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Abstract  
This paper proposes a Conceptual Alignment (CA) Method for conceptual modeling and machine 
learning. The model consists of a three-step cycle that selects an initial conceptual model, aligns it with 
machine learning models, and refines both models to reach predictive consistency. Alignment is based on 
composition methods that can be instantiated by methods that satisfy contribution properties. The 
Conceptual Alignment Method is applied to a healthcare use case on hospital inpatient discharges. The 
machine learning model trained for total cost predictions is aligned with a conceptual model. We show 
how this refined conceptual model is used for explaining the machine learning model for a very large 
healthcare dataset.  

Keywords  
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Introduction 
Without models, humans cannot exist within environments (Moore and Golledge, 1976). Conceptual 
models in information systems are used by information system designers for making sense of complex 
socio-economic environments that partially reside in physical and social environments but also reside in 
digital environments. In this sense, conceptual models are bridging both types of environments. In 
mathematics and statistics, analytical models are used for representing exact equations between variables 
whereas probabilistic models are approximations of data. Machine learning models are probabilistic 
models with very high capabilities for complex data, such as visual data or language data. The quality of 
data predetermines the quality of machine learning models (Sheng et al. 2008).  
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As our society’s dependence on machine learning grows, it is important to ensure that machine learning 
models perform well, are compliant with legal and ethical requirements, and are interpretable and 
transparent for different types of users (Maass et al. 2022). This trade-off is often exacerbated by opaque 
transformations in the input data (feature engineering), making it challenging to assess the effectiveness 
of the input data on the outcome. Large deep learning models train billions of parameters for finetuning 
the performance on predictive tasks. Such models can only be interpreted by technical experts;  not by 
decision makers and other users. Therefore, users do not have proper models that allow them to make 
sense of the environments for which machine learning models are used. It creates a situation in which 
predictions made by machine learning models are perceived as scientific phenomena, such as molecular 
behavior in Chemistry, DNA behavior in Biology or behavior of atoms in Physics. This is astonishing 
because, although machine learning models are developed by humans, we have reached a point of 
complexity that exceeds human understanding. This “tipping point” results in the persistence of 
numerous challenges when using machine learning models, including biases, discrimination, lower 
performance, lack of transparency, interpretability, and explainability (Arrieta et al. 2020). 

Given this interpretability gap between decision makers’ understanding and machine learning models, 
conceptual models are well-placed to serve as useful mediators. Traditionally, conceptual models are 
created by humans based on conceptual modeling grammar (Wand and Weber 2002). Conceptual 
modeling grammars provide a set of constructs and a set of production rules for representing perceptions 
for a given domain negotiated between design teams (Burton-Jones et al. 2009). The open issue lies in the 
lack of transparency of machine learning models which poses a challenge for building a conceptual model 
on a machine learning model. Conceptual models that are derived from input-output behavior of machine 
learning models are notoriously weak because they do not represent proper conceptual definitions and 
relationships between input data and output data. We propose an iterative approach, called Conceptual 
Alignment (CA) Method, that consists of a three-step cycle: (1) selection of initial conceptual models, (2) 
alignment with machine learning models, and (3) refinement of conceptual models and machine 
learning models. The iterations stop when a fixpoint has been reached, based on the measurement of 
predictive consistency. 
To appreciate the situation more tangibly, consider the following example. A financial investor group 
hired a leading AI company DL Force for building a prediction system for their trading department. The 
trade department has given schema information about available input data and targeted output data to 
DL Force. The input data has been selected from the information system’s database that has been used 
thus far. The designers assume that the conceptual model used for the previous information system has 
similarities with the information system that uses machine learning technologies. Therefore, they provide 
this as input to the Conceptual Alignment Method. The first iteration shows that the conceptual model in 
inconsistent in some input concepts with respect to the prediction (binary buy or sell trade decision for 
simplicity). The CA method indicates which attributes of the conceptual model are predictive inconsistent 
by measuring the predictive inconsistency of all concepts and attributes. The designers make decision on 
redesigning the conceptual model according to the recommendations given by the CA method. After 
several iterations the general predictive consistency score (GPCS) cannot be improved which indicates a 
maximum. The revised conceptual model is optimally aligned with the machine learning model and 
provides a proximate explanation for the machine learning model. It includes prediction support values 
(PSV) between input concepts and the predicted attribute of the outcome concept, i.e., trade decision. 
Therefore, the revised conceptual model is an improved representation of the ML-based information 
system that can be in discussions with developers of DL Force and in discussions with superior 
management. 
This example describes the utility of conceptual models as an interpretive framework for machine 
learning models. By alignment of conceptual models with machine learning models, similarities, and 
differences between the two can be identified. If there is strong predictive consistency, there is a high 
probability that the predictive behavior of the machine learning model will conform to the conceptual 
model.  If there is a low level of predictive consistency, the machine learning model behaves significantly 
differently than assumed by domain experts. This is either an indication that the conceptual model is not 
properly reflecting the domain or that the machine learning model provides some unintended or novel 
facts about the domain (Storey et al. 2022). 



