for TVLQR and PD. This metric

does not apply to RL since the policy does not track a

trajectory. The peak torque is the lowest for TVLQR and

highest for RL. The lowest energy consumption was achieved

by RL for the whole maneuver, whereas PD had a considerably

higher energy demand. The total time of transport is highest

for RL, even though the controller needs the shortest time

to complete one swing. The reason lies in the RL-based

controller’s sensitivity to disturbances and uncertainties during

the maneuver. Therefore, longer pauses in comparison to

the other methods between each brachiation maneuver are

introduced to let the system settle down.

The results show that AcroMonk is an easily controllable

system, despite its underactuation and passive gripper design.

Realizing all atomic dynamics behaviors leads to successful

and robust brachiation, while the system can recover from dis-

turbances. The relative ease of controllability can be attributed

to the balanced design and the novel, grooved grippers, that

provide a well-determined starting point for each behavior.

The successful performance of five forward brachiation

motions with all three control strategies is a novelty in the

literature for a system with passive grippers and only one mo-

tor. The various controller types in this experiment showcase

the advantages and disadvantages of different state of the art

strategies. Simple PD trajectory stabilization performed well

and indeed proved to be most robust to external disturbances.

Given the design choices, this is not surprising since PD

control will always force the trajectory back on track, provided

enough torque is available. TVLQR incorporates a model of

the system to track the desired trajectory, which, if it does

not match the actual setup, e.g., when an unknown mass is

added, will lead to sub-optimal performance. On the other

hand, it can be more energy efficient due to incorporation of

model knowledge. Combining an optimized simulation model

with RL resulted in the most energy efficient controller, which

is however also most susceptible to deviations from trained

states, resulting in longer necessary pauses between behaviors

and poor generalization to disturbances or long traversals.
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Figure 7: Recorded data of joint positions, velocities, and torque for five consecutive BF behaviors, i.e. six bars, with 0.34 m

gap. Up: PD control, middle: TVLQR, bottom: RL control. For PD and TVLQR, the desired trajectories are also shown.

Table IV: Performance characteristics of controllers

Metrics / Controller PD TVLQR RL

Max. Abs. Torque (Nm) 3.506 3.231 3.55

Average RMS Error

Pos (rad) 0.119 0.163 -

Vel (rad/s) 0.682 0.952 -

Torque (Nm) 0.709 0.430 -

Total Energy (Joule)
5x Brachiation 8.939 8.640 6.995

Single swing 1.645 1.556 1.167

Transport Duration (s)
5x Brachiation 11.322 12.592 15.310

Single swing 1.944 1.944 1.894

Success Rate (%)
5x Brachiation 100 100 10

Single swing 100 100 100

VI. CONCLUSION

With AcroMonk, we present a novel canonical underac-

tuated system for studying brachiation. Due to the grooved

gripper design, it is easily and reliably controllable, making

it the first system of such a low complexity to achieve mul-

tiple consecutive brachiation motions. The readily available

components and straightforward assembly make it a suitable

reference system for underactuated robotics research. Our

future work will focus on the following issues. Despite some

success, we were not yet able to produce reliable backward

brachiation. The release behavior in this configuration is much

harder to perform since it requires lifting the swing arm hook

up from the bar leading to a mean initial condition of front

release with higher standard deviation (σFR
0 > σ

BR
0 ). Also,

due to the single-motor design, the desired support arm may

seldomly unhook instead during this maneuver. To solve this

problem, we are working on an improved gripper design with

beveled edges to reduce the force required for unhooking.

We are also working on realizing even more dynamic behav-

ior such as automatic release during continuous brachiation

and ricocheting exploiting impacts during the kinodynamic

planning. We already observed that a well adjusted impact

force on the target bar can directly unhook the support arm,

resulting in even smoother and more dynamic brachiation.

Considering ricocheting, we could also generate brachiation

in a single swing with a short flight phase when removing

the torque limits of the controller. While this was not yet

safely reproducible, it shows that the system is in principle

capable of such behavior. Finally, brachiation over irregularly

placed bars is another challenge to be tackled in future.

The design and controllers discussed in this paper have

been open-sourced (https://github.com/dfki-ric-underactuated-

lab/acromonk) to support education and research of brachia-

tion with easy to implement hardware.
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