 Conceptual Alignment Method 
  

 Twenty-ninth Americas Conference on Information Systems, Panama, 2023 3 

Machine Learning and Conceptual Modeling 
Conceptual models are shared representations expressed in various forms, such as texts and graphics. 
According to model theory, conceptual models are projected and abbreviated representations made by 
human experts and used for a purpose (Stachowiak 1973). In contrast, machine learning models are 
statistical abstractions derived by algorithmic fitting mathematical functions to data according to a 
purpose given by an objective function (Hastie et al. 2009). Data used for model fitting and also for 
construction of conceptual models are representations of domains themselves. In essence, conceptual 
models are socially constructed, and machine learning models are algorithmically constructed. Mental 
models and machine learning models are equally difficult to access. Therefore, conceptual models occupy 
a mediating position between the two.  
Conceptual models are understood as a means for designing and implementing better information 
systems (Wand and Weber 2002). Wand and Weber identified the evaluation of ``competing scripts 
generated via the same grammar to describe some phenomenon'' as a key element for investigation of 
conceptual-modeling scripts (Wand and Weber 2002). Because information systems increasingly use data 
analytical models as core components, conceptual models provide a means for designing machine 
learning models as well.  
So far, conceptual-modeling scripts (cf. Wand and Weber 2002) are designed according to syntactic, 
semantic, and pragmatic properties (Lindland et al. 1994). It does not matter if the attributes serve as 
input for the prediction of other attributes. Therefore, concepts are designed independent of predictive 
consistency of attributes. For information systems that use machine learning models, conceptual models 
can also support the design and implementation of better machine learning models. This means that 
inconsistencies of concept definitions with respect to predictions are to be minimized so that they better 
reflect the behavior of intended machine learning models. A conceptual model provides higher predictive 
consistency if attributes are homogeneous in predicting attributes of concepts to which they are connected 
by conceptual relationships. 
Supervised learning, a subtype of machine learning, and the focus of our work, guides the learner in 
acquiring knowledge in a domain through examples, so new cases can be handled based on the knowledge 
learned from similar cases. Modern supervised machine learning efforts have been rapidly increasing due 
to the availability of training data, growing computational capabilities, and the availability of new 
methods and techniques (e.g., deep learning neural networks, reinforcement learning). 
The increase in the use of complex machine learning models has revealed challenges in explaining the 
decision logic of these models. Transparency research in AI is a growing societal concern and an emergent 
research area (Arrieta et al. 2020). For example, constrained models and post-hoc explanation techniques 
can help in building responsible AI systems (Arrieta et al. 2020). In our work we seek to leverage 
knowledge of domain experts, externalized as conceptual models, to allow for detection of biases or even 
unintended behavior of machine learning models. 
Conceptual modeling formally describes “some aspects of the physical and social world around us for the 
purposes of understanding and communication” (Mylopoulos 1992). Conceptual models have been used 
extensively in information technology development, especially for database design and process 
engineering, and to facilitate communication and domain understanding (Recker et al. 2021, Wand and 
Weber 2002). Some ideas exist for the use of conceptual models on machine learning models. For 
instance, Recker et al. envision digital agents that generate conceptual models from machine learning 
models (Recker et al. 2021). Conceptual models are characterized by various traits, including simplicity, 
abstraction, communication, flexibility, and modifiability (Mylopoulos 1992, Wand and Weber 2002). 
However, none of these traits are related to predictability and performance of machine learning models. 
This might explain why data scientists rarely use conceptual models during the design of data analytical 
models and pipelines. 
Recent research has proposed combining conceptual modeling with artificial intelligence or, specifically 
machine learning (Maass et al. 2022, Bork et al. 2020, Lukyanenko et al. 2020). Doing so can provide 
reliable rules about the domain without being dependent on extracting them from the data. Despite these 
efforts, conceptual models are rarely used in the process of building machine learning models or to 
increase machine learning model transparency and interpretability. At the same time, machine learning 
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invariably relies on understanding of reality in the minds of data scientists or users of machine learning 
models, who either develop or interpret machine learning solutions, in light of their individual mental 
models. This inevitably leads to differences between the shared understanding of the information system 
design team and the data scientist team responsible for the machine learning model. This, in turn, will 
lead to inconsistent decision behavior of the information system that uses machine learning models. 

Research hypothesis: Conceptual models are aligned with machine learning models provide conceptual 
explanations for machine learning models. 

Explanation Models 
Humans are good in developing and using linear prediction models. If the stock market went up the past 
three days by 1%, we easily extend this into a prediction of 1% today. The same holds for weather, grades, 
or inflation rates. But reality shows that linear models are naïve and result in large prediction errors 
because linear models are not specific enough, i.e., they cannot capture functional behavior of non-linear 
signals. For modeling non-linear phenomena, science has developed different approaches, such as 
differential equations, Taylor series, Interpolating Polynomial and Splines in calculus and statistical 
models, such as autoregressive models, support vector machines, decision trees, and neural networks. 
These approaches generally lead to tradeoff between accuracy and human interpretability. 
Explanation models are simpler models reversing this tradeoff for better human interpretability by 
optimizing only locally. Explanation models, such as Lime and SHAP are linear models that approximate 
point estimates for given input values. Lundberg and Lee proposed SHAP (Shapley Additive Explanation) 
values as a generalization of additive feature attribution models, i.e., models that are sums over weighted 
input values plus mean (Lundberg and Lee 2017). SHAP values are Shapley values of a conditional 
expectation function of the machine learning model, i.e., the fitted model is used for determining local 
contribution of single features to an outcome. 
Shapley values formalize coalition games and determine additive marginal contributions of single players 
to an overall payoff of the coalition of players. They are defined by an operator  that assigns for each 
game v a vector of payoffs .  is player i's marginal and additive contribution to the 
outcome of a game over all permutations with all other players (Shapley 1952). Shapley values are locally 
accurate, i.e., match the original model f(x), are not affected by missing values, and are consistent wrt. 
inequality relation between two models f(x) and f'(x) (Lundberg and Lee 2017). The Shapley value of a 
feature i is a weighted mean of its marginal value of feature i, averaged over all possible subsets of 
features:  

 
with F the set of all features and  with a model trained with feature i and without. SHAP values 
determine additive contributions of input features X on the prediction of an output feature y, i.e., y=f(X), 
agnostic to the machine learning model used with f the original model and  a vector of all Shapley values 

  for all independent features. Input feature   is transformed into a simplified vector   with 
, i.e., SHAP value  is zero if the feature  is missing and  carries the whole feature 

contribution of a feature to an outcome otherwise.  

Conceptual Alignment Method 
Following the theory-grounded arguments for incorporating conceptual models for explainability, we 
advance a new method, the conceptual alignment (CA) method. The CA method iteratively aligns 
conceptual models with machine learning models. The proposed Model Embedding Method consists of 
three steps that are iterated until a stopping criterium has been reached: 

(1) Selection of initial conceptual models  
(2) Alignment with machine learning models  
(3) Refinement of the conceptual models and machine learning models 
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The objective of the CA method is the transformation of an initial conceptual model in a way that is best 
aligned with a machine learning model. Because CA iterations can also lead to redesigning the machine 
learning model, both models are moving toward each other. 

Selection of initial conceptual models 

Data is the starting point for the analysis of machine learning models but is also a crucial element of 
conceptual models. Data schema for training machine learning models is often flat with numerical data 
only, i.e. numerical tabular data with columns for features and rows for samples. The semantics of 
features is generally well-defined with a small focus, such as age or income. For supervised learning 
models, samples also carry values, aka labels, for outcome variables. The goal is the prediction of labels y 
for known input data X ( ). Conceptual model group data attributes into classes and connect 
concepts by relationships with cardinalities. 

The CA method requires a mapping between attributes of conceptual models and features of machine 
learning models. Explanability is best supported if a one-to-one mapping is used but more complex one-
to-many mappings might be used as well. N-to-m mappings diminish the possibility of clearly attributing 
contributions of features to attributes in conceptual models. For simplicity, we assume a one-to-one 
mapping in the following with identical value ranges. 

Class definitions are key decisions made by conceptual modelers. The CA method uses schema 
information on classes, i.e., class definitions with associated attributes. A key requirement is that all 
attributes are mapped with all features used by the machine learning model. Conceptual models that 
satisfy this requirement are valid candidates for initial conceptual models. 

Composition method 

The alignment of conceptual models with machine learning models requires a composition mechanism 
that is comparable to the composition of measurement models and structural models in structural 
equation models (Bollen 2014). The CA method uses explanation models on machine learning models for 
extracting concept contributions that are used for determining the predictive consistency score of the 
conceptual model depending on the machine learning model. This approach builds on the 
superimposition approach proposed by Lukyanenko et al. (2020) that graphically imposes feature weights 
onto conceptual models to show which entities (concepts) the weights belong to. 

Any composition method has the following contribution properties (Shapley 1952): 
(1) Contribution values are superadditive. 
(2) Contribution values satisfy local accuracy, missingness and consistency properties (Lundberg and 

Lee 2017). 
(3) Contribution values can be injectively mapped onto attributes of conceptual models (feature 

mapping). 

(4) Feature mappings are semantically sound. 
The superadditivity property means that for two machine learning models S and T the following holds for 
their contribution values CV(CÈT)³CS(C)ÈC(T) given feature sets of C and D are disjoint. This means that 
composition methods can be applied to ensembles of disjoint machine learning models. The second 
property of composition methods is derived from Shapley’s theory as discussed in Lundberg and Lee 
(2017). The third property requires that a feature can only be mapped onto one attribute of the conceptual 
model.  
In the following, we use a composition method that uses SHAP Values (Lundberg and Lee 2017) with a 
one-to-one mapping between features and attributes. SHAP Values satisfy property (1) and (2) and the 
one-to-one mapping satisfies property (3). 
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Alignment process 

With the selected composition method, we can determine the contribution values of a machine learning 
model (MLM), map these onto attributes and integrate these into concept contributions relative to a given 
prediction task. The alignment process with the SHAP-based composition method consists of three steps: 

(1) Feature Contributions: determination of contribution values for all input features of an MLM for 
predicting an outcome feature p. 

(2) Mapping Contribution Values: application of the mapping function that maps feature 
contributions values onto attribute contribution values. 

(3) Concept Contributions: identification of concept contributions on prediction features. 
Note that attributes are defined in the context of conceptual models and features in the context of 
machine learning models. 
Feature Contribution: The composition method calculates contribution values. In our example, we are 
using SHAP values represented by vector  (Lundberg and Lee 2017). Feature contributions are 
irrespective of the association of features to attributes and concepts, i.e., feature contributions are 
determined by machine learning models independent of conceptual models. 

Mapping Feature Contributions: Despite the simplicity of standard mappings between features of the 
feature set F and attributes of the attribute set A, mapping contribution values FCV of features in F onto 
attribute contribution values ACF is an important conceptual step: map(FCV	 (F)	 à	 ACV(A)). FCV(F)	 and	
ACV(A)are required to satisfy the properties of contribution values. It requires an in-depth analysis of the 
semantics underlying features and attributes and their functional relations. The selected mapping 
function map needs to be consistent with the functional relation between features and attributes. A one-
to-one mapping fulfills properties 3 and 4 for contribution methods. A feature mapping is semantically 
sound if the semantic of a feature f element of F has an interpretation in the domain of a conceptual model 
CM that is a subset of the corresponding attribute of an element of A. 

Concept Contribution: After feature mapping feature contributions onto attribute contributions, concept 
contributions are determined by aggregating attribute contributions. For each concept c in CM, a n-ary 
concept contribution vector   is constructed by selecting only attribute contribution values associated to 
a concept c. Selection is controlled by masking vectors d:gco=ACF○d. 

For the SHAP-based composition method with one-to-one mapping,  is the sign-preserving, minmax-
scaled mean of Shapley values for a feature f mapped onto a. This allows to normalize the attribute 
contribution values for the absolute largest value, i.e., the normalization is driven by the largest positive or 
negative attribute contribution value.  

Refinement of the conceptual models and machine learning models 

Resulting concept contributions  represent the relative positive or negative contribution of features f 
that is mapped onto a for predicting an outcome feature o. Therefore, concept contributions are governed 
by associated attribute contributions. Concept contributions can be purely positive, purely negative, close 
to zero or multimodal. Pure concept contributions only contain attribute contributions that are all positive 
or negative, i.e., pointing in the same predictive direction. This can be seen as support for a clear 
conceptual relationship between both concepts from a data analytical perspective in addition to syntactic, 
semantic, and pragmatic qualities (Lindland et al. 1994). Concept contributions close to zero indicate that 
a concept is irrelevant for the prediction of an outcome feature o. Multimodal concept contributions 
contain negative and positive attribute contributions, i.e., attributes are predicted in both directions. This 
could lead to situations in that strong attribute contribution values cancel out each other. This would 
mean that strong predictive effects are not transparent on the conceptual level. Multimodal concept 
contributions are an indicator of misalignment between conceptual models and machine learning models. 
Therefore, multimodal concept contributions require conceptual separation for making prediction effects 
transparent. First, all attribute contributions below a threshold (e.g., <0.1) are neglected. Second, 
attributes with negative and positive attribute contribution values are separated into distinct concepts. By 
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using a heuristic, the larger set is kept in the original concept while a new concept is generated for the 
smaller set. 

After conceptual separation, the alignment process is re-iterated until the number of multimodal concept 
contributions increases. Whether this is a global or local optimum depends on the initial conceptual 
model. In general, concept separation is a NP-hard problem that is a subclass of the knapsack problem.  

Example 
Domain, prediction task, data, and pre-processing 
Data analytics in healthcare on patient data is the basis for personalized medicine (Fröhlich et al. 2018). 
The Office of Quality and Patient Safety of the New York State Department of Health has established a 
Statewide Planning and Research Cooperative System (SPARCS) that provides a comprehensive all-payer 
data collection system. SPARCS currently collects patient-level details on patient characteristics, 
diagnoses and treatments, services, and charges for inpatient and outpatient services (ambulatory 
surgery, emergency department, and outpatient services) 
(https://www.health.ny.gov/statistics/sparcs/training/docs/sparcs_dgc_manual.pdf). Cost control is an 
important aspect of modern healthcare systems. Therefore, predicting individual total costs based on key 
factors is used in the following.  
The dataset Hospital Inpatient Discharges contains 2.3M sample with about 600MB, each representing 
one patient incident in 2017. The dataset contains 34 features including “total_costs”. All features are 
transformed into numerical data. For our evaluation, we only used 1% from the dataset so that it could be 
tested on a Macbook Air (M1, 16GB, 8 cores, 2020). The dataset has few high total cost values with a mean 
of 16,708 USD and a maximum value of 5,544,736 USD for the subsampled dataset. 

 
Selection of initial CM 
As an initial conceptual model, we defined a class model without relationships. The assignment of 
attributes to classes was constructed based on discussions with domain experts, semantic analysis of the 
features, and evaluation of the SPARCS DGC technical documentation. 

• Hospital: 'Hospital Service Area', 'Hospital County', 'Operating Certificate Number', 'Permanent 
Facility Id', 'Facility Name' 

• Patient: 'Age Group', 'Zip Code - 3 digits', 'Gender', 'Race', 'Ethnicity', 'Patient Disposition', 
'Payment Typology 1', 'Payment Typology 2', 'Payment Typology 3' 

• Admission: 'Length of Stay', 'Type of Admission', 'Discharge Year', 'Emergency Department 
Indicator', 'Birth Weight', 'Abortion Edit Indicator' 

• Illness: 'CCS Diagnosis Code','CCS Diagnosis Description',  'CCS Procedure Code',  'CCS 
Procedure Description', 'APR DRG Code', 'APR DRG Description', 'APR MDC Code', 'APR MDC 
Description', 'APR Risk of Mortality','APR Medical Surgical Description', 'APR Severity of Illness 
Code', 'APR Severity of Illness Description' 

Definition and application of the composition method 
The composition method is based on SHAP values (Lundberg and Lee 2017). A one-to-one mapping 
between features and attributes which guarantees semantic soundness. Therefore, contributions 
properties are satisfied. Additionally, we set the multimodality threshold to 0.05.  
Application of the alignment method 
Contribution values show that hospital, patient, and illness are multimodal. Table 1 shows the feature 
values for concept illness after the initial iteration. APR MDC Code and APR DRG Code clearly point in 
different directions so that the concept contribution of illness becomes close to zero. By conceptual 
separation, three concepts (c1, c2, c3) are constructed that capture diverging features. After the second 
iteration, 'APR MDC Code' and 'APR Medical Surgical Description' were identified as root causes for 
strong multimodality in illness. Another concept could be automatically generated but we opted for 
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integration of these two features into c3 due to semantic similarity of features. This is an intervention 
option that is prompted to conceptual modelers and domain experts. It shall be noted that features 
Discharge Year and Abortion Edit Indicator are kept as control variables whose feature contribution 
should always be zero because they are fixed to value 2017 and 0, respectively. 
 

Concept: Illness mean range 

CCS Diagnosis Code                   -0.005557    [1...2617] 

CCS Diagnosis Description            -0.000823    [0...262] 

CCS Procedure Code                    0.055127    [0...231] 

CCS Procedure Description            -0.09329     [0...222] 

APR DRG Code                          0.973663     [1...956] 

APR DRG Description                   0.025985     [0...319] 

APR MDC Code                              -1.0      [0...25] 

APR MDC Description                   0.003322      [0...25] 

APR Risk of Mortality                   0.0089   [0 1 2 3 4] 

APR Medical Surgical Description     -0.080236         [0 1] 

APR Severity of Illness Code         -0.051258   [0 1 2 3 4] 

APR Severity of Illness Description  -0.001722   [0 1 2 3 4] 

Concept contribution -0.0138  

Table 1. Feature contributions and concept contributions for illness 
 

 mean ranges 

c1   

Hospital County               -0.034587                 [0...56] 

Operating Certificate Number  -0.035327   [101000.0...7004010.0] 

Facility Name                  0.000249                [0...209] 

gc_bar:   -0.0232  

c2   

Age Group            -0.005381   [0 1 2 3 4] 

Race                 -0.002907     [0 1 2 3] 

Patient Disposition  -0.010671     [0...19] 

Payment Typology 3   -0.000267      [0...10] 

Concept contribution   0.0048  

c3   

CCS Procedure Description           -0.0901     [0...222] 

APR Severity of Illness Code      -0.003219   [0 1 2 3 4] 

APR MDC Code                           -1.0      [0...25] 
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APR Medical Surgical Description -0.078736         [0 1] 

Concept contribution   -0.293  

Table 2. Feature contributions for added concepts c1, c2, and c3 (iteration 3) 
Concept Contributions 

The final concept contribution models in graph representation (Figure 2b) shows that all added concepts 
are negative while all others are positive. None is multimodal beyond the multimodality threshold. 
Therefore, the algorithm stops after iteration 3. The conceptual model (Iteration 3) is a valid proxy for the 
machine learning model (34 features and 600MB data). This conceptual model can be scrutinized by 
domain experts and information system designers. For example, it is worth noting that zip code, gender, 
and ethnicity have neither positive nor negative effects on total costs, suggesting that the machine 
learning model and predictions have a higher likelihood of accounting for associated biases. 

 
Figure 1: Concept contributions for decision with feature total costs:  

a) iteration 1 and b) iteration 3 

 
In contrast to well-known explainable AI methods, conceptual alignment determines directed 
dependencies between input and output concepts instead of features only. Therefore, the conceptual 
alignment method abstracts from features to concepts and provides conceptual information to domain 
experts. With this information, domain experts can explore conceptual dependencies that are implicit to 
machine learning models and training datasets.   

Conclusion 
This paper has proposed a Conceptual Alignment (CA) Method for conceptual modeling and machine 
learning. The model consists of a three-step cycle that selects an initial conceptual model, aligns it with 
machine learning models, and refines both models to reach predictive consistency. Future work is needed 
to apply this method to multiple applications to assess its feasibility and effectiveness.   
